
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Online Planning in MDPs with Stochastic Durative Actions

Tali Berman1 , Ronen I. Brafman1 , Erez Karpas2
1Ben-Gurion University

2Technion
bermant@post.bgu.ac.il,brafman@bgu.ac.il, karpase@technion.ac.il

Abstract

Stochastic planning problems are typically mod-
eled as Markov Decision Processes, in which ac-
tions are assumed to be instantaneous and applied
sequentially. Yet, real-world actions often have du-
rations and are applied concurrently. This paper
presents an online planning approach that can deal
with durative actions with stochastic outcomes.
Our approach relies on Monte Carlo Tree Search
with a new backpropagation procedure and tem-
poral reasoning techniques that address the need
to not only choose which action to execute, but
also when to execute it. We also introduce a novel
heuristic that combines reasoning about time and
probabilities. Overall, we present the first online
planner for stochastic temporal planning, solving a
richer problem representation than previous work
while achieving state-of-the-art empirical results.

1 Introduction
In various applications, the controlled system can perform
multiple durative (i.e., non-instantaneous) actions concur-
rently. Examples include robots with multiple actuators, co-
operative multi-agent systems, and smart homes. Often, such
systems must respect temporal constraints such as deadlines
(the meal should be ready by 5 pm) and time windows (the
store is open 10 am to 6 pm), constraining both relative and
absolute timing of actions in a successful plan. Classical tem-
poral planning deals with these issues [Long and Fox, 2003;
Schoenauer et al., 2006; Vidal and Geffner, 2006; Coles et
al., 2010b; Bit-Monnot et al., 2020; Panjkovic and Micheli,
2023], but assumes action effects are deterministic. Yet, in
many applications actions can fail in various ways and have
potential side effects. Although Markov decision processes
(MDPs) capture stochastic actions, they assume that actions
are applied sequentially, have instantaneous effects, and typi-
cally do not consider temporal constraints. Multi-agent exten-
sions of MDPs allow for (concurrent) joint-actions [Bernstein
et al., 2002], but they are instantaneous and synchronized.

The combination of durative actions with stochastic ef-
fects forces us to consider interactions between temporal con-
straints, success probability, and failure modes. Suppose we

must select between a short, risky action with a high suc-
cess probability that leads to a dead-end state if it fails, and a
longer, safe action with a low success probability that can be
retried if it fails. Without a deadline, an optimal policy would
typically reapply the safe action until it succeeds. However, if
there is insufficient time to try the safe action enough times,
the risky action is better. Finding the optimal policy in this
case requires reasoning both over temporal constraints (to un-
derstand what the deadline is), and stochastic effects (to un-
derstand how likely the risky action is to lead to a dead-end).

Planning with stochastic, durative actions was considered
by [Little et al., 2005; Buffet and Aberdeen, 2009; Mausam
and Weld, 2008] only in the offline setting, which severely
limits scalability and requires an explicit model. Moreover,
past algorithms insert actions only in pivot points – points
in time in which some action’s execution terminates. Hence,
they cannot solve problems with required concurrency and
complex temporal constraints [Mausam and Weld, 2008].

In this paper, we define CoMDP+, a model that extends
MDPs with actions with deterministic durations, concur-
rency, and temporal constraints. Our main contribution is
TP-MCTS (Temporal Planning MCTS), an algorithm that
combines Monte Carlo Tree Search (MCTS) [Coulom, 2006;
Kocsis and Szepesvári, 2006] with classical temporal plan-
ning techniques. TP-MCTS is an online algorithm that can
schedule actions in arbitrary, non-pivot, time points and, con-
sequently, addresses the issues of scalability and temporal
flexibility. It requires only information on action duration and
the ability to sample them. To the best of our knowledge, it is
the first planning algorithm with these properties.

TP-MCTS makes the following algorithmic contributions:
(1) We develop a novel heuristic, called PTRPG (probabilistic
temporal relaxed planning graph), which estimates the prob-
ability of plan success from a given node, taking temporal in-
formation such as deadlines into account. We use it to replace
rollouts, which provide poor information about node values in
the presence of temporal constraints. (2) We develop a novel
backpropagation method for MCTS, which manages informa-
tion about time intervals instead of scalar values. (3) Com-
bining the above, we develop a novel algorithm for deciding
not only which action to execute but also when to dispatch it.

Overall, this paper presents: (A) The first online algorithm
for stochastic planning with concurrent durative actions. (B)
The first (online or offline) algorithm able to insert actions

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

in non-pivot points, and hence solve problems unsolvable by
prior methods. (C) Better scalability than previous planners.
(D) A comprehensive empirical evaluation on a problem set
larger than prior work, including existing and novel domains,
demonstrating improved scalability and scope.

Code, domains, additional results and discussion can be
found at https://github.com/taliBerman5/TP MCTS.

2 Background
Factored Markov Decision Process
We focus on goal-oriented, factored MDPs
(fMDPs) [Boutilier et al., 2000] specified using a vari-
ant of PPDDL [Younes and Littman, 2004]. fMDPs assume
that states are assignments to variables. Goal-oriented MDPs
assume a set of terminal goal states. We model them as a
four-tuple: 〈P ,A,G, s0〉. P is a set of propositional variables
that induce a state space S consisting of all truth assignments
to P .1 s0 is the initial state. G ⊆ P are the goal literals.
A is a set of actions, where each action a ∈ A is a pair (Pre,

Eff) such that: Pre ⊆ P are a’s preconditions, and Eff are a’s
effects, consisting of a set of triples (C,E, p). C and E are
conjunctions of literals representing a context and an effect.
p ∈ (0, 1] is its probability. The set of contexts within Eff are
mutually exclusive and exhaustive. The sum of probabilities
of different effects E for each context C is 1.

Action a =(Pre, Eff) is applicable in state s only if s |=Pre.
Let (C,E1, p1), . . . (C,Ek, pk) be all triples in Eff such that
s |= C and s |= Pre. If a is applied in s then effect Ei will
occur with probability pi, and the resulting state s′ will be
identical to s on every proposition q ∈ P such that q does not
appear (possibly negated) in Ei, and every other proposition
will be assigned its value inEi. It is also possible to associate
a cost with each action. States satisfying G are terminal and
considered goal states.

Monte-Carlo Tree Search
MCTS [Coulom, 2006; Kocsis and Szepesvári, 2006] is a
class of online, anytime, sampling-based search algorithms
for sequential decision problems. In the time allocated for
decisions, the algorithm performs multiple path-sampling it-
erations. Then, it selects the next action to perform, executes
it, and the process is repeated.

In each iteration, MCTS traverses the current tree from the
root down the tree until it reaches a node with an unexpanded
child or a terminal state (selection). It adds a new child node
to this leaf node (expansion). It estimates the added node’s
value by executing some default policy (rollout/simulation).
Finally, it back-propagates the value up the tree, updating the
value of all nodes on the path to the root (back-propagation).

Temporal Planning Concepts
A simple temporal network (STN) [Dechter et al., 1991] mod-
els temporal constraints between events and supports efficient
inference algorithms. It is a pair S = (T , C) where T is a
set of temporal variables (events); and C is a finite set of bi-
nary constraints on T , each of the form: Y −X ≤ δ, where
X,Y ∈ T and δ ∈ R.

1We often abuse notation, using P to refer to all literals.

A solution to an STN S is called a schedule. It is a function
σ : T → R+, assigning a time-point to each event in T such
that all constraints in C are satisfied. If such a schedule exists
the STN is called consistent.

Temporal planning (TP) problems that can be solved only
if actions are applied concurrently are called problems with
required concurrency [Cushing et al., 2007]. For example,
a shorter makespan (i.e., plan execution length) may be es-
sential for meeting a deadline. Another classic example is
match-cellar. A fuse must be replaced to fix the lights. Fuse
repair requires light, too, obtainable by lighting a match. This
example requires actions with both start and end effects (light
on when the match is lit and off when it ends) and requires
the match to be lit before starting to fix the fuse, but not too
long before, to cover the entire fix-fuse action duration.

CoMDP
CoMDP [Mausam and Weld, 2008] extends fMDP by associ-
ating a deterministic duration with each action and allowing
concurrent execution of non-interacting actions. Action pre-
conditions must hold at their starting point, with effects ob-
tained at their endpoint. Actions a and a′ interact if: (1) their
preconditions are inconsistent; (2) their effects are contradic-
tory; (3) the preconditions of a contradict a possible effect of
a′; or (4) an effect of a modifies a proposition influencing the
transition probabilities of a′. We extend this model with start
effects, overall conditions, end conditions, and deadlines.

3 Related Work
(Classical) temporal planning (TP) solves planning prob-
lems with concurrent actions that have deterministic action
durations or durations confined to some interval [Fox and
Long, 2003]. Recent work solves contingent domains with
deterministic actions and non-deterministic sensing using
search [Carreno et al., 2022]. TP-MCTS does not deal with
partial observability, but it models stochastic action effects
and uses a different search technique in which temporal in-
formation is maintained in the search tree.

Unlike classical methods, Markov decision processes
(MDPs) [Puterman, 2005] model stochastic actions. Semi-
MDPs (SMDPs) extend them to model stochastic actions with
stochastic durations. However, action execution in SMDPs is
sequential, while we seek to model concurrent execution and
handle deadlines and other temporal constraints.

Constrained MDPs (CMDPs) [Altman, 1999] and
SMDPs [Beutler and Ross, 1986] extend MDPs/SMDPs
seeking to maximize expected cumulative reward while
satisfying constraints, typically in expectation only. The
constraints are defined on g : S × A × S → R where S are
system states, and A are actions, and g(s, a, s′) is the cost
of a transition from s ∈ S to s′ ∈ S using a ∈ A. Durative
actions could be defined by setting transition costs to equal
action durations and constraining their sum to capture dead-
lines. This model, too, captures sequential execution only.
Furthermore, temporal constraints have specific features,
and TP-MCTS exploits this by using STNs and altering the
backpropagation step, while allowing concurrent execution.

Few works tackle concurrent probabilistic durative do-
mains, and all in the offline setting. Prottle [Little et al., 2005]

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/taliBerman5/TP_MCTS

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

develops an AND/OR tree by either adding an action or an
event concurrently with the current action or event, or mov-
ing forward in time to the next event or action. Its action de-
scription allows effects at (fixed) intermediate time points and
outcomes with different durations. Our implementation does
not support these extensions and considers only effects at the
start and end of the action (as in classical TP) and identical,
deterministic durations for different outcomes. Yet, our al-
gorithm easily extends to handle these features. Importantly,
Prottle restricts the decision epochs to pivot points, which im-
plies incompleteness in the general case [Mausam and Weld,
2008]. FPG [Buffet and Aberdeen, 2009] uses factored pol-
icy gradients and also restricts action insertion to pivot points.
Foss and Onder (2005) use STNs to capture temporal con-
straints, like us, but their uncertainty is not probabilistic and
only over time. Beaudry, Kabanza, and Michaud (2010) con-
struct a Bayesian Network, which is more general than an
STN, but uncertainty is over durations, not effects. Further-
more, their adaptation of the RPG heuristic is geared to this
property, whereas our adaptation is for uncertain effects.

The planner of [Mausam and Weld, 2008], denoted MW,
addresses the setting closest to ours. MW reduces a CoMDP
to an MDP whose actions are sets of non-interacting CoMDP
actions, with a potential exponential blowup, greatly increas-
ing the branching factor. The state is extended with variables
denoting the remaining execution time of currently execut-
ing actions. An action can be applied only when an action
in a currently executed action set terminates. They solve this
MDP using real-time dynamic programming (RTDP) [Barto
et al., 1995]. TP-MCTS employs a compilation that only
doubles the action set size, allows for flexible action schedul-
ing not restricted to pivots and supports a more expressive
CoMDP+ model.

4 The Model
A Goal-oriented CoMDP+ is a tuple 〈P ,A,G, s0, D〉 where
P,G, s0 are as defined in an fMDP. D ∈ R+ is a deadline.2
A is a set of durative actions: a = (P,E, d) where:

• P = (PS , PO, PE) defines the conditions of a, consist-
ing of three sets of propositions determining the applica-
bility of action a, referred to as start condition, overall
condition, and end condition.

• E = (ES , EE), where ES and EE are a’s start effects
and end effects, respectively. ES and EE are defined as
in fMDPs, via sets of triples (c, e, p), with similar con-
straints on the sets of contexts c and their probabilities.
We assume no effect in ES contradicts PO.

• d is the action duration.
If a is applied at time t, two instantaneous changes of

the system’s state occur: immediately after time t, the state
changes according to ES . Immediately after t + d (when a
ends), the state changes according to EE . In both cases, the
state changes as in the definition of effects in fMDPs.

2CoMDP+ supports timed initial literals (TILs), too. TIL (l, t)
denotes that literal l will become true at time t. TILs can capture
deadlines and time windows. They can be compiled into a CoMDP+
action executed at time 0 [Cresswell and Coddington, 2003].

The semantics of actions applied concurrently must be well
defined, either by explicitly specifying the outcome of any
two potentially conflicting actions, or by restricting such ap-
plications. The former can be quite laborious, and even more
so when action timing can impact the effect. As in classical
TP, we opt for the latter. We require certain actions to be mu-
tually exclusive (mutex) [Smith and Weld, 1999], and assume
that otherwise, an action’s effects are not impacted by other
actions. To simplify the description, our mutex definition is
global and ignores contexts. Weaker, state-dependent mutex
are easy to define, as well as treating contradictory effects as
implying plan failure, but are not supported by our code.

Mutex:3 Actions a = (P,E, d) and a′ = (P ′, E′, d′) are
mutex ifES and P ′O are inconsistent orE′S and PO are incon-
sistent or ES ∪ EE and E′S ∪ E′E are inconsistent. That is, a
has a start effect that contradicts an overall condition of a′ or
vice-versa. Or, a and a′ have contradictory potential effects
at some state s.

Soft Mutex: a′ = (P ′, E′, d′) is soft mutex with a =
(P,E, d) if E′E is inconsistent with PO. That is, an end effect
of a′ violates the overall condition of a.

Action a = (P,E, d) is applicable at time t if PS is satis-
fied at time t, PO is satisfied in the interval (t, t + d), PE is
satisfied at t + d, and no action a′ mutex with a is executed
within the interval [t, t+d]. Notice that for PO to be satisfied
in the interval (t, t+ d), any action a′ that is soft-mutex with
a and which overlaps a, must end after a ends. Hence, ac-
tions whose preconditions are satisfied can be applied at any
time point, including concurrently, as long as they do not con-
flict with or compromise the end and overall conditions of an
executing action.

Finally, we assume that any effect in ES that supplies
some q ∈ PO is deterministic. We note that one can ex-
tend CoMDP+ with a reward function, but we focus on goal-
oriented problems with the objective of maximizing goal
achievement probability subject to the temporal constraints.

5 TP-MCTS
TP-MCTS works in two stages: Offline: transform the
CoMDP+ domain into an fMDP with instantaneous actions
plus temporal constraints. Online: select an action and its
timing by developing a search tree whose root corresponds to
the current state. Apply the action at the chosen time. Repeat.

TP-MCTS operates under the following assumptions: (1)
The goal is achieved if all propositions g ∈ G are satisfied,
even if this occurs during action execution. (However, with
a simple change, we can require that all actions have termi-
nated, as well.) (2) An executing action cannot be stopped.
(3) The algorithm does not take into account the passage of
time during the search, i.e., time is considered stopped during
the search phase. (4) As in classical TP, actions cannot be
started simultaneously and must be ε-separated.4

In practice, online decision time acts as a minimal ε value,
which (in line with (3)), we assume is negligible w.r.t. ac-

3When clear from context, we abuse notation and use Ex to de-
note the set of possible effects {e|(c, e, p) ∈ Ex}.

4Otherwise, an action could use the simultaneous effect of a con-
current action as a precondition, which is undesirable semantically.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

tion durations. True simultaneity can be achieved by defining
explicit action combinations, sometimes called collaborative
actions [Shekhar and Brafman, 2020].

5.1 Offline Preprocessing
We split every durative action a into two instantaneous ac-
tions astart and aend (called snap actions [Coles et al., 2010a;
Benton et al., 2012; Jiménez et al., 2015]) and a constraint
that aend is scheduled d time units after astart. astart takes
care of the start conditions and effects, and aend takes care
of the end conditions and effects. This can be extended
to additional deterministic events that occur in specific time
points during the execution of a, by splitting a into more in-
stantaneous actions. We can represent the concurrent execu-
tion of actions a, a′ by performing astart, a′start, followed by
a′end, aend, for example.

To ensure that the overall conditions are satisfied, we add
one new fluent, InExecution(a) for each action a, that is true
while a is executing. Its negation is a precondition of the start
(respectively, end) of any action that is mutex (resp. soft-
mutex) with a. To ensure that aend occurs d time units after
astart, we use an STN to keep track of such constraints.

Formally, given a CoMDP+ 〈P ,A,G, s0, D〉, generate
the fMDP 〈P ′,A′,G, s0〉 (plus some auxiliary data), where
P ′ = P ∪ {InExecution(a)|a ∈ A}; A′ = {astart =
(Pastart

, Eastart
)|a ∈ A}∪{aend = (Paend

, Eaend
)|a ∈ A}.

Assuming a = (P,E, d), P = (PS , PO, PE) and E =
(ES , EE):

• Pastart = PS ∪ (PO \ ES) ∪ ¬InExecution(a)
• Eastart

= {(c, e∧InExecution(a), p) | (c, e, p) ∈ ES}
• Paend

= PE ∪ InExecution(a)
• Eaend

= {(c, e∧¬InExecution(a), p)|(c, e, p) ∈ EE}
Additional preconditions and effects ensure that mutex and
soft-mutex actions are not applied incorrectly:

• If a is mutex with a′, add ¬InExecution(a) to the pre-
condition of a′start.

• If a is soft-mutex with a′, add ¬InExecution(a) to the
precondition of a′end.

We assume that two copies of the same ground action can-
not overlap.5 If the original effects are stochastic, then so
are those of astart and/or aend, with the added effect on the
InExecution proposition. Because of the latter, the state
at each point reflects the set of currently executing actions.
These conditions ensure that both strict and soft mutex con-
ditions of CoMDP+ are respected in the generated fMDP.

Beyond the fMDP, we also maintain the correspondence
between every astart, aend pair corresponding to an original
action a, a’s duration, and the deadline D, so that the algo-
rithm can add the relevant constraints to the STN.

5.2 Online Solution
Online, TP-MCTS generates an initial root node containing
state s0 and initSTN, an initial STN with startP lan and
endP lan events and a constraint endP lan − startP lan ≤

5Otherwise, planning is undecidable [Gigante et al., 2020]

D. It then repeats the following process until either the goal
is achieved or the deadline passes: Search to find the next ac-
tion for root; Schedule this action; Step: execute it; Update
root to contain the current state and an updated STN.

Search
Starting with the current root, TP-MCTS uses the time allo-
cated per decision online to construct a search tree with state
and action nodes. State nodes contain a state, while action
nodes contain an action and an STN representing the tem-
poral constraints associated with the branch ending with this
action. Both nodes maintain n.V , their value, whose form
differs between the two TP-MCTS versions (discussed later),
and n.N , their visit counter.

Search consists of the four stages of MCTS: Select, Ex-
pand, Evaluate, and Backpropagate. We assume the reader is
familiar with MCTS. Hence, for space reasons, the pseudo-
code focuses on the changes made w.r.t. MCTS, mostly ig-
nores action nodes (and therefore, associates the action node’s
STN with its state node children) and the depth bound, and
omits the Select, Expand, Step, and UpdateSTN functions.
See our GIT for full pseudo-code.
Select (omitted – follows standard MCTS.) Traverse the tree
from the root. Apply the UCB criterion [Auer et al., 2002]
to select among actions. Sample the next state based on the
action’s effect distribution. Terminate once reaching a goal
state, a state whose STN is inconsistent (e.g., any solution
will miss the deadline), or a new child state, s.
Expand (omitted). Add the new state s to the tree, and for
every legal action a in s, add a child action node containing a
and the STN obtained by updating the parent’s STN with the
relevant events and with constraints (c1)-(c4):

c1 startP lan− a ≤ 0

c2 a− endP lan ≤ 0

c3 pa(a)− a < 0; pa(a) is the action at a’s parent node.

c4 If a is a start action and enda its end action then:

1. enda − a = d; (and enda is add to the STN)
2. For every end action enda′ in the STN that has not

been selected yet: a− enda′ < 0

(c3)+(c4.2) ensure that a is scheduled after any action se-
lected earlier, and prior to any End action not yet selected.
Evaluate. MCTS’ evaluate uses a simulation (rollout) step
to assess the node’s value. Instead, TP-MCTS uses PTRPG,
a novel heuristic estimate of the probability of reaching the
goal from this node in time.
Backpropagate. Information from the leaf node is backprop-
agated up the tree using two methods explained later.

Schedule
In standard MDPs, the only decision is what action to execute
next. As in standard MCTS, we select the action with the
highest value. However, in temporal domains, the value of
an action is contingent on when it is executed. For example,
scheduling it after the deadline has no value. Therefore, we
must also select its execution time.

Ideally, we would like to choose an action a and an execu-
tion time t for which the probability of successfully terminat-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 TP-MCTS (root-interval version)

1: procedure TP-MCTS(CoMDP+ 〈P,A, T r,G, s0〉)
2: 〈P ′,A′,G, s0〉 = TransformTofMDP(〈P,A, T r,G, s0〉)
3: root = (s0, initSTN()) //node’s state+STN components
4: repeat
5: a, Va()← SEARCH(root)
6: t← SCHEDULE(a, Va())
7: root← (Step(a, t),UPDATESTN(a, t, root.STN))
8: until Terminal(root.state)
9: end procedure

10: procedure SEARCH(Node root)
11: while within computational budget do
12: nleaf ← SELECT(root)
13: EXPAND(nleaf)
14: V () = EVALUATE(nleaf , nleaf .STN)
15: BACKPROP(root, nleaf , V ())
16: end while
17: abest ← argmaxroot actions a

maxt(a.V (t)/a.N)
18: return abest, abest.V ()

19: end procedure
20: procedure BACKPROP(Node root, Node nleaf , func Vleaf ())
21: for all node n on branch from nleaf ’s parent to root do
22: ∀t ∈ [0, deadline], n.V (t)← n.V (t) + Vleaf (t)
23: n.N ← n.N + 1
24: end for
25: end procedure
26: procedure SCHEDULE(action a, func Va())
27: Tmax ← argmaxt Va(t) //returns an interval
28: t← mint Tmax

29: return t
30: end procedure
31: procedure EVALUATE(Node n, STN stn)
32: c← PTRPG(n, stn,G)
33: I ← stn.legalRoot
34: ∀t ∈ I, V (t)← c; ∀t 6∈ I, V (t)← 0
35: return V ()
36: end procedure

ing is maximized. In that case, we would have an asymptoti-
cally optimal algorithm for problems with deadlines because
(due to the deadline), the tree has bounded depth, and hence,
leaf nodes would eventually be goal-achieving or dead-ends,
and because, in the limit, the frequency MCTS samples each
stochastic effect converges to its true probability.

Unfortunately, the best current algorithm for finding a pol-
icy that always succeeds given stochastic actions is polyno-
mial in tree size, hence, exponential in its depth [Hunsberger
and Posenato, 2016]. Our setting is much more complex: we
must assess the maximal probability of success of each policy
sub-tree, maximizing over possible policies, while checking
which branches can consistently schedule common actions.
This can be done, in principle, using mixed-integer program-
ming, but is not realistic computationally beyond very small
trees. Hence, we resort to heuristics in which only some of
the information in leaf-node STNs is propagated up the tree.
Consequently, our algorithm is not guaranteed to be asymp-
totically optimal, but its empirical performance will be shown
to be superior to previous methods.

We consider two combinations of the Evaluate, BackProp-
agate, and Schedule steps: earliest and root-interval.
Earliest. Like UCT [Kocsis and Szepesvári, 2006], it main-
tains at each node a value V and a visit count N . Both ini-
tialized to 0. The estimated success probability of a new leaf
node (computed by evaluate) is added to each of its ances-
tors’ V value, and their visit count, N , is incremented by 1.
The root action with the highest average value is chosen. It
is scheduled at the earliest time the STN associated with this
action considers consistent.

Earliest relies only on the selected action node’s STN.
Hence it ignores constraints on the root action’s execution
time stemming from future actions in the plan. For example,
suppose the root action astart adds q, which aend negates,
and q is a precondition of a later action a′start. If astart is
scheduled too early, the constraint that a′start precedes aend
would not be satisfiable. Root-Interval uses the STNs of leaf
nodes to deduce such information and propagate it upwards.
Root-Interval. In this version, each node n maintains a

counter N and a function V (t) from t ∈ I0 = [0, D] to [0, 1],
instead of a single value. n.V (t) is an estimate of the proba-
bility the goal will be achieved if the root action leading to n
is scheduled to t.

Evaluate initializes the function for leaf nodes using their
STN and PTRPG’s estimate as follows: Let n be a leaf node.
Let p be the probability of plan success returned by PTRPG
for n. Let I be the set of time points such that: if the root
action leading to n is scheduled at t ∈ I , a legal schedule for
all actions on the path to n exists. (Denoted STN.legalRoot
in l.33.) For STNs, I is always an interval, efficiently com-
putable from n’s STN. For all t ∈ I , set n.V (t) = p. For all
t 6∈ I set n.V (t) = 0. Propagate this information backward to
n’s ancestors as follows: Increment their visit and (conceptu-
ally) update the value function point-wise – i.e., ∀t ∈ I0: add
n.V (t) to every ancestor’s V (t). When Search terminates, it
returns the action maximizing maxt V (t)/N (l.17). Sched-
ule then selects the earliest time point achieving this maximal
value (l.28). Because at leaf nodes I is an interval, at non-leaf
nodes V can be represented as a set of constant-valued inter-
vals. Each update is very efficient, but the set size at the root
is worst-case linear in the number of leaf nodes, i.e., worst-
case exponential in depth.

Step and Update

We apply the chosen action a at the selected time t (Step –
omitted) and generate a new root node for the next decision
(l.7). This node contains the state resulting from a’s applica-
tion in the real world, and an STN with the action that extends
the current root node’s STN with constraints (c2-c4) above
and the constraint a− startP lan = t.

As noted, the constraints ensure a is scheduled after any
previously selected action. And since search follows step,
the next action is selected only after a is executed. So if at t
we schedule a to t+ δ, no other action will be executed prior
to t+δ. During [t, t+δ], we can further develop the tree. The
sub-tree corresponding to a’s actual outcome can be re-used
for the next decision, as in some MCTS implementations.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

PTRPG
We estimate the probability of achieving the goal on time
from a leaf node n using a heuristic function we developed
that combines ideas from the temporal relaxed planning graph
heuristic TRPG [Coles et al., 2008], sampling, and Bayesian
techniques. PTRPG is stochastic and is executed once for
each leaf node. It maintains a set L of literals initialized
to contain all literals in node n’s state, and the current time
t, initialized to the smallest consistent value for endPlan ac-
cording to n’s STN, and a set C of inapplicability constraints,
restricting the application of End actions in the STN, not se-
lected yet, until their earliest possible execution time.

At each iteration, all actions whose preconditions are con-
tained in L that are not inapplicable according to C at time
t are ”applied”. That is, for every effect context whose con-
text conditions are contained in L, one effect e is sampled and
added to L. Because L is typically an inconsistent set of lit-
erals, multiple effects corresponding to inconsistent contexts
might be added. For every action astart applied, we add to C
the constraint that astart and aend cannot be applied before
t+ d, where d is the duration associated with astart. Actions
applied can enable other actions’ application at the same time,
and this continues until no new action can be applied at t. At
this point, t is incremented to t + d′ where d′ is the minimal
duration of an action astart applied at t. PTRPG terminates
if either G ⊆ L or t > D.

Suppose we terminated with literal set L at time tg , such
that G ⊆ L. We use tg to derive a heuristic estimate of the
success probability p using a Bayesian probabilistic model-
ing technique [Gelman et al., 2013]: We transform from the
time domain to the probability domain by chaining logit from
the time range to the unconstrained space, an affine transfor-
mation on the unconstrained space, and logistic sigmoid (ex-
pit) from the transformed unconstrained space to [0,1]. More
specifically: given parameters a, b, c: Let D be the dead-
line. Define (1)D′ = D + c; (2)z1 = ln(

tg
D′−tg); (3)z2 =

a ∗ z1 + b; (4)p = 1
1+exp(−z2) . If tg > D we set p = 0.

Otherwise, compute p with a = −0.5, b = c = 1.
Although noisy, tg is almost always an underestimate of

the time required to reach the goal. Hence, if tg > D, it is
highly unlikely to succeed and for this reason, we set p = 0.
If tg = D, we consider goal achievement minimally possi-
ble (p = 1

1+exp(−(a∗ln(D/c)+b))). As tg gets smaller, there is
more time to compensate for the relaxed assumptions made
by the heuristic, and so p increases. By adjusting the param-
eters of the affine transformation, we can adjust the relation-
ship between the heuristic’s outcome and the probability of
meeting the deadline, reflecting the properties of each partic-
ular domain. Here, we made no effort to optimize these val-
ues or adjust them to different domains. We selected simple
constants that seemed to make sense and still got good results.
Learning better parameters, possibly per domain, would be an
interesting direction for future work.

6 Experiments
We compare the two TP-MCTS variants (earliest and root-
interval) with MW, the closest relevant algorithm [Mausam

Success Rate (%)
Problem (|A|, |P|) TP-MCTS MW-RTDP MW-MCTS

earliest root
Stuck Car(1) (7,9) 68 91 33 83
Stuck Car(2) (24,18) 60 81 14 24
Hosting-1 (2,3) 0 100 0 0
Nasa Rover(1) (33,27) 91 67 79 92
Nasa Rover(2) (66,80) 83 79 0 0
Nasa Rover(3) (99,159) 71 70 - -
Machine Shop(2) (30,26) 96 75 21 52
Machine Shop(3) (75,45) 84 50 0 0
Machine Shop(4) (148,68) 40 48 - -
Simple-10 (10,10) 100 100 100 31
Simple-11 (11,11) 100 100 59 16
Simple-12 (12,12) 100 100 0 29
Simple-13 (13,13) 100 100 0 30
Simple-15 (15,15) 100 100 0 23
Conc (9,9) 100 0 0 0
Prob Conc+7 (11,5) 94 94 72 64
Prob Conc+8 (12,5) 94 95 37 76
Prob Conc+9 (13,5) 96 86 24 88
Prob Conc+10 (14,5) 93 92 37 92
Hosting-2 (4,4) 0 87 Cannot Cannot
P. Match Cell.(1) (2,4) 95 90 Process Process
P. Match Cell.(2) (6,8) 85 85 and and
P. Match Cell.(3) (12,12) 75 72 Solve Solve
P. Match Cell.(4) (20,16) 70 56 ” ”
P. Match Cell.(5) (30,20) 46 46 ” ”

Table 1: Success % with 1 sec./search step. ”-”: Didn’t compile
in 8h. Bold: Highest success rate. Ties broken based on avg.
makespan. |A|, |P| – # of actions and propositions.

and Weld, 2008]. MW-RTDP is the original MW variant that
uses RTDP, adapted to the online setting. For a fairer compar-
ison, we also tested MW-MCTS, which replaces RTDP with
MCTS, which is often better suited for online planning. Like
TP-MCTS, MW-MCTS uses PTRPG to estimate node values
instead of a rollout. Assumptions 1-4 hold for all versions.

Our comparison covers more domains than previous
work. We consider five structured domains that model real-
world problems: NASA Rover and Machine Shop, as used
by [Mausam and Weld, 2008], Stuck-Car, a new domain with
more interesting stochastic effects, and two new domains
with required concurrency: Hosting and Probabilistic Match-
Cellar. We also use three synthetic domains to study basic
properties of the algorithms. We conducted experiments with
two possible decision-time budgets: 1 and 10 seconds and
domain instances of different sizes.

All algorithms were implemented in Python. Experiments
were run on an AMD EPYC 7702P 64-Core Processor. Each
experiment was repeated 100 times. Our TP-MCTS im-
plementation supports domain representations written in the
Unified Planning Framework [Kapellos et al., 2023].

Domains
We describe the main properties of the domains used. De-
tailed descriptions appear in the supplementary material and
their definition appears in our git repository.
Stuck Car(C). C agents must get C cars out of the mud be-
fore a deadline is reached. Agents can push a car and/or its
gas pedal, possibly simultaneously. Pushing the car has a
higher probability of success than pushing the gas. Execut-
ing both actions simultaneously has a higher probability of
success than performing each action independently, but takes
longer, and the agent may become tired. The agents can also
search for a rock and place it beneath the car to aid in its

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Success Rate (%)
Problem TP MW-RTDP MW-MCTS

earliest root
S. Car(1) 91 94 31 91
S. Car(2) 69 62 13 37
Hosting-1 0 100 0 0
Rover(1) 91 90 65 91
Rover(2) 86 50 0 0
Rover(3) 78 65 - -
Shop(2) 98 88 64 82
Shop(3) 74 42 0 0
Shop(4) 58 23 - -
Simple-10 100 100 100 22
Simple-11 100 100 100 27
Simple-12 100 100 100 7
Simple-13 100 100 100 11
Simple-15 100 100 0 18
Conc 100 100 87 12
P.Conc+7 90 95 84 48
P.Conc+8 91 91 94 53
P.Conc+9 92 96 91 55
P.Conc+10 97 91 68 62
Hosting-2 0 93 Cannot Process Cannot Process
P.MatchC(1) 93 89 and Solve and Solve
P.MatchC(2) 83 81 ” ”
P.MatchC(3) 80 56 ” ”
P.MatchC(4) 79 47 ” ”
P.MatchC(5) 69 61 ” ”

Table 2: Results for 10 sec. per step.

release. The rock’s quality influences the probability of suc-
cess, and it may be better to drop a rock of poor quality.
Hosting-v. We must clean our house and prepare food before
guests arrive. We can clean and cook at the same time. Cook-
ing may result in a dirty floor that requires cleaning, later.
There are two versions. The more complex one has required
concurrency. In it, the broom is missing and the agent needs
to find it. There is a probability of the broom being found and
the light needs to be turned on while searching.
Prob Match Cellar(O). A probabilistic variant of the Match
Cellar domain [Coles et al., 2009] with required concurrency,
in which fix-fuse actions can fail.
Nasa Rover(R) and Machine Shop(O). Classical domains
to which MW added action durations and stochastic effects.
Some actions can fail, and different actions (e.g., using dif-
ferent machines) have different durations.
Simple-x. Each of x non-interacting actions with duration 4
achieves a unique goal. Best is to execute all actions simul-
taneously. As x grows, MW’s representation grows exponen-
tially, but solution depth remains 1, while our action space,
solution depth, and the number of propositions grows linearly.
Conc. Designed to test the ability to provide maximal concur-
rency needed to meet a deadline. Four actions take 1 sec.; two
take 2 sec.; one takes 4 sec.; and one takes 9 sec. Meeting the
9 sec. deadline requires executing four actions concurrently,
one from each class, except between times 4 and 5.
Prob Conc+G. A probabilistic variant of Conc. with four ac-
tions: A deterministic action with duration 8 and three proba-
bilistic actions with duration 4,2,1, all of which must succeed
to achieve the goal. G irrelevant non-interacting actions are
added to this action set.

Results
TP-MCTS’s offline compilation time is often less than 0.01
seconds, with the largest Machine Shop problem requir-

ing 0.35 seconds, and hence negligible. MW’s compilation
time reaches 74 for Rovers(2) and 28 minutes for Machine
Shop(3), and times out on larger versions of these problems.
Tables 1 and 2 show the success rate of each planner on 100
trials for 1 and 10 seconds per decision. Deadlines were set
to the length of an optimal plan + time for one action failure,
so as to be challenging. Our GIT contains additional results.

The following general trends emerge: (1) MW-MCTS
almost always dominates MW-RTDP. RTDP is better only
in the smaller Simple domain, where, due to action non-
interaction, it can update the value function quickly. (2) TP-
MCTS dominates in almost all domains. There are two ex-
ceptions: In Nasa Rover(1), MW benefits from its shorter
solution depth given 1sec. This advantage disappears in the
larger Nasa Rover(2). MW-RTDP has a higher success rate in
Prob-Conc+8 given 10sec. Given the performance on other
Prob-Conc variants, this may be due to the variance in the
success estimates. The impact of domain size on the algo-
rithms is clearly visible in the three structured domains. (3)
Additional search time almost always leads to increased suc-
cess rates for all algorithms, but trends (1)-(2) hold in both
tables. (4) Hosting-2 and Prob MC(i) are not solvable by
MW’s method due to the need for required concurrency.

Simple-x highlight the difficulty MW’s algorithm has scal-
ing up as the number of non-mutex actions increases due to
the exponential growth in the number of legal action com-
binations. Although the solution depth is smaller, the algo-
rithm does not have sufficient time to explore all actions and
has a low chance of detecting the solution. With more time,
it slightly scales up. TP-MCTS requires deeper solutions,
but MCTS combined with PTRPG can focus exploration on
more promising paths. Similar behavior is observed in Nasa
Rover(2), Machine Shop(2), and Machine Shop(3).

Comparing earliest and root-interval, earliest performs
better given less time when temporal constraints are not com-
plex because it can expand more nodes. Thus, trying to start
an action as soon as possible is often a good heuristic. How-
ever, with sufficient time, root-interval succeeds more often,
and in domains with more complex temporal dependencies,
such as Hosting, only it can solve the problem reliably.

Additional experiments (see GIT) show that: (1) When
deadlines are relaxed, success rates increase, but makespan is
rarely impacted. (2) PTRPG’s evaluation formula can have a
significant impact on success rates, Nevertheless, but the rel-
ative strength of all variants remains similar, with TP-MCTS
remaining much stronger than the MW variants.

7 Summary

We presented the first online algorithm for planning in
MDPs with durative, concurrent actions. TP-MCTS com-
bines MCTS and temporal planning techniques, including
Start/End actions, STNs, with a new backpropagation scheme
and the PTRPG heuristic to both select and schedule actions
online. TP-MCTS uses a rich yet economical representation,
is more scalable than previous methods, and is the first such
online/offline algorithm to handle required concurrency.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported in part by the Lynn and William
Frankel Center for Computer Science at Ben-Gurion Uni-
versity of the Negev and by the Helmsley Charitable Trust
through the Agricultural, Biological and Cognitive Robotics
Initiative of Ben-Gurion University of the Negev

References
[Altman, 1999] Eitan Altman. Constrained Markov decision

processes, volume 7. CRC press, 1999.

[Auer et al., 2002] Peter Auer, Nicolò Cesa-Bianchi, and
Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

[Barto et al., 1995] A.G. Barto, S.J. Bradtke, and S.P. Singh.
Learning to act using real-time dynamic programming. Ar-
tificial Intelligence, 672(1-2):81–138, 1995.

[Beaudry et al., 2010] Eric Beaudry, Froduald Kabanza, and
Francois Michaud. Planning for concurrent action execu-
tions under action duration uncertainty using dynamically
generated Bayesian networks. In ICAPS 2010, volume 20,
pages 10–17, 2010.

[Benton et al., 2012] J. Benton, Amanda Jane Coles, and
Andrew Coles. Temporal planning with preferences and
time-dependent continuous costs. In Lee McCluskey,
Brian Charles Williams, José Reinaldo Silva, and Blai
Bonet, editors, In ICAPS 2012. AAAI, 2012.

[Bernstein et al., 2002] Daniel S. Bernstein, Robert Givan,
Neil Immerman, and Shlomo Zilberstein. The complex-
ity of decentralized control of Markov decision processes.
Math. Oper. Res., 27(4):819–840, 2002.

[Beutler and Ross, 1986] Frederick J. Beutler and Keith W.
Ross. Time-average optimal constrained semi-Markov
decision processes. Advances in Applied Probability,
18(2):341–359, 1986.

[Bit-Monnot et al., 2020] Arthur Bit-Monnot, Malik Ghal-
lab, Félix Ingrand, and David E. Smith. FAPE: a
constraint-based planner for generative and hierarchical
temporal planning. CoRR, abs/2010.13121, 2020.

[Boutilier et al., 2000] Craig Boutilier, Richard Dearden,
and Mois e s Goldszmidt. Stochastic dynamic program-
ming with factored representations. Artificial Intelligence,
121:49–107, 2000.

[Buffet and Aberdeen, 2009] Olivier Buffet and Douglas
Aberdeen. The factored policy-gradient planner. Artificial
Intelligence, 173(5-6):722–747, 2009.

[Carreno et al., 2022] Yaniel Carreno, Yvan Petillot, and
Ronald Petrick. Temporal planning with incomplete
knowledge and perceptual information. arXiv preprint
arXiv:2207.09709, 2022.

[Coles et al., 2008] Andrew Coles, Maria Fox, Derek Long,
and Amanda Smith. Planning with problems requiring
temporal coordination. In AAAI, pages 892–897, 2008.

[Coles et al., 2009] Andrew Coles, Maria Fox, Keith Halsey,
Derek Long, and Amanda Smith. Managing concurrency
in temporal planning using planner-scheduler interaction.
Artificial Intelligence, 173(1):1–44, 2009.

[Coles et al., 2010a] A. J. Coles, A. I. Coles, M. Fox, and
D. Long. Forward-chaining partial-order planning. In
ICAPS 2010. 2010.

[Coles et al., 2010b] Amanda Jane Coles, Andrew Coles,
Maria Fox, and Derek Long. Forward-chaining partial-
order planning. In ICAPS 2010, pages 42–49. AAAI,
2010.

[Coulom, 2006] Rémi Coulom. Efficient selectivity and
backup operators in Monte-Carlo tree search. In Interna-
tional conference on computers and games, pages 72–83.
Springer, 2006.

[Cresswell and Coddington, 2003] Stephen Cresswell and
Alexandra Coddington. Planning with timed literals and
deadlines. In Proceedings of 22nd Workshop of the UK
Planning and Scheduling Special Interest Group, pages
23–35, 2003.

[Cushing et al., 2007] William Cushing, Subbarao Kamb-
hampati, Mausam, and Daniel S. Weld. When is temporal
planning really temporal? In Manuela M. Veloso, editor,
IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007, pages 1852–1859, 2007.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea
Pearl. Temporal constraint networks. Artificial intelli-
gence, 49(1-3):61–95, 1991.

[Foss and Onder, 2005] Janae N Foss and Nilufer Onder.
Generating temporally contingent plans. Planning and
Learning in A Priori Unknown or Dynamic Domains,
page 62, 2005.

[Fox and Long, 2003] Maria Fox and Derek Long.
PDDL2.1: an extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res., 20:61–124, 2003.

[Gelman et al., 2013] A. Gelman, J.B. Carlin, H.S. Stern,
D.B. Dunson, A. Vehtari, and D.B. Rubin. Bayesian Data
Analysis. Chapman & Hall/CRC Texts in Statistical Sci-
ence. CRC Press, 2013.

[Gigante et al., 2020] Nicola Gigante, Andrea Micheli, An-
gelo Montanari, and Enrico Scala. Decidability and com-
plexity of action-based temporal planning over dense time.
In AAAI’20, pages 9859–9866, 2020.

[Hunsberger and Posenato, 2016] Luke Hunsberger and
Roberto Posenato. A new approach to checking the
dynamic consistency of conditional simple temporal
networks. In Michel Rueher, editor, CP 2016, volume
9892, pages 268–286. Springer, 2016.

[Jiménez et al., 2015] Sergio Jiménez, Anders Jonsson, and
Héctor Palacios. Temporal planning with required concur-
rency using classical planning. ICAPS 2015, 25(1):129–
137, 2015.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Kapellos et al., 2023] K Kapellos, A Micheli, and A Valen-
tini. AIPlan4EU: Planning and scheduling for space appli-
cations. In 17th Symposium on Advanced Space Technolo-
gies in Robotics and Automation (ASTRA), 2023.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based Monte-Carlo planning. In
ECML, pages 282–293, 2006.

[Little et al., 2005] Iain Little, Douglas Aberdeen, Sylvie
Thiébaux, et al. Prottle: A probabilistic temporal planner.
In AAAI’05, 2005.

[Long and Fox, 2003] Derek Long and Maria Fox. Exploit-
ing a graphplan framework in temporal planning. In
(ICAPS 2003), pages 52–61. AAAI, 2003.

[Mausam and Weld, 2008] Mausam and Daniel S. Weld.
Planning with durative actions in stochastic domains.
Journal of Artificial Intelligence Research, 31:33–82,
2008.

[Panjkovic and Micheli, 2023] Stefan Panjkovic and Andrea
Micheli. Expressive optimal temporal planning via op-
timization modulo theory. In AAAI 2023, pages 12095–
12102. AAAI Press, 2023.

[Puterman, 2005] Martin L. Puterman. Markov Decision
Processes: Discrete Stochastic Dynamic Programming.
Wiley, 2005.

[Schoenauer et al., 2006] Marc Schoenauer, Pierre Savéant,
and Vincent Vidal. Divide-and-evolve: A new memetic
scheme for domain-independent temporal planning. In
EvoCOP 2006, volume 3906 of Lecture Notes in Computer
Science, pages 247–260. Springer, 2006.

[Shekhar and Brafman, 2020] Shashank Shekhar and Ro-
nen I. Brafman. Representing and planning with interact-
ing actions and privacy. Artif. Intell., 278, 2020.

[Smith and Weld, 1999] David E. Smith and Daniel S. Weld.
Temporal planning with mutual exclusion reasoning. IJ-
CAI’99, page 326–333. Morgan Kaufmann Publishers
Inc., 1999.

[Vidal and Geffner, 2006] Vincent Vidal and Hector Geffner.
Branching and pruning: An optimal temporal POCL
planner based on constraint programming. Artif. Intell.,
170(3):298–335, 2006.

[Younes and Littman, 2004] Håkan LS Younes and
Michael L Littman. PPDDL1.0: The language for
the probabilistic part of IPC-4. In Proc. International
Planning Competition, 2004.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

