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Improved Approximation Ratio for Strategyproof Facility Location on a Cycle∗

Krzysztof Rogowski , Marcin Dziubiński
University of Warsaw, Institute of Informatics
{kr418382, m.dziubinski}@mimuw.edu.pl,

Abstract
We study the problem of design of strategyproof
in expectation (SP) mechanisms for facility loca-
tion on a cycle, with the objective of minimizing
the sum of costs of n agents. We show that there
exists an SP mechanism that attains an approxima-
tion ratio of 7/4 with respect to the sum of costs
of the agents, thus improving the best known upper
bound of 2−2/n in the cases of n ≥ 5. The mecha-
nism obtaining the bound randomizes between two
mechanisms known in the literature: the Random
Dictator (RD) and the Proportional Circle Distance
(PCD) mechanism of [Meir, 2019]. To prove the
result, we propose a cycle-cutting technique that
allows for estimating the problem on a cycle by
a problem on a line.

1 Introduction
The facility location problem involves a group of n agents,
each having a preference over a set of locations within a met-
ric space. The agents have their own ideal location in the
space and they prefer locations that are closer to their ideal
location. A central authority (the social planner), not know-
ing the ideal points of the agents, has to choose one of the
locations, aiming to minimize the sum of distances between
the locations of the agents and the chosen location (the so-
called utilitarian welfare objective). An additional problem,
beyond the choice of optimal location, arises due to the lack
of knowledge of the ideal points of the agents. To address this
problem the social planner asks the agents to report their lo-
cation and uses a mechanism which, given the reports of the
agents, determines the location to be chosen. Since the agents
will report their location in order to minimize their own dis-
tance to the location chosen by the mechanism, there is no
guarantee that their reports will be truthful. To resolve this
problem, the social planner is restricted to choosing a strate-
gyproof mechanism, under which reporting true ideal points
is individually weakly optimal, regardless of the reports of
other agents. The outcomes of the mechanisms may be either
deterministic or randomized.

∗Extended version of the paper is available at https://arxiv.org/
abs/2505.12943

The strategyproof facility location problem attracted inter-
est from researchers for nearly 50 years now and it actively
researched to this day. This is due to natural applications,
like locating public facilities (schools, healthcare facilities,
etc.) in towns where each of the citizens has own preference
regarding the best location. These natural, physical, applica-
tions extend to virtual ones, like choosing the best time for
a meeting.

In this paper we are interested in strategyproof facility lo-
cation problems on graphs, specifically on cycles. In the sem-
inal work, [Moulin, 1980] obtained a complete characteriza-
tion of strategyproof mechanisms when the space of possible
locations is a line segment. He showed, in particular, that
the mechanism choosing the median of the reported points
is not only strategyproof but also efficient, in the sense that
it minimizes the sum of distances to the ideal points of the
agents. [Schummer and Vohra, 2002] extended the charac-
terization of strategyproof mechanisms to graphs. It follows
from their characterization that when the graph is a tree then
there exists a strategyproof mechanism which is also effi-
cient. If a graph contains a cycle, however, no deterministic
strategyproof mechanism is efficient. In a later work, [Meir,
2019] showed that this is also true for randomized mecha-
nisms. This raises a question: how close to efficiency can we
get when cycles are present?

To address possible inefficiency of strategy proof mecha-
nisms, [Procaccia and Tennenholtz, 2013] proposed the idea
of approximate mechanism design (without money). They in-
troduced the approximation ratio which measures how good
the best outcome of a strategy proof mechanism is, related to
the optimal outcome. The best known upper bound on the
approximation ratio of strategyproof mechanisms for facil-
ity location on a graph (under utilitarian welfare objective),
2 − n/2, was obtained by [Alon et al., 2009] with use of
a random dictator (RD) mechanism. [Meir, 2019] improved
this bound for the case of a cycle with n = 3 agents to 7/6.
In this paper we are interested in the approximation ratio of
the strategyproof facility location on a cycle.

1.1 Related Work
The literature on facility location, in general, and on strate-
gyproof facility location, in particular, is vast. In the interest
of space, in this review we restrict attention to the paper that
are closest related to our work. For an excellent recent litera-
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ture review of this field see [Chan et al., 2021].
Our work falls into the area of mechanism design with-

out money as applied to facility location. Fundamental pa-
pers in this area, [Moulin, 1980], [Schummer and Vohra,
2002], and [Procaccia and Tennenholtz, 2013] were already
discussed above.

We are specifically interested in the approximation ratio of
strategy proof facility location mechanisms on a cycle, with
a single location being selected and under utilitarian welfare
objective. As already mentioned, [Alon et al., 2009] obtained
the upper bound of 2 − 2/n on this approximation ratio,
by the RD mechanism. This result was improved by [Meir,
2019] for the case of n = 3 agents. He defines new strat-
egy proof mechanisms for a cycle, the Proportional Circle
Distance (PCD) mechanism and the q-Quadratic Circle Dis-
tance (q-QCD) mechanism. The 1/4-QCD is strategyproof
in the case of n = 3 agents and obtains the tight bound of
7/6. The PCD mechanism is strategyproof for any odd num-
ber of agents. However, when the number of agents grows, its
approximation ratio approaches 2. [Dokow et al., 2012] stud-
ied the strategyproof facility location on graphs where only
vertices of the graph can be chosen. In the case of cycles
they showed that when the number of vertices is sufficiently
large, the strategyproof mechanisms must be close to dictato-
rial. In the case of small numbers of vertices, non-dictatorial,
anonymous, strategyproof mechanisms exist. Other notable
works on strategyproof facility locations on cycles, with ob-
jective other than utilitarian social welfare, include [Alon et
al., 2010] and [Cai et al., 2016].

1.2 Our contribution
We obtain a new upper bound on the approximation ratio for
the strategyproof facility location on a cycle. We show that
this ratio is bounded from above by 7/4 for any odd n ≥ 3.
This improves the previously known upper bound of 2− 2/n
for the case of n ≥ 5. To obtain this result, we propose
a mixed randomized mechanism, RD+PCD, which mixes be-
tween using the RD mechanism and the PCD mechanism.
The key challenge in proving the bound are non-linear dis-
tances on the cycle. To overcome this issue we propose a cut
technique, which “cuts” the cycle in a properly chosen point
and allows for reducing the analysis of the bounds on a cycle
to a line segment. We complement the theoretical analysis
of the bound with computational analysis of the performance
of the RD+PCD mechanism. The analysis suggests that the
upper bound could be improved even further, to 3/2. It is
important to note that in the paper we consider the notion of
strategyproofness in expectation, weaker to the notion of uni-
versal strategyproofness [Mu’alem and Schapira, 2018].

2 Preliminaries
A facility location problem consists of a set of agents N ,
where |N | ≥ 3 is assumed to be an odd number through-
out this paper, and a domain (a metric space). Typically, the
domain is considered to be a graph equipped with a metric.
In this work, we restrict attention to a continuous cycle of
length 1. Introducing that object as subsets of R simplifies
the notation in subsequent sections of this paper.

A cycle of length 1, obtained from the line segment
[−0.5, 0.5] by joining its endpoints, is denoted by G. For
the purposes like comparisons or arithmetic operations, the
joined endpoint of the cycle is −0.5. The distance be-
tween any two points v1, v2 ∈ G on the cycle is given by
d(v1, v2) = min(|v2 − v1|, 1 − |v2 − v1|). Let us orien-
tate the cycle in such a way that clockwise movement corre-
sponds to increasing point values with one exception of pass-
ing through the joined endpoint −0.5. An arc between two
points v1, v2 ∈ G on the cycle is defined as the set of points
traversed on the cycle when moving clockwise from v1 to v2.

Let k = (|N | − 1)/2. For convenience, we
assume that the set of agents is given by N =
{−k,−k + 1, . . . ,−1, 0, 1, . . . , k}.

Every agent i ∈ N has preferences over the points of the
graph, determined by their ideal point, bi. These preferences
are determined by the cost function, defined as the distance
between the agent’s ideal point bi and a chosen point v ∈ G.
When comparing two points on the graph, agent i prefers the
point with lower cost.

The collection of agents’ ideal points constitutes a profile
and is represented by a function b : N → G, where bi is the
ideal point of agent i and b−1(v) are the agents reporting v.

For any set A, a lottery over A is defined as a discrete prob-
ability distribution on A. We represent a lottery as a function
l : A → [0, 1] satisfying the condition that the sum of values
in its image equals 1. The set of all lotteries over A is denoted
by ∆(A).

Agents’ preferences are extended to lotteries over the
points of the graph by using the expected values. The cost
for an agent with ideal point v under a lottery l ∈ ∆(G) is
a linear extension of the deterministic cost, defined as the ex-
pected distance between v and the outcome of the lottery:

cv(l) = EX∼l[d(v,X)].

An agent prefers lotteries with lower costs.
In this work, the quality of any lottery l ∈ ∆(G) is evalu-

ated using the social cost, defined as the sum of costs of all
agents. Formally, for any profile b, let

scb(l) =
∑
i∈N

cbi(l).

For simplicity, we sometimes abuse the notation and com-
pute the social cost for a single point v ∈ G, treating it as
a degenerate lottery where the given point is always selected.
The minimal social cost is referred to as the optimal cost and
denoted by optb. Formally,

optb = inf
v∈G

scb(v).

It is straightforward to see that, due to the definition of agent
costs via expected values, the optimal cost is always achieved
by some point.

In this paper, we consider the problem faced by a social
planner who, without knowledge of the true profile, aims to
choose a lottery over the points of the graph to minimize so-
cial cost. To achieve this, the social planner employs a mech-
anism design approach.
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Definition 1. Let B be an arbitrary set of profiles. A function
M : B → ∆(G), which maps profiles to lotteries over the
points of the graph, is called a mechanism.

Given a mechanism, agents report their ideal points, not
necessarily truthfully. Based on these reports, the mechanism
determines a lottery, which is then used to select a point of
the graph.

2.1 Common Mechanism Properties
Let b denote an arbitrary profile.
Definition 2. A mechanism M is strategyproof (SP) if, for
any agent i ∈ N , the cost incurred by i when truthfully re-
porting their ideal location bi is no greater than the cost in-
curred when reporting any other point v ∈ G. Formally:

cbi(M(b)) ≤ cbi(M(b[i → v])),

where b[i → v] denotes the profile in which agent i reports
point v instead of their true ideal location bi.

Strategyproofness implies that no agent can gain by misre-
porting their ideal location to the mechanism. Consequently,
when considering SP mechanisms, and under the assumption
that agents act rationally, they will truthfully report their ideal
points.

In this work, we focus exclusively on SP mechanisms.
Based on the above reasoning, we make little distinction be-
tween the true profiles of agents’ ideal points and the profile
reported by the agents, assuming they are equal.

In addition, mechanism M is said to be:
• Anonymous, if it does not distinguish between agents,

that is for any permutation of agents π : N → N , the
outcome of the mechanism M remains unchanged. For-
mally, M(b) = M(b ◦ π).

• Neutral, if it does not distinguish between similar
graph’s locations. Formally, for any automorphism f of
the graph G, the outcome of the mechanism M is trans-
formed according to f i.e., M(f ◦ b) ◦ f = M(b).

• Peaks-only, if the support of the resulting lottery M(b) is
contained within the points reported by the agents, i.e.,
in the image Im b.

• α-approximation if the social cost of the mechanism’s
outcome is no greater than α times the optimal cost. For-
mally, scb(M(b)) ≤ α · optb.

The approximation ratio of a mechanism M for a set of
profiles B is defined as the smallest α such that M is an α-
approximation for all profiles from B. We denote this value
by apxM (B). We often abuse the notation and write apxM (b),
where b is a single profile, to denote the approximation ratio
of the mechanism M for the set {b}. In this paper we are
interested in mechanisms with the smallest approximation ra-
tio for all profiles on the cycle. This is equivalent to finding
the upper bound of apxM for singletons that holds uniformly
across all profiles.

2.2 Known SP mechanisms
We now present two important mechanisms from the litera-
ture that are central to our work.

Definition 3. RD (Random Dictator) is a mechanism that re-
turns a lottery l ∈ ∆(G), where the probability of select-
ing any point v ∈ G is proportional to the number of agents
choosing it in profile b. Formally, l(v) = |b−1(v)|/|N |.

It is known [Alon et al., 2009] that for any graph and any
profile, the approximation ratio of this mechanism does not
exceed 2− 2/|N |.
Definition 4. The Proportional Circle Distance (PCD)
mechanism [Meir, 2019] is defined for cycles and an odd
number of agents. The mechanism operates according to fol-
lowing steps:

1. Fix a linear order ≺ of agents corresponding to the
clockwise arrangement of their reports on the cycle, with
ties broken arbitrarily (it can be verified that this does not
affect the outcome of the mechanism).

2. For each agent i, define the arc opposing agent i as the
arc between the report of the agent who is k positions
after i in the order ≺ and the report of the agent who is k
positions before i in the order ≺. The terms “after” and
“before” are understood with respect to the clockwise
traversal of the cycle; for instance, the agent immedi-
ately after the last agent in ≺ is the first agent in ≺.

3. Select the report of each agent i with a probability pro-
portional to the length of the arc opposing agent i.

The approximation ratio of the PCD mechanism is upper-
bounded by 2. This bound is supported by the existence of
a sequence of profiles (for varying sets of agents) in which
the approximation ratio of the PCD mechanism approaches
2 [Meir, 2019]. The RD and PCD mechanisms are strate-
gyproof, anonymous, neutral, and peaks-only.

3 Analysis
In this section, we prove the main result of the paper:

Theorem 1. For any set of agents with an odd cardinality
and a cyclic graph G of length 1, there exists a strategyproof
mechanism M whose approximation ratio is bounded from
above by 7/4.

Remark 1. The above theorem can be easily generalized to
a cycle Gz of arbitrary length z > 0. Let f be a mapping that
uniformly scales the cycle Gz to G. The mechanism M from
Theorem 1 can be adapted to Gz by combining it with the
mapping f i.e., considering mechanism M ′ defined for every
profile b ∈ GN

z as M ′(b) = M(f ◦ b) ◦ f . This operation
preserves both the strategyproofness and the approximation
ratio of the mechanism.

The proof of Theorem 1 is constructive: we present
a mechanism that satisfies conditions of the theorem, i.e., it is
SP and achieves an approximation ratio bounded by 7/4.

Let M1 + M2 denote a mechanism that is a mixture of
mechanisms M1 and M2. The mechanism M1 + M2, for
every profile b, returns the outcome of M1 on b with proba-
bility 1/2 and the outcome of M2 on b with probability 1/2.
Formally, for any point v ∈ G, the probability of selecting
v in the resulting lottery l = (M1 + M2)(b) of the mixed
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mechanism is the average of its probabilities in the lotteries
l1 = M1(b) and l2 = M2(b):

l(v) =
l1(v) + l2(v)

2
.

Mixing mechanisms has several desirable properties, mak-
ing it a promising tool for constructing SP mechanisms with
low approximation ratio:

Observation 1. For any mechanisms M1 and M2 that are
strategyproof, anonymous, neutral, or peaks-only, their mix-
ture M1 +M2 also satisfies these properties.

Additionally, the approximation ratio of the mixed mecha-
nism behaves as follows:

Observation 2. For a profile b, the approximation ratio of
the mixed mechanism M1 +M2 is the arithmetic mean of the
approximation ratios of M1 and M2:

apxM1+M2
(b) =

apxM1
(b) + apxM2

(b)

2
.

This result follows directly from the definition of the approxi-
mation ratio and the linearity of the social cost.

Consider the mechanism RD + PCD. By Observation 1,
it is strategyproof. Therefore, to conclude the proof of Theo-
rem 1, it suffices to show that the approximation ratio of the
RD + PCD mechanism is bounded above by 7/4.

Let us begin with some trivial bounds.

Remark 2. The approximation ratio of the RD + PCD
mechanism equals (apxRD(b) + apxPCD(b)) /2 (by Obser-
vation 2), which:

• cannot be bounded from above by any value smaller than
3/2, since there exist profiles for which approximation
ratio of RD is arbitrarily close to 2, while approximation
ratio of PCD is at least 1,

• is at most 2, under the conjecture that approximation
ratio of PCD mechanism equals 2 [Meir, 2019].

The bound of 7/4, stated in Theorem 1, lies in the middle
between these two values and we will improve this result even
further in Section 4.

Approximation ratio of the RD + PCD mechanism, by
definition, is the smallest α such that inequality:

scb((RD + PCD)(b)) ≤ α · optb

holds for every profile b. The above formula is not the best to
work with and can be simplified if the optimal cost is greater
than 0. Let us start with considering the border case of optb =
0, to exclude it from further analysis:

Remark 3. Consider a profile b, for which optb = 0. Then
the approximation ratio of the RD + PCD mechanism is 1.

Proof. If optb = 0 then all the agents report the same point
under b. Let us denote this point by v. By Observation 1,
the RD+PCD mechanism is peaks-only and so its outcome
on b is v with probability 1. Hence, the social cost of the
mechanism output is 0 and the approximation ratio is 1.

If optb > 0, which we assume for the rest of the paper, the
following holds:

apxRD+PCD(b) =
scb((RD + PCD)(b))

optb
.

Estimating the above expression for a mechanism operating
on a cycle presents new challenges as compared to the case
of a line segment:

1. For the line segment, it is known that the optimal cost
optb corresponds to the social cost for the point preferred
by the median agent. For the cycle, we are not aware of
any compact description of optb.

2. The social cost depends on the distances between the
lottery points chosen by the mechanism and the agents’
ideal points. Distances on a line segment have signifi-
cantly simpler form in comparison to those on a cycle.

We address the first of these problems in Section 3.1, by se-
lecting a subset of normalized profiles B′ ⊊ B, for which the
point generating optimal cost is fixed. In addition, we require
that agents are ordered according to the clockwise traversal
of the cycle, which simplifies further analysis. We show that
due to the anonymity and neutrality of the RD+PCD mech-
anism, set B′ is representative in terms of the approxima-
tion ratio values achieved by RD + PCD, i.e., for every
b ∈ B, there exists b′ ∈ B′ such that apxRD+PCD(b) =
apxRD+PCD(b′). This allows us to narrow down further con-
siderations to the set of normalized profiles B′.

The second problem, of the more complex nature of dis-
tances between points on a cycle, is addressed in Section 3.2.
We estimate these distances through their counterparts on
a line segment obtained by cutting the cycle before some
point. Such estimation increases the social costs associated
with certain points of the graph, which could potentially in-
crease the optimal cost (and thus decrease the estimated value
yielding invalid bound). Fortunately, due to the earlier restric-
tion to the set of normalized profiles B′, the point minimizing
the social cost is fixed. This enables us to select the cutting
point so that the minimal social cost is preserved, thereby ob-
taining a valid estimate.

In Section 3.3, we provide concise formulas for parts of
the approximation ratio after the cut of the RD + PCD
mechanism corresponding to the social costs of the RD and
PCD mechanisms. We substitute these expressions into
the formula for the approximation ratio after the cut of the
RD+PCD mechanism, obtaining an estimate ϕ. Finally, in
Section 3.4, we upper-bound the value of ϕ by 7/4 on a set of
normalized profiles via a series of technical lemmas.

The formal proof of Theorem 1, based on the developed
lemmas, is presented in Section 3.5.

3.1 Normalization of profiles
We start with the definition of a subset of profiles for which
the formula for the approximation ratio of the RD + PCD
mechanism is simplified, but still can obtain the same values.

Definition 5. A profile b is normalized if:
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• point 0 minimizes the social cost in b over all the points
of the cycle,

• b is a non-decreasing function with respect to the natural
order of agents and the clockwise order of the points of
the cycle,

• agent 0 reports the point 0.
The following lemma allows us to restrict attention to the

normalized profiles.
Lemma 1. Let M be any mechanism that is anonymous and
neutral. Let b be any profile. There exists a normalized pro-
file, b′, such that apxM (b) = apxM (b′).

Proof. Let b be any profile. A normalized profile b′ with the
same approximation ratio is constructed as follows:

1. By the neutrality of the M mechanism, we cyclically
shift the naming of the points of the graph, so that point
0 generates the minimal social cost.

2. By the anonymity property, we can freely rename agents
without affecting the result of the mechanism. We tra-
verse the cycle G clockwise starting from the joined end-
point −0.5, numbering agents in the order their reports
are encountered (breaking ties arbitrarily).

Due to the properties of the point generating the mini-
mal social cost on the cycle, the above two steps ensure that
the third condition of normalization is satisfied, namely, that
agent 0 reports point 0. Assume, to the contrary, that this is
not true, i.e., b′0 ̸= 0. Firstly consider the case b′0 > 0. By
step 2, b′ is non-decreasing, so any agent i > 0 reports a point
greater than or equal to b′0, i.e., b′i ≥ b′0. At the same time,
b′i ≤ 0.5 since agents selecting negative points are numbered
before agent 0. It follows that moving from point 0 to point b′0
brings us closer to the reports of strictly more than half of the
agents (all agents with indices i ≥ 0). Thus, the social cost of
point b′0 is less than the social cost of point 0, a contradiction
to the assumption that point 0 generates the minimal social
cost. The case of b′0 < 0 is handled analogously.

3.2 Cut of the profile
After introducing the concept of normalization of profiles,
let us proceed to analyzing the approximation ratio of the
RD + PCD mechanism. This quantity, by definition, de-
pends on the social cost, which, in turn, depends on the dis-
tances between the agents’ ideal points and the points in the
support of the output lottery of the mechanism. The defini-
tion of distance between the points on a cycle involves a min-
imum. This non-linearity makes a direct analysis of the ap-
proximation ratio of the RD+PCD mechanism challenging.
We address this issue by replacing the distance function used
to compute the social cost with a simpler one. Let d′ denote
a line-segment-like distance function on cycle G, defined for
any two points v1, v2 ∈ G as d′(v1, v2) = |v2 − v1|. Let us
denote quantities such as cost, social cost, and the approxi-
mation ratio computed with respect the distance function d′,
as c′, sc′, apx′, respectively.

For any pair of points v1, v2 ∈ G, the metric d is defined as
d(v1, v2) = min(|v2 − v1|, 1− |v2 − v1|). This corresponds
to the general definition of distance on graphs as the length

of the shortest path between two points. The metric d′ is de-
rived from d by removing one of the two components of the
minimum. Conceptually, this is equivalent to excluding paths
that traverse the joined endpoint of the cycle when defining
the distance. Intuitively, we can imagine that for the purpose
of measuring distances, the cycle is “cut” just before point
−0.5. Due to this intuition, the transition from the cycle with
the metric d to the cycle with the metric d′ will henceforth be
referred to as the cut of the cycle.

The following inequality connects the value of the social
cost for different points of the cycle G computed before and
after the cut (with respect to the original distance function, d,
and the new distance function, d′):

Lemma 2. Let b be any normalized profile. For any lottery
l ∈ ∆(G), it holds that:

sc′b(l) ≥ scb(l).

Moreover, the social cost associated with the point 0 is pre-
served by the cut, i.e., sc′b(0) = scb(0).

Proof. The social cost of a point v ∈ G is defined as a lin-
ear combination of distances between v and the agents’ ideal
points. This definition is extended to lotteries by taking ex-
pected values. The first statement holds because d′ never de-
creases the distances between the points, as compared to d,
and therefore the values on which the social cost is based
can only increase after the cut. The second statement fol-
lows from the fact that the cut does not alter the shortest path
between 0 and any other point.

Based on Lemma 2 and Observation 2, we can establish
the following upper bound on the approximation ratio of the
RD + PCD mechanism:

Corollary 1. For any normalized profile b, the approximation
ratio of the RD + PCD mechanism is bounded by

ϕ(b) :=
sc′b(RD(b)) + sc′b(PCD(b))

2sc′b(0)
.

Proof.

apxRD+PCD(b) =
apxRD(b) + apxPCD(b)

2
=

scb(RD(b)) + scb(PCD(b))

2optb
=

scb(RD(b)) + scb(PCD(b))

2scb(0)
≤

sc′b(RD(b)) + sc′b(PCD(b))

2sc′b(0)
= ϕ(b).

3.3 Estimations of the social cost after the cut
In the previous subsection we bounded the value of the ap-
proximation ratio of the RD + PCD mechanism by the ex-
pression ϕ(b), which depends on sc′RD(b), sc′PCD(b): the
social costs of outputs of RD and PCD after the cut. In
this subsection we provide concise forms for these quantities.
Since deriving those values involves only algebraic manipu-
lations, we postpone the detailed proofs to the appendix.
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Lemma 3. For any normalized profile b, the social cost of the
outcome of mechanism RD after the cut is equal to:

sc′b(RD(b)) =
∑
i

4|i|
2k + 1

|bi|.

Lemma 4. For any normalized profile b the social cost of the
outcome of mechanism PCD after the cut is equal to:

sc′b(PCD(b)) =
∑
j>0

|bj |(2k + 1− 2j)(|bj−k−1| − |bj−k|)+∑
j

|bj |+
∑
j<0

|bj |(2k + 1 + 2j)(|bj+k+1| − |bj+k|).

3.4 Estimating ϕ(b)
Substituting the results from Section 3.3 into the expression
for ϕ(b), allows us to express it as a fraction with numerator:∑

i

4|i|
2k + 1

|bi|+
∑
j

|bj |+∑
j>0

|bj |(2k + 1− 2j)(|bj−k−1| − |bj−k|)+∑
j<0

|bj |(2k + 1 + 2j)(|bj+k+1| − |bj+k|)

(1)

and denominator:

2sc′b(0) = 2
∑
i

d(bi, b0) = 2
∑
i

|bi − 0| = 2
∑
i

|bi|. (2)

In this section, we bound the value of ϕ(b) by 7/4 for any
normalized profile b. To achieve this, we break the proof into
several steps, stated as lemmas. We provide some intuition
behind each lemma and defer the detailed proofs to the ap-
pendix.

We begin by extending the set of considered profiles, as the
current set (the normalized profiles) is not easily described
due to the requirement that point 0 minimizes the social cost.
To address this, we define a larger set, B′′, which contains
all the non-decreasing functions from the set of agents to
[−0.5, 0.5], except the constant 0 function, such that b′′0 = 0.
One can view the elements of B′′ as profiles on a closed line
segment of length 1, where agent 0 reports the point 0.

We extend the definition of ϕ to be valid on B′′ and proceed
to estimating the supremum of ϕ over B′′. This approach pro-
vides an upper bound for the supremum over the normalized
profiles, as B′′ is a larger set.

A challenging aspect of estimating the supremum of ϕ over
B′′ is that B′′ is not a closed set, because it excludes 0. To
address this, we begin by proving that ϕ attains small values
in the neighborhood of 0.

We introduce the concept of a dominated function in B′′:
a function b ∈ B′′ is dominated if it equals zero for at least
k + 1 agents. Let B′′

0 ⊆ B′′ denote the subset of functions in
B′′ that are dominated.
Lemma 5. For any dominated b ∈ B′′

0 , it holds that ϕ(b) ≤
3/2 − 1/n. Moreover, the equality can be achieved as
witnessed by the function b@ ∈ B′′

0 corresponds to tuple
(0, 0, . . . , 0.5) i.e., the function getting value 0 for every agent
except agent k for which it gets value 0.5.

Let us define function w : B′′ → N which, for any b ∈ B′′,
returns the number of distinct values of b that are not equal to
−0.5, 0, or 0.5. Formally,

w(b) = |Im b \ {−0.5, 0, 0.5}| .

We call a function b ∈ B′′ boundary if w(b) = 0. Let B∗

denote the set of all boundary functions in B′′.
We demonstrate that the supremum of ϕ over B′′ is the

same as its supremum over the smaller set B∗. To establish
this, we start with a lemma that allows us to reduce the num-
ber of non-boundary values without decreasing the value of
ϕ.
Lemma 6. Let b ∈ B′′ be a function with non-boundary
values, i.e., w(b) > 0. There exists b′ ∈ B′′ such that
w(b′) < w(b) and ϕ(b′) ≥ ϕ(b) holds.

The proof proceeds as follows: we consider a pair of
functions b1, b2 ∈ B′′, constructed by replacing one non-
boundary value in b (for all agents reporting it) with either
the value reported by other agents or with a boundary value.
By construction, both b1 and b2 have smaller w-values than
b. To conclude the proof, we show that ϕ for at least one of
these modified functions is not smaller than ϕ(b).

By repeatedly applying the above lemma, we can iter-
atively reduce the number of non-boundary values in any
b ∈ B′′ until w(b) = 0, while ensuring that ϕ does not de-
crease. Thus, we have:
Corollary 2. For any element b ∈ B′′, there exists a bound-
ary element b∗ ∈ B∗ such that ϕ(b) ≤ ϕ(b∗).

From Corollary 2, we immediately deduce:

sup
b∈B′′

ϕ(b) ≤ sup
b∈B∗

ϕ(b).

Finally, we bound the supremum of ϕ over B∗ by 7/4.
Lemma 7. For any b∗ ∈ B∗, the value of ϕ for b∗ is at most
7/4.

We achieve this by simplifying the representation of
boundary functions in B∗ and directly estimating the value
of ϕ for these functions.

3.5 Proof of the main theorem
We are now ready to prove Theorem 1.

Proof (of Theorem 1). Consider the mechanism RD+PCD.
By Observation 1, this mechanism is strategyproof. Now, let
us show that the approximation ratio of RD + PCD mech-
anism on all profiles on cycle G is bounded by 7/4. Let b
be any profile on G. If all agents report the same point, then
the approximation ratio of the RD + PCD mechanism is
equal to 1, as shown in Remark 3. Assume now that there
are at least two distinct reports in the profile b. By Observa-
tion 1, the RD + PCD mechanism is anonymous and neu-
tral. Hence, by Lemma 1, there exists a normalized profile,
b̃, on the cycle such that apxRD+PCD(b) = apxRD+PCD(b̃).
By Corollary 1 we have that apxRD+PCD(b̃) ≤ ϕ(b̃). By
Corollary 2, there exists a boundary function b∗ ∈ B∗ such
that ϕ(b̃) ≤ ϕ(b∗). Lastly, by Lemma 7, we have that
ϕ(b∗) ≤ 7/4. Combining the above inequalities we obtain the
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desired bound for the approximation ratio of the RD+PCD
mechanism for the profile b. Since the profile b was arbitrary,
this completes the proof.

4 Experiments
In the previous section, we proved an upper bound of 7/4 on
the approximation ratio of the RD + PCD mechanism. On
the other hand, in Remark 2, we established that no upper
bound below 3/2 is possible, leaving some uncertainty about
the actual approximation ratio of the RD + PCD mecha-
nism. To complement these theoretical results, we conducted
numerical experiments to investigate which values of the ap-
proximation ratio are actually attained by the RD + PCD
mechanism.

4.1 Setup
The idea of the experiments is to compute the approximation
ratio of the RD+PCD mechanism for a finite, computation-
ally feasible, set of profiles, providing insight into the behav-
ior of the mechanism for all possible profiles.

The first obvious parameter to consider is the number of
agents n, as it directly affects the definition, and potentially
the operation of, the RD + PCD mechanism. During the
experiments, we considered the number of agents n in the
range [2..60].

The second parameter to consider is the set of possible re-
ports for each agent. In the theoretical analysis, no restric-
tions were imposed on the agents’ reports. However, since
cycle G is a continuous set with infinitely many points, we
introduce such restrictions in the experiments in order to have
a finite set of profiles to analyze. For l ∈ N, let Gl denote the
subset of l points on the cycle G (of length 1) that are equally
spaced and include the point 0. During the experiments, we
restricted agents’ reports to the set Gl for l ∈ [2..60]. We hy-
pothesize that profiles with agents’ reports restricted to the set
Gl provide increasingly better approximation of the behav-
ior of the RD + PCD mechanism for all possible profiles,
as l grows (since the allowed reports cover the cycle more
densely).

The total number of distinct profiles with n agents whose
reports are restricted to Gl is ln. To reduce the computational
complexity, we leveraged the anonymity and neutrality of the
RD + PCD mechanism, grouping profiles that would yield
the same social cost and avoiding redundant calculations. De-
spite this, for larger values of n and l, the number of profiles
still exceeded 107, making computations infeasible.

In such cases, we restricted our analysis to profiles in which
agents reported no more than 3 distinct points. These profiles
were considered good candidates for generating the highest
approximation ratio for the RD + PCD mechanism, as will
be demonstrated later.

4.2 Results
The results of the experiments are presented in Fig. 1. The
graph illustrates the maximum value of the approximation ra-
tio of the RD+PCD mechanism for profiles with n agents,
whose reports are restricted to Gl. The dotted line represents
results computed under the restriction that agents report no
more than 3 distinct points.
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Figure 1: The maximum value of the approximation ratio of the
RD + PCD mechanism in profiles with n agents, whose reports
are restricted to Gk. The dotted line highlights the results calculated
with the restriction that the number of different points reported by
agents is limited to 3.

An immediate observation is that the approximation ratio
of the RD + PCD mechanism does not exceed 3/2 for any
profile considered in the experiments. This observation leads
to the following hypothesis, which, if true, would further re-
fine the theoretical result established in Theorem 1:
Hypothesis 1. The approximation ratio of the RD + PCD
mechanism is strictly less than 3/2 for any set of agents and
any profile on the cycle G.

The bound of 3/2 is the lowest possible due to Observa-
tion 2 and would imply that the mechanisms RD and PCD
perfectly complement each other, meaning the worst-case
profile for one mechanism is the best-case profile for the
other.

A deeper analysis of the experimental results provides fur-
ther evidence supporting Hypothesis 1. Indeed, we observe
that for a fixed number of agents, increasing the number of
points on which agents can report (i.e., increasing i) beyond
a certain threshold does not affect the highest approximation
ratio of the RD+PCD mechanism (excluding parity effect).
This suggests that the approximation ratio of the RD+PCD
mechanism does not grow significantly if we were to extend
the range of l.

5 Conclusions
We considered a strategyproof facility location on a cycle
with the utilitarian welfare objectives. We showed that the ap-
proximation ratio of strategyproof mechanisms for this prob-
lem is bounded from above by 7/4 and is guaranteed by the
RD + PCD mechanism. This bound improves the best
previously known bound of 2 − 2/n in the cases of odd
n ≥ 5. Computational analysis of the approximation ratio
of the RD+PCD mechanism suggests that the bound could
be further improved to 3/2. Verifying this hypothesis is an in-
teresting question for future research.
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