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Abstract

Partial point attack approaches focus on leverag-
ing the fewest points to achieve the best attack effi-
ciency for easy implementation in the physical do-
main. For the first time, this paper proposes that
the partial point attack strategy should pay attention
to not only the selection and disturbance of points,
but also the penetration of current defense methods.
By re-examining characteristics of previous partial
point attack approaches leading to performance im-
provement, we discover two fundamental princi-
ples: first, the selection of attacked points should
consider not only the favourable visual salience but
also the proper position concentration, thus to ac-
quire effective structural destruction on the basis
of remaining imperceptible; second, the perturba-
tion of target points should form meaningful struc-
tures rather than outliers. To achieve this, we first
propose a novel distributed-concentrated point se-
lection (DPS) strategy, which is easier to concen-
trate salient points containing rich local informa-
tion in a few tiny regions. Additionally, to en-
hance the penetration efficacy and real-time per-
formance of attack point clouds against defenses,
we further design a perturbation network based on
the multi-scale penetration loss (L,sp), which can
generate adversarial samples with as few outliers
as possible only through a single forward propa-
gation. Experimental results demonstrate that the
real-time distributed-concentrated penetration at-
tack (RDPA) framework can achieve state-of-the-
art (SOTA) success rates by perturbing only 3.5%
of points, and have the best penetration for main-
stream defense methods such as SRS and SOR.

1 Introduction

Numerous studies have demonstrated that 3D point cloud
deep neural networks are extremely vulnerable to deception
by adversarial examples [Xiang er al., 2019; Lee et al., 2020;
Cao et al, 2021]. Most existing attack methods primar-
ily perturb the entire point cloud, offering the advantage of
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not necessitating complex region selection or local process-
ing. However, the added noise may propagate throughout the
whole point cloud, thus making it challenging to implement
in the physical domain.

Partial point attack approaches [Kim er al., 2021; Zheng
et al., 2019; Wicker and Kwiatkowska, 2019; Zheng et al.,
2023] focus on leveraging the fewest points to achieve the
best attack efficiency. A common attack framework usually
consists of two parts: point selection and point perturbation.
Specific to these two aspects, by re-examining the character-
istics of previous approaches, we discover two fundamental
principles:

 The selection of attacked points should consider not only
the favourable visual salience but also the proper po-
sition concentration, thus to acquire effective structural
destruction on the basis of remaining imperceptible.

* The perturbation of target points should form meaning-
ful structures rather than outliers.

An example of the first criterion is shown in the top row
of Figure 1. Assuming a set of point clouds distributed in
squares, point selection strategies that solely focus on visual
salience may result in attacked points being evenly distributed
along contours [Qi et al., 2017a; Zheng et al., 2019]. After
removing the contour points with salient features, the point
cloud still remains square in shape, but making it difficult
to fool the robust neural network. On the other hand, when
choosing only one salient region to attack, it indeed leads the
neural network to make erroneous decisions. However, this
approach causes particularly obvious damage to the struc-
ture because the selected points are too concentrated. For
the second criterion, as shown in the bottom row of Fig-
ure 1, if we do not constrain the system to execute pertur-
bation, the adversarial sample will have a large number of
individual outliers whose attack success rate can be rapidly
decreased by only imposing a simple Gaussian filter. Specifi-
cally, when applying two widely used defense methods, sim-
ple random sampling (SRS) and statistical outlier removal
(SOR) [Zhou et al., 2019], the attack success rates against
PointNet [Qi et al., 2017al on ModelNet40 [Wu et al., 2015]
using current SOTA attack approaches [Kim er al., 2021;
Zheng et al., 2023] significantly declines from 89.41% and
92.35% to 17.60%, 3.77% and 50.32%, 16.73% respectively.
Thus, the attack penetration must be considered in the frame-
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Figure 1: Illustrating the importance of the two fundamental principles which are critical for the partial point attack strategy.

work.

Based on the analysis of above two principles, we propose
a novel real-time distributed-concentrated penetration attack
(RDPA) framework for point cloud learning, which not only
can quickly generate high-quality adversarial point cloud but
also show penetration ability against mainstream defenses.
Specifically, in the point selection phase, different from pre-
vious works mainly focusing on the salience of the individual
point or region, we propose a distributed-concentrated point
selection (DPS) strategy which is easier to concentrate salient
points containing rich local information in a few tiny regions.
In the point disturbance phase, we design a perturbation net-
work based on the multi-scale penetration 1oss (Lyysp), which
can generate adversarial samples with as few outliers as pos-
sible only through a single forward propagation.

In general, the contributions of this paper are as follows:

* By re-examining the characteristics of previous partial
point attack approaches leading to the performance im-
provement, we propose two fundamental principles for
an effective attack scheme, in which the penetration abil-
ity is taken into account for the first time.

A novel distributed-concentrated point selection (DPS)
strategy and multi-scale penetration loss (L) are pro-
posed to improve the attack efficiency and penetration
ability against mainstream defenses.

Comprehensive experiments show that the proposed at-
tack framework is capable of providing SOTA results on
various benchmarks. We also provide extensive ablation
studies to examine the effect and robustness of different
parts.

2 Related Works

2.1 3D Point Cloud Attacks

Adpversarial attacks on 3D point cloud models can be broadly
classified into optimization-based, gradient-based, and drop-
based methods. Optimization-based attacks, such as those of
[Xiang et al., 2019] and [Carlini and Wagner, 20171, focus

on perturbing point clouds by optimizing objective functions.
Techniques such as adding custom loss terms [Tsai et al.,
2020], using binary random vectors [Kim ef al., 2021], and
encoding high-dimensional data into a compact latent space
[Lee et al., 2020] have also been explored. [Zhou et al., 2020]
applied generative networks for the generation of adversarial
examples.

Gradient-based methods modify the input by using model
gradients. Early works introduced curvature losses [Wen
et al., 2020], while [Goodfellow er al., 2014; Madry et
al., 2017] refined gradient computation. Autoencoders were
used by [Hamdi et al., 2020] to generate perturbations,
and [Moosavi-Dezfooli et al., 2017; Naseer et al., 2019;
Poursaeed et al., 2018] extended this approach. [Ma er al.,
2020] proposed the Joint Gradient Based Attack (JGBA) and
[Yang et al., 2019] introduced the Pointwise Gradient En-
hanced Momentum (MPG) to improve the transferability of
the attack. [Huang et al., 2022] adapted I-FGSM [Zhao et
al., 2020] and [Tao er al., 2023] developed a black-box attack
based on decision boundaries. [Zheng er al., 2023] targeted
salient regions in point clouds for more effective attacks.

In dropping-based attacks, methods like Drop200 [Zheng
et al., 2019] discard points based on importance scores.
[Yang er al., 2019] further refined this by calculating gradi-
ents before maximum pooling in PointNet, while [Wicker and
Kwiatkowska, 2019] classified models and used latent trans-
lations for keypoint definition to improve attack precision.

2.2 3D Point Cloud Defenses

Defensive strategies aim to purify adversarial samples or en-
hance model robustness. Purification methods include SOR,
which uses upsampling networks [Zhou er al., 2019], IF-
Defense with implicit function networks [Wu er al., 2020],
Adv3Diff combining diffusion and denoising [Zhang er al.,
2023bl, and IT-Defense, which employs invariant transfor-
mations [Zhang et al., 2023al.

To strengthen the robustness of the classifier, various data
augmentation techniques have been proposed. PointMixup
[Chen er al., 2020] and PointCutMix [Zhang et al., 2022]
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blend point clouds, while RSMix [Lee et al., 2021] com-
bines rigid subsets. Other methods include experiments on
data augmentation [Sun et al., 2022], self-attention for fea-
ture extraction [Dong er al., 2020], and lattice classifiers [Li
et al., 2022]. [Ding et al., 2023] introduced CAP, a frame-
work that enhances both semantic and structural information
in point clouds.

3 Method

As illustrated in Figure 3, the novel real-time distributed-
concentrated penetration attack (RDPA) framework begins
with employing the distributed-concentrated point selection
(DPS) strategy as Separator to separate the attacked target
points P, and the remains P;. Subsequently, both the original
point cloud P and P, are fed into the perturbation network
named Disruptor, which can generate the adversarial subset
Pr,_ 44y only through a single forward propagation. Then,
we merge Pj_.q4, and P; to get the final adversarial point
cloud P,4,. By inputting P, 4, into the attacked classifier, we
can calculate the misclassification loss L,,;s, while compar-
ing P and P, 4, determines the disturbance distance loss Lg;s.
Additionally, we design a novel multi-scale penetration loss
Lpsp according to Py, .

3.1 Distributed-Concentrated Point Selection
Strategy

Existing point selection strategies only focus on a single
salient point or a single salient region. As shown in Figure
2, if only consider the salience when selecting points to at-
tack, they are basically scattered in point cloud surface, such
as critical subset strategy [Qi et al., 2017a] and saliency map
algorithm [Zheng et al., 2019]. The disadvantage of these
methods are that once disturbed points are defended, original
points located on the subsurface will form a new profile with
their neighboring points, which is why the attack success rate
of method [Kim et al., 2021] will rapidly decline in the face
of defenses. Another drawback is that the points to be at-
tacked are too dispersed, resulting in minimal changes to the
point cloud structure. In addition, as shown in the visualiza-
tion result of local adversarial method [Zheng et al., 20231,
choosing to attack a single salient region will cause serious
deformation of the point cloud structure, which violates the
principle of imperceptibility because the salient points are too
concentrated.

Local Adv Ours

Critical Subset Saliency Map

Figure 2: Comparison of point selection strategies highlighting the
balance of DPS between salience and concentration for effective and
imperceptible attacks.

Based on the analysis of above deficiencies, we consider
both salience and concentration when selecting the attacked

target points. Meanwhile, in order to prevent salient points
from being concentrated in a certain region, we propose a
distributed-centralized point selection (DPS) strategy which
fully follows the first principle of the partial point attack. As
shown in the final part of Figure 2, salient points have both
the distributed characteristic and the advantage of centralized
attacks. The unique advantage of DPS is that it can be ef-
fectively against minor defenses without causing excessive
damage to the point cloud structure.

Specifically, we employ the covariance matrix to measure
information in the nearest region of a point. By choos-
ing appropriate neighbor numbers, we are able to concen-
trate information-rich salient points within a few tiny regions,
which is a simple but effective method. Formally, a point
cloud P is defined as a collection of /N unordered points, de-
noted as P = {p;|i = 1,2,..., N}, P € RN*3, where each
point p; is represented by a vector containing its (z, y, z) co-
ordinates. To identify the n nearest points to a given point p;,
we employ the k-nearest neighbor (knn) algorithm, resulting
in a set denoted as knn (p;,n) = {p;;|j =1,2,...,n}. The
mean vector of point p; is computed as

T
_ (1! Z 1 3 1 1.2
Di = zzpnzyma Zzz] ) = L, 4.,
Jj=1 Jj= J=1
)
while the covariance matrix of the local region is defined as
i _ _\T
Ci = — Z (pij — pi) (Pij — D)™ 2

j=1

which is a 3 by 3 real symmetric matrix.

Analyzing the eigenvalues and eigenvectors of the covari-
ance matrix allows us to discern the primary magnitude and
direction of change within the local structure of the point
cloud. Let A\;1,\;2 , and \;3 be the descending eigenvalues
of the matrix respectively, where \;; provides the richest lo-
cal information because it indicates the magnitude of change
along the major direction. To offer more nuanced insights
into structural changes, we consider both the ratio of three
eigenvalues and the max eigenvalue. Therefore, we define
the salient score of point p; as

3 3 2
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where € is a constant set to prevent the denominator from be-
ing 0, and we set € = 1 for consistency. When the differences
between the three eigenvalues are significant, the left-hand
side of the dot product ensures that the overall expression in-
creases as these differences widen. Simultaneously, the right-
hand side ensures that s; increases with the growth of the max
eigenvalue.

After calculating the salient score s; for each point p;, we
first arrange them in descending order. Then, we define the
top M points as the attacked target points P, and the remain-
ing N — M low-score points as P;, where P}, € RMx3 p ¢
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Figure 3: The framework of RDPA which consists of a seperator for attacked points selection and a disruptor for target points disturbance.

RWN=M)x3 They have the following relationship:

P,UP, =P,

4

PNP=go “)
As shown in the lower right part of Figure 3, for Vp, €
Py, p; € P, we have s, > s;.

3.2 Perturbation Network Based on the
Multi-Scale Penetration Loss

After the separator extracts P, and P, from the original point
cloud, we aim to design a network to generate P}, _,4,, Which
can effectively meet the flexibility requirements for real-time
attacks because it only requires a single forward pass. Mean-
while, to meet the second principle of our proposed partial
point attacks, we design a novel multi-scale penetration loss
to train the perturbation network. The specific structure of the
perturbation network and its loss function is as follows:

Design of Disruptor

Regarding the design of the disruptor, we address the learn-
ing of both global and local features. This process involves
three components: the original point cloud encoder E,, the
attacked target points encoder Ep,, and the decoder Dp, .
Specifically, we employ the single-scale grouping set abstrac-
tion (SSGSA) algorithm [Qi er al., 2017b] for learning global
features which involved a carefully designed coarse-to-fine
five-layer farthest point sampling processes. In the ¢-th layer,
the number of sampling points is 57, and the number of aggre-
gated feature channels is 64-2°~!. For learning local features,
we employ a simple three-layer perceptron exclusively, with
each layer outputting a shape of M x (64 - 2¢=1). For the
decoding process, the final output is the P;,_,q4, after pertur-
bation. The entire encoder-decoder process is illustrated in

Figure 3, its mathematical expression as follows:
Pp_qqv = Dp, (Ep(P)a Ep, (Ph)) )

Multi-Scale Penetration Loss

In order to make our attack framework more penetrating in
the face of mainstream defense strategies, we propose L, s,
to constrain adversarial examples with as few outliers as pos-
sible. To identify outliers more accurately in local ranges
of different densities, we begin with computing the multi-
scale average k-nearest neighbor distance D; for each point
p;. In the following equations 6 to 9, we uniformly set
n=2"t=1,2,3:

1

pij €knn(p;,n)

D; = Ipis —pilly o (6)

followed by the calculation of the mean D and standard devi-
ation X of all distances on every scale within the point cloud:

1 N
D=<d,|d, =~ ;
{dndn N;d} (7)
1 Y _

Based on the multi-scale means and standard deviations, we
define the multi-scale penetration loss Ly, as follows:

D ©)

{d|d>dn+7-0n}
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Joint Loss Function

On the premise of ensuring the penetration of adversarial
samples, we must balance the high attack success rate and
good visual quality. Therefore, we propose a novel joint loss
function, which consists of L,,;s, Ldis, and Ly, three terms:

L:Lmis+a'Ldis+/8'Lmspa (10)

where «, § are weight parameters.

Our work primarily focus on untargeted attacks rather than
targeted because these are two different patterns. Untargeted
attacks are mainly to deceive the network, while target attacks
are to induce. Specifically, let F' represents the classifier net-
work for the point cloud, and F;(P) denotes the likelihood of
the point cloud being classified into the i-th class. Our attack
can increase the likelihood of misclassification by the clas-
sifier, that is argmaz; F;(P) # argmax; Fiy(Pagy). The
defination of L,,;s is shown as follows:

L = mazx {aaFi‘(Padv) _rPaXFi’(Padv)} y (1D
it
where 6 represents the optimization factor, usually with
6 = 0; 4! denotes the correct label of the original point cloud
P. Given the limited number of points affected by pertur-
bation, we employ the Hausdorff distance to determine L4,
defined as follows:

L . N N PR— .
dis = max {g}gg {p_fél}:fdv Ipi — p; 2} ;

max {;?Elg Ips = pill } } -
4 Experiments

4.1 Experiment Setup

Dataset and Attacked Classifier

We take ModelNet40 [Wu et al., 2015] and PointNet [Qi et
al., 2017a] as the basic experimental dataset and classification
network. Specifically, ModelNet40 comprises 12,311 CAD
models across 40 common object categories, where 9,843
objects were allocated for training and 2,468 served as the
testing set. Similar to [Qi et al., 2017al, we initially sample
1,024 points by the farthest point sampling (FPS) for each
point cloud and then normalize them to fit within a sphere
with a radius of 1. Due to the unified processing of data in-
put, the disruptor can conduct additional training on multiple
point cloud datasets to satisfy the needs of specific adversarial
samples.

12)

Implementation Details

When calculating salient scores, we utilize knn to select a
local point count of 30 and define the attacked target subset
comprising 36 points. For Disruptor, we employ Adam opti-
mizer and CosineAnnealinglLR scheduler, setting the learning
rate to 0.001 and the cosine annealing cycle to 20. We train
Disruptor on PyTorch using an NVIDIA RTX 3090 Ti GPU,
over 400 epochs with a batch size of 64. Within the joint
loss terms, we conducted an exhaustive search [Kim et al.,
2021] for the parameters in Eq. 10 and empirically set them
as a = 5 and B = 50. For the definition of L,,;,, we take

~v=I.

— ASR — Hausdorff Distance Chamfer Distance
ASR ASR and Distance VS Number of Attack Points Distance
-0.14

0.98
-0.12

.9
096 -0.10
0.94 -0.08
0.92 -0.06
0.04
0.90 . 0.02
0.88 - 0.00
10 36 100
Number of Attack Points

Figure 4: The performance of RDPA method with different attacked
point numbers on ModelNet40 when the victim is PointNet.

4.2 Comparison and Evaluation

We evaluate RDPA from four primary dimensions: attack
success rate (ASR), distance, generation time and disturbance
point number. When evaluating ASR, we consider not only
the performance of the classification network without any
defense, but also the performance after incorporating main-
stream defenses: SRS and SOR [Zhou et al., 2019], where
SRS randomly samples and discards 500 points and SOR fol-
lows the same setup as [Zhou et al., 2019]. We measure dis-
tance employing Hausdorff and Chamfer distances, with the
generation time excluding perturbation network training but
including saliency score computation. In addition, we com-
pare RDPA with six SOTA partial point attack methods: ran-
dom occlusion (RO) [Wicker and Kwiatkowska, 20191, iter-
ative significant occlusion (ISO) [Wicker and Kwiatkowska,
20191, critical subset based point dropping (CS-D) [Zheng et
al., 20191, saliency map based point dropping (SM-D) [Zheng
et al., 2019], minimal attack examples (MAE) [Kim et al.,
2021] and adaptive local adversarial (Al-Adv) [Zheng et al.,
2023].

As depicted in Table 1, in the absence of any defense, our
RDPA exhibits the highest attack success rate at 93.52%,
which is 1.17% higher than the second place method Al-
Adv and 4.11% higher than the third place method MAE.
Even when facing the defenses SRS and SOR, the attack suc-
cess rates of RDPA still remain high at 89.58% and 81.39%.
However, in such a condition, the attack success rates of Al-
Adv and MAE drop significantly from 92.35% and 89.41% to
50.32%, 16.73% and 17.60%, 13.77%. Furthermore, RDPA
takes an average of only 0.03 seconds to generate a single
adversarial sample, allowing it to attack 2000 point cloud
frames per second, which fully meets the flexibility require-
ments of real-time dynamic scenarios. At the same time, the
minimal cost of 36 perturbation points provides significant
guidance for practical attacks in the physical domain. While
RDPA slightly lags behind ISO and MAE in Hausdorff dis-
tance and Chamfer distance, this discrepancy arises from their
iterative querying of the classification network for enhanced
results, which is a challenging process to the real-time attack
because it is very time consuming.

Additionally, we validate RDPA on ScanObjectNN [Uy et
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Methods ASR(%)T Distance(meter)| Time(second)| | Points|
No Defense SRS SOR Chamfer Hausdorff

RO 25.79/29.54 18.09/19.95 16.68/19.26 | 0.0019/0.0020 0.0158/0.0182 3.62/3.64 488/482

1SO 38.35/41.33 24.57/29.61 11.06/14.04 | 0.0006/0.0007 0.0122/0.0145 10.79/15.49 | 201/242

CS-D 38.50/40.43 50.90/53.18 39.23/41.27 | 0.0063/0.0055 0.1575/0.1766 0.34/0.29 200/200

SM-D 62.87/68.56 65.72/69.39 60.39/67.94 | 0.0043/0.0066 0.1196/0.1700 0.09/0.08 200/200
MAE 89.41/91.83 17.60/19.62 13.77/16.33 | 0.0002/0.0002 0.0201/0.0198 15.21/18.56 38/36
Al-Adv | 92.35/94.83 50.32/55.48 16.73/20.22 | 0.0003/0.0002 0.0482/0.0211 33.39/32.75 41/37
RDPA | 93.52/95.15 89.58/90.80 81.39/85.41 | 0.0019/0.0018 0.0953/0.0724 0.03/0.03 36/36

Table 1: Attack performance to PointNet on two datasets (ModelNet40 / ScanObjectNN).

al., 2019] setting as in [Kim er al., 2021], which is a high
quality real-world dataset and include 15000 objects. As il-
lustrated in Table 1, the comparison results on ScanObjectNN
are similar to those on ModelNet40, which demonstrates the
robust scalability of RDPA across diverse datasets. Compared
with the hand-crafted dataset, the scanned dataset in the real
world is more likely to achieve a high attack success rate, be-
cause the data itself has certain irregularity.

DPS L, E, | NoDefense SRS SOR
v v 79.92 76.89 63.88
v v 95.41 87.45 57.44

v Vv 90.32 83.33 7693
N N V 93.52 89.58 81.39

Table 2: The impact of three parts: check marks indicate presence;
blanks indicate absence. Right columns of the vertical line show
attack success rates (%) under three defense states.

4.3 Ablation Study

The Effect of Each Part

In order to evaluate the proposed DPS, L, and Ep, we
carry out a study on ModelNet4( against PointNet. As can
be seen from Table 2, when the encoder Ep is omitted, the
attack success rate decreases drastically by more than 10%.
Removing the loss term L,,, slightly improves the attack
success rate without defense, but reduces it by 23.95% against
SOR defense. To validate DPS, we replace it with the point
selection strategy based on saliency map [Zheng et al., 20191,
resulting in decreases of 3.20%, 5.25%, and 4.46% under no
defense, SRS defense, and SOR defense. This is because DPS
considers both point salience and appropriate concentration,
while L,,,, avoids the occurrence of individual outliers, and
E'p captures the global feature of the original point cloud.

The Size of KNN for DPS

The k value of knn employed in DPS plays a crucial role
in the distribution of salient points. As shown in table 3,
when k is set to a small value, such as 5, salient points tend
to disperse along the contour surface, whose attack success
rate is similar to that of the point selection strategy based on
saliency map [Zheng et al., 2019]. However, as k increases,
salient points begin to cluster. Imagine that when k£ becomes

infinitely large, i.e., K = IN (where N is the total point num-
ber of a point cloud), salient points will cluster within a local
region because each point uses the entire point cloud in cal-
culating, where RDPA had been degraded to Al-Adv method.
Therefore, to achieve both distributed characteristics and con-
centrated attack advantages for salient points, clustering them
into several tiny regions is most appropriate. From the exper-
imental data in table 3, setting k to 30 results the best distri-
bution and attack success rate.

The Analysis of Attacked Point Number

As shown in Figure 4, the experiment reveals that as the num-
ber of attack points increases, the attack success rate (ASR)
rises, the Hausdorff distance decreases, and the Chamfer dis-
tance slightly increases. However, when the number of attack
points exceeds 36, the success rate begins to decline. Beyond
128 points, although the success rate improves slightly, the
excessive number of attack points becomes impractical and
unnecessary. Consequently, selecting 36 points as the optimal
attack number ensures a high success rate while maintaining
low interference costs and imperceptibility.

4.4 Robustness Analysis

Transferability

To validate the transferability of adversarial samples, we per-
form black-box attacks on four other classification networks,
namely PointNet++ [Qi et al., 2017b], DGCNN [Wang et al.,
2019], CurveNet [Xiang et al., 2021], and PCT [Guo et al.,
2021]. At the same time, we compare RDPA with Al-Adv.
PointNet is the pioneer designed to address the disorder na-
ture and rigid transformation invariance of point cloud, while
PointNet++ builds on PointNet as a foundational layer and
incorporates sampling-grouping layers. To further strengthen
the geometric relationship, DGCNN performs edge convo-
lution on the neighborhood graph and CurveNet groups the
point cloud into multiple curves. PCT applies attention mech-
anisms to point cloud based on Transformer.

As demonstrated in table 4, when no defense, the black-
box attack success rates of RDPA consistently exceed 15%,
while that of Al-Adv is below 3%. This is because DPS is
based on analyzing the structure of the point cloud, rather
than relying on the specific classification network being at-
tacked. And, during the point perturbation phase, Al-Adv
employs an iterative query method, which means the gener-
ated adversarial samples lack generality. In the face of SRS,
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K 5 10 15 20 25 30 35 1024
Visualization & & & & & & & &
No Defense 90.73 92.27 92.31 93.10 93.43 93.52 92.18 92.16
SRS 85.05 86.71 87.27 87.41 88.94 89.58 86.90 86.37
SOR 77.58 78.29 79.98 80.60 80.87 81.39 76.81 78.34

Table 3: Effect of k£ in DPS. The top row indicates the value of &, the second row shows the visual depiction of salient points (red), and the
subsequent rows display the attack success rates (%) under no defense, SRS defense, and SOR defense.

the black-box attack success rates surpasses that of no de-
fense because the removal of points disrupts the structure of
the point cloud, which can be exploited by adversarial sam-
ples. Therefore, SRS is not suitable as the black-box defense
mechanism. In addition, despite lower black-box attack suc-
cess rates with SOR defense compared to no defense, RDPA
still outperforme Al-Adv.

Chair

Airplane Guitar

£

RO

ISO

CS-D

SM-D

MAE

Al-Adv *

RDPA ¢

Figure 5: Adversarial samples generated by various attack methods
against PointNet on ModelNet40.

Visual Quality

Figure 5 illustrates typical instances of adversarial samples
for three classes of point clouds: airplane, chair, and gui-
tar. Since the attack methods RO, ISO, CS-D, and SM-D
are based on dropping mechanisms, their adversarial sam-
ples appear relatively sparse. Specifically, methods RO and

ISO tend to drop points from the entire point cloud, whereas
methods CS-D and SM-D are more inclined to drop points
from specific local regions, such as the head of an airplane or
the legs of a table. MAE is inclined to attack contour points
and generates a large number of individual outliers. Al-Adv
targets individual salient region, causing severe disruption to
the point cloud structure and similarly generating outliers. In
contrast, RDPA chooses to attack multiple tiny regions, en-
hancing the imperceptibility of adversarial samples. Further-
more, the perturbed points form meaningful structures rather
than outliers, which makes RDPA equally penetrating against
mainstream defenses. These analyses highlight the impacts
of diverse methods, demonstrating the trade-off of RDPA be-
tween structural disruption and imperceptibility.

Classifier | No Defense SRS SOR
PointNet | 93.52/92.35 89.58/50.32 81.39/16.73
PointNet++ | 23.68/2.53 47.71/21.06 21.06/2.58
DGCNN 15.58/1.26 54.94/28.77 12.20/2.77
CurveNet | 19.65/1.55 46.07/21.23 20.79/1.65
PCT 27.05/1.79 52.04/122 16.54/2.37

Table 4: Comparison of black-box attacks on different networks be-
tween RDPA and Al-Adv (RDPA/Al-Adv) using adversarial sam-
ples generated on PointNet with a white-box attack on ModelNet40.

5 Conclusion

In conclusion, this paper first proposes the partial point attack
strategy should pay attention to not only the selection and dis-
turbance of points but also the penetration of defenses, which
identifies two fundamental principles: first, the selection of
attacked points should consider both the visual salience and
the proper position concentration; second, the perturbation of
target points should form meaningful structures rather than
outliers. Further, we introduce the novel RDPA framework
leveraging the DPS strategy and the Disruptor design based
on Ly, ,p, which achieves a 93.52% attack success rate by per-
turbing only 3.5% of points. Even when faced with the main-
stream defenses SRS and SOR, the attack success rates still
remain at 89.58% and 81.39%. In addition, RDPA requires an
average of only 0.03 seconds to generate a single adversarial
sample, fully meeting the requirements for real-time attacks.
In the future, we plan to extend RDPA to real-world appli-
cations, particularly focusing on enhancing the robustness of
large-scale models.
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