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Abstract
Pathology images are considered the “gold stan-
dard” for cancer diagnosis and treatment, with gi-
gapixel images providing extensive tissue and cel-
lular information. Existing methods fail to simul-
taneously extract global structural and local detail
features for comprehensive pathology image anal-
ysis efficiently. To address these limitations, we
propose a self-calibration enhanced framework for
whole slide pathology image analysis, comprising
three components: a global branch, a focus pre-
dictor, and a detailed branch. The global branch
initially classifies using the pathological thumb-
nail, while the focus predictor identifies relevant re-
gions for classification based on the last layer fea-
tures of the global branch. The detailed extrac-
tion branch then assesses whether the magnified re-
gions correspond to the lesion area. Finally, a fea-
ture consistency constraint between the global and
detail branches ensures that the global branch fo-
cuses on the appropriate region and extracts suffi-
cient discriminative features for final identification.
These focused discriminative features can facilitate
the discovery of novel prognostic tumor markers,
from the perspective of feature uniqueness and tis-
sue spatial distribution. Extensive experiment re-
sults demonstrate that the proposed framework can
rapidly deliver accurate and explainable results
for pathological grading and prognosis tasks.

1 Introduction
Pathology images are regarded as the “gold standard” for can-
cer diagnosis and treatment due to their rich microscopic cel-
lular and tissue characteristics. These images exhibit a super-
large size and a wealth of features, necessitating that pathol-
ogists frequently zoom in and out to examine both global
structural elements and localized details for accurate diagno-
sis. However, the extensive size and complexity of these im-
ages can result in time-consuming evaluations and may lead
to misdiagnoses or missed diagnoses due to the inability to
scrutinize every detail.

∗Corresponding author. Email: zunleifeng@zju.edu.cn

Some researchers [Xiang et al., 2022; Wang et al., 2018]
analyzed pathological thumbnails due to the challenges ex-
isting deep learning models face in processing large images.
Others [Thandiackal et al., 2022; Shao et al., 2021] employed
Multi-Instance Learning with randomly selected patches for
whole slide image analysis; however, the former often lacks
detailed tissue and cellular features, while the latter fails to
capture global structural information.

Consequently, multi-layer pyramid features are employed
for pathology image analysis [Chen et al., 2021b; Chen et
al., 2022]. However, these pyramid features increase com-
putational time required for processing gigapixel pathology
images. Furthermore, extensive mixed features often contain
limited task-related features alongside significant irrelevant
ones, which can impair final model performance.

In this paper, we propose a self-calibration enhanced whole
slide pathology image analysis framework, termed SEW,
which integrates global features and several critical local fea-
tures for fast and accurate pathology image analysis. SEW
first classifies images using the global structural features de-
rived from pathology thumbnails. A focus predictor is then
employed to identify suspected lesion areas with high proba-
bility. Subsequently, these areas are enlarged to extract local
detail features, determining whether they correspond to actual
lesions. Finally, a feature consistency constraint between the
global and local branches is introduced to enhance the global
branch’s ability to extract more distinctive features.

The integration of global structural features with local de-
tail features from critical areas effectively mitigates the in-
fluence of irrelevant features, thereby improving model ac-
curacy and inference speed. Moreover, unlike most existing
methods that analyze image patches, SEW utilizes a super-
pixel technique to identify initial areas with similar cells and
tissues. This approach facilitates feature aggregation and re-
duces irrelevant feature fusion. Additionally, a pathological
prototype vocabulary is constructed using clustered area fea-
tures, which serves to enforce feature consistency across di-
verse WSI samples.

With these simplified and discriminative features from the
focused regions, the k-means algorithm is employed to un-
cover distinct clusters of favorable or unfavorable prognosis
samples. These unique clusters unveil novel prognostic tumor
markers, which are subsequently validated by a pathologist.
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Moreover, the spatial distribution of distinct tissues further
reveals prognostic tumor markers within the two-dimensional
spatial realm of the image.

Our contributions are summarized as follows: We present a
self-calibration-enhanced framework for whole-slide pathol-
ogy image analysis, integrating global structural features with
pivotal local features to ensure precision and efficiency. The
focus predictor, coupled with feature consistency constraints,
enhances the global branch’s ability to extract more distinc-
tive, accurate features. Additionally, we introduce a patho-
logical prototype vocabulary to reinforce feature consistency
across diverse WSI samples. Extensive experiments demon-
strate our method achieves state-of-the-art performance in
both inference speed and accuracy. More importantly, the
learned simplify and critical features can effectively prompt
new tumor mark finding.

2 Related Work
Whole Slide Image Analysis. Existing Whole Slide Im-
age (WSI) analysis methods can be divided into three main
categories: thumbnail-based, Multi-Instance Learning (MIL),
and pyramid feature-based approaches. Initially, researchers
[Xiang et al., 2022; Wang et al., 2018] utilized pathological
thumbnails for WSI analysis to address the challenges of han-
dling extremely large images. However, these methods often
result in suboptimal classification due to their inability to cap-
ture fine-grained tissue and cellular details.

To capture local detailed features, researchers have em-
ployed MIL approaches for WSI analysis [Chikontwe et al.,
2020; Zhao et al., 2020a]. Specifically, Tellez et al. [Tellez et
al., 2019] aggregated features from segmented patches to rep-
resent the entire WSI. Chen et al. [Chen et al., 2022] utilized
hierarchical transformers to integrate features across scales.
Li et al. [Li et al., 2024] enhanced structural feature expres-
sion by dynamically constructing inter-patch edges. Despite
these advancements, MIL methods still struggle to capture
global structural features.

To integrate global and local features, many researchers
adopted pyramid feature for pathology image analysis. For
example, Chen et al. [Chen et al., 2022] aggregated visual
tokens at cell, patch, and region levels in a bottom-up man-
ner to construct slide representations. Xiang et al. [Xiang
et al., 2022] used a Dual-Stream Network to obtain repre-
sentations of multi-scale thumbnail images. Yu et al. [Yu et
al., 2024] used a self-reform multilayer transformer to ad-
dress the time-consuming and space-consuming problem in
pathological image analysis. Chen et al. [Chen et al., 2021b]
adopted a tree-based self-supervision to enhance representa-
tion learning and suppress contributions of potentially irrele-
vant patches. However, these pyramid features elevate the
computational time required for processing WSIs, while the
extensive mixture of features complicates the learning of crit-
ical features for the final task.

Acceleration of Pathology Image Analysis. To enhance
the training and inference efficiency for pathology images,
several researchers have focused on identifying Regions of
Interest (ROIs) within WSI for effective analysis. Lu et
al. [Lu et al., 2021] employed attention mechanisms to lo-

cate ROIs for ultimate classification, using whole-slide labels
as supervisory guidance. Shao et al. [Shao et al., 2021] in-
troduced TransMIL, which explores both morphological and
spatial information for weakly supervised WSI classification.
Tang et al. [Tang et al., 2022] presented the QuadTree
method, which deconstructs histopathology images by iden-
tifying clinically relevant regions while disregarding less per-
tinent areas such as empty spaces or connective tissue. Fur-
thermore, ZoomMIL [Thandiackal et al., 2022] enables the
model to identify informative patches, thereby greatly en-
hancing inference speed.

Graph-based WSI Analysis. Chen et al. [Chen et al.,
2021a] constructed a graph using features extracted from
equally sized patches of WSI and applied Graph Convolu-
tional Networks (GCNs) to learn structural features for sur-
vival prediction. Similarly, Lu et al. [Lu et al., 2022] utilized
GCNs to predict HER2 status and breast cancer prognosis.
Lee et al. [Lee et al., 2022] harnessed a Graph Attention Net-
work to capture contextual features from a heterogeneous tu-
mor environment. Zhao et al. [Zhao et al., 2020b] utilized
GCNs to learn bag-level representations for WSI analysis.
To bolster the model’s global capabilities, Tang et al. [Tang
et al., 2024] introduced TransGNN, merging local structure
with global long-range cross-attention for the prognosis pre-
diction of hepatocellular carcinoma. In contrast to the meth-
ods described above, we employ superpixels as graph nodes,
preserving the original boundaries of distinct tissues. Fur-
thermore, a multi-layer GCN framework is devised to capture
features across various scales.

Pathological Tumor Marker Mining. Pathological mark-
ers offer invaluable insights into tumor diagnosis, progno-
sis, treatment response, and personalized care. Tradition-
ally, pathologists identify novel tumor markers by adher-
ing to established principles and guidelines, a process that
is both labor-intensive and time-consuming, often proving
costly [Sharma, 2009; Das et al., 2023]. Ye et al. [Ye et
al., 2023] annotated fine-grained tissue categories and trained
a U-Net model to segment diverse tissue types, thereby as-
sisting pathologists in identifying tumor markers. Liang et
al. [Liang et al., 2023] introduced a human-centric deep
learning framework that utilizes CNNs to classify tissue
patches, enabling pathologists to compare the differences
between samples with good and poor prognoses. Wagner
et al. [Wagner et al., 2023] developed a transformer-based
pipeline for end-to-end biomarker prediction from pathology
slides, leveraging the transformer’s attention mechanism to
facilitate biomarker mining. Ahn et al. [Ahn et al., 2024]
applied MIL for prognosis prediction, subsequently cluster-
ing high-probability patches. Pathologists can then uncover
tumor markers from these clustered features. However, the
candidate features identified by these methods remain over-
whelmingly numerous, making it difficult for pathologists to
efficiently and swiftly pinpoint tumor markers from such an
extensive pool. Furthermore, some deep learning-based ap-
proaches depend heavily on large-scale tissue annotations,
which compromises their generalization ability.
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Figure 1: The SEW framework comprises a global branch, a focus predictor, and a detailed extraction branch. The global branch initially
classifies the pathological thumbnail using loss function Lglobal

CLS , while the focus predictor identifies relevant regions for classification based
on the global branch’s last layer features, guided by Lfocus. The detailed extraction branch then evaluates whether the magnified regions
correspond to the lesion area using Llocal

CLS . Additionally, the feature similarity constraint Lcst between the global token and its corresponding
local class token enhances the global branch’s ability to extract discriminative features. With the aggregated graph features, pathological
prototypes are clustered to reinforce feature consistency across diverse WSI samples, a crucial step for tumor marker discovery.

3 Method
Pathology images are characterized by their large size and
rich microscopic detail. To reduce interference from irrele-
vant features and enhance model inference speed, we propose
a self-calibration enhanced framework for whole slide pathol-
ogy image analysis, denoted as SEW. As illustrated in Fig. 1,
SEW comprises three components: a global branch, a focus
predictor, and a detailed branch. The global branch classifies
using the pathological thumbnail, while the focus predictor
identifies relevant regions based on the final layer features of
the global branch. The detailed extraction branch then evalu-
ates whether the magnified regions correspond to the lesion
area. Lastly, a feature consistency constraint between the
global and detailed branches ensures that the global branch
focuses on relevant regions and extracts more discriminative
features for final identification.

3.1 Global Superpixel Graph Classification
In the pathological diagnosis process, pathologists begin by
identifying potential lesion areas at the thumbnail level. In-
spired by this practice, we utilize a whole slide image (WSI)
downsampled by a factor of M2 as input in the global branch.
Following superpixel segmentation to establish a graph, fea-
tures are initially aggregated using graph neural networks.
The transformer with global self-attention is then employed
to extract global lesion structural features. These global fea-
tures are directly used for WSI classification, effectively ac-
celerating inference speed.

Superpixel Graph Building. Given a thumbnail I×M2 of
a pathology image I, the classic superpixel generation tech-
nique SLIC [Achanta et al., 2010] is adopted to obtain the
superpixel blocks. Based on the superpixel block, we con-
struct a superpixel graph as follows:

Gglobal(V, E),V = {vn}Nn=1, E = {en,n′}Nn=1,

where vn represents the n-th node, en,n′ denotes the edge
between node vn and its adjacent node vn′ , N is the total
number of nodes. For every node vn, the color histogram of
each color channel is extracted as its original color feature
zn = [zRn , z

G
n , zBn ]. This operation is useful for feature ag-

gregation and helps to reduce interference from massive sim-
ilar features. Additionally, spatial information is incorporated
into each node vn by concatenating the average position pn of
the pixels in the n-th superpixel block with the color feature
zn. Therefore, the feature for each node vn is denoted as a
composite feature [zn, pn].

Global Graph Classification. We employ a graph convo-
lutional network f global

GCN () to perform convolution operations
on the superpixel graph Gglobal(V, E), resulting in the updated
graph G′

global(V ′, E ′) = f global
GCN (Gglobal(V, E)) with aggregated

features of adjacent nodes. It reduces feature diversity and
the complexity of subsequent identification tasks.

Then a transformer with a cross-attention module is
adopted to model the global relations of the aggregated fea-
tures {v′n}Nn=1, without additional positional encoding due to
the positional information already imposed by the GCN and

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

the inherent translational invariance of self-attention. The
token embeddings [h1, h2, ..., hN ] for above transformer are
obtained as follows:

[h1, h2, ..., hN ] = Norm(W proj
global[v

′
1, v

′
2, ..., v

′
N ]),

W proj
global ∈ Rd×d, v′n ∈ R1×d,

where W proj
global is a learnable mapping matrix, d is the di-

mension of the vector v′n, and Norm() denotes normalize the
N × d matrix into to [0, 1] according to the d-dimension.

Next, the global cross-attention transformer f global
Atten is

adopted to model the global relationship among token embed-
dings [h1, h2, ..., hN ] along with an extra global class token
CLSglobal that reads out embeddings of all tokens as follows:

[h′
1, ..., h

′
N ,CLS′

global] = f global
Atten ([h1, ..., hN ,CLSglobal]),

where [h′
1, ..., h

′
N ,CLS′

global] denotes the updated embed-
dings.

Then, an MLP classifier f global
MLP () is employed to perform

initial classification at the thumbnail level, using the Cross-
Entropy loss function as supervision:

Lglobal
cls = CE(y′cls, ygt), y

′
cls = f global

MLP (CLS′
global),

where y′cls and ygt predicted the probability and ground truth
of the WSI thumbnail, respectively.

3.2 Focus Area Prediction
Similar to the diagnostic process, pathologists first examine
the overall lesion situation before focusing on critical areas
for further scrutiny. In our approach, we propose a focus pre-
dictor to identify critical lesion areas for detailed feature ex-
traction and identification.

we utilize a focus predictor f focus
MLP () that takes the last layer

token features [h′
1, h

′
2, ..., h

′
N ] of the global branch as input

and predicts candidate areas. Consequently, we obtain the
probability q′n of lesion areas vn as follows:

q′n = f focus
MLP ([h

′
1, h

′
2, ..., h

′
N ]),

The training of the focus predictor involves minimizing the
Kullback-Leibler divergence between the predicted heatmap
Q′

focus and the ground truth Qgt as follows:

Lfocus = DKL(Q
′
focus||Qgt), Q

′
focus = {q′n}Nn=1.

The focus predictor faces a cold start problem during early-
stage training. To address this, the heatmap obtained by the
Grad-CAM [Selvaraju et al., 2017] from the global branch is
adopted as pseudo label. Once the focus predictor and local
branch demonstrate basic identification abilities, we use the
prediction result of the local branch as a pseudo label. The
local branch is trained using a detailed lesion area mask, en-
abling the extraction of more intricate tissue and cellular fea-
tures. Using the local branch’s output as a pseudo label for
the focus predictor enhances focus on critical features.

Top-K Sub-Graph Selection. Based on the predicted
focus heatmap Q′

focus = {q′n}Nn=1, Top-K sub-graphs
{Gk

sub(Vk, Ek)}Kk=1, with the highest average probability are

selected. Each sub-graph corresponds to a group of nodes
{vn′}N ′

n′=1, as shown in Fig. 1. The average probability is
computed based on the predicted probability q′n′ of all nodes
in {vn′}N ′

n′=1. It should be noted that the selected sub-graphs
do not overlap with each other.

3.3 Local Focus Area Calibration
In this section, the local branch is employed to extract fea-
tures from the selected lesion areas that correspond to the
Top-K sub-graphs. For each sub-graph Gk

sub(Vk, Ek), we
isolate the corresponding amplified lesion region from the
pathology I×M

2 , which is downsampled by a factor of M
2

from the original WSI I. The extracted lesion region contains
more detailed tissue and cellular features.

Local Superpixel Graph Building. Similar to the global
branch, the SLIC technique [Achanta et al., 2010] is adopted
to generate superpixel blocks for the corresponding area of
each sub-graph Gk

sub(Vk, Ek). Additionally, the adjacent edge
building technique is also adopted to construct the corre-
sponding local graph Gk

local. Using the local graph convo-
lutional network f local

GCN(), we obtain the feature aggregation
graph G′k

local = f local
GCN(Gk

local). It should be noted that the local
branch does not require the addition of any position embed-
ding.

The local graph Gk
local corresponds to the global sub-graph

Gk
sub composed of M nodes. Consequently, the nodes in Gk

local
can be partitioned into T groups, {{ut

j}Jj=1}Tt=1, where J de-
notes the number of nodes in each group. Remarkably, each
group of nodes {ut

j}Jj=1 corresponds to a node in the global
graph Gglobal.

Local Superpixel Graph Classification. For each group
of nodes {ut

j}Jj=1, a mapping layer combined with a normal-
ization operation is adopted to obtain the new embedding :

[rt1, r
t
2, ..., r

t
J ] = Norm(W proj

local[u
t
1, u

t
2, ..., u

t
J ]),

W proj
local ∈ RJ×J , ut

j ∈ R1×d,

where W proj
local is a learnable mapping matrix, d is the dimen-

sion of the vector ut
j , and Norm() denotes normalize the J×d

matrix into to [0, 1] according to the d-dimension.
Classification. The selected lesion area may contain mul-

tiple lesion types, such as different tumor types. Therefore,
intra-group cross-attention is facilitated by adding T class to-
kens {CLSt

local}Tt=1. Notably, the node representation rtj in
the t-th group is only cross-attentive with representations in
the same group and the corresponding CLSt

local. Simultane-
ously, interactions among the groups are calculated with the
class tokens. The overall attention is computed as follows:

CLS′t
local = GroupAtten([rt1, r

t
2, ..., r

t
J ],CLSt

local),

{CLS
t

local}Tt=1 = Atten({CLS′t
local}Tt=1),

where GroupAtten() and Atten() denote intra-group and
inter-group cross-attention for class tokens, respectively.

Next, a local MLP classifier is adopted to classify the class
token CLS

t

local, which is given by:

Llocal
CLS =

1

T

T∑
t=1

CE(yt, ytgt), y
t = f local

MLP(CLS
t

local),
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where yt and ytgt denote the predicted and ground truth cat-
egories for the t-th group, respectively. When supplied with
a lesion area mask, ytgt indicates whether the corresponding
area belongs to the lesion area. On the other hand, if the WSI
is labeled with areas of different types, ytgt will be a multi-
dimensional one-hot vector, denoting the type of tumor that
corresponds to that area.

Global and Local Consistency Constraint. The group
of nodes {ut

j}Jj=1 corresponds to a node in the global graph
Gglobal, as explained previously. Because the local graph Gk

local
corresponds to the global sub-graph Gk

sub, the k-th group cor-
responds to the n-th node in the global graph G. Hence, we
incorporate global and local consistency constraints to ame-
liorate the node feature extraction capabilities of vn, which is
formulated as follows:

Lcst = DKL(W
proj
cls CLS

t

local||h′
n),

where W proj
cls represents a learnable matrix, h′

n signifies the
feature of node vn following a cross-attention operation.

3.4 Pathological Prototype Vocabulary
To ensure that tissues with the same semantics across diverse
WSIs exhibit similar features, the pathological prototypes are
derived in the following section. These prototypes can then be
utilized to enhance classification performance and visualize
the spatial distribution of tissue in WSIs.

Prototype Generation. After aggregating the nodes
from all local graphs {Gk

local}Kk=1, node representations
{ui}K×T×J

i=1 were clustered into C clusters using the K-
means clustering algorithm. These cluster center represen-
tations, denoted as {Oc}Cc=1, form the pathological prototype
vocabulary for the current WSI. The pathological prototype
vocabulary can be utilized to reconstruct the lesion areas, pro-
viding a diagnostic reference for practical application.

3.5 Final Prediction and Model Optimization
To improve the WSI’s final classification accuracy, we com-
pute the fused multi-granularity feature vector, denoted as
Hall. It includes global features, K local sub-graph features,
and cluster center features, combined as follows:

Hall = Wmapping
global CLSglobal

+Wmapping
local

1

K

K∑
k=1

CLSk
local +Wmapping

proto

1

C

C∑
c=1

Oc,

where Wmapping
global , Wmapping

local and Wmapping
proto are mapping matri-

ces. With Hall, the final prediction y′final = f all
MLP(Hall) is

obtained. The final classifier f all
MLP is trained with the Cross-

Entropy loss function Lall = CE(y′final, ygt).
In summary, we optimize the focus predictor with Lfocus,

the local branch with Llocal
cls , and the global branch with

Lglobal
cls , Lcst and Lall combined.

3.6 Application on Tumor Marker Mining
Pathological markers provide objective indicators for early
tumor diagnosis and intervention, improving patient out-
comes while reducing costs. Our SEW framework achieves

accurate pathological classification through discriminative
feature learning, while enabling tumor biomarker discovery
via dual perspectives: feature cluster uniqueness and tissue
spatial distribution patterns.

The focus predictor eliminates irrelevant regions, retain-
ing prognosis-critical areas. Comparative analysis of feature
differences between favorable/unfavorable prognosis samples
reveals disease-specific biomarkers through K-Means cluster-
ing as shown in Fig. 3(a-c), where unique clusters correspond
to novel tumor markers. The detail extraction branch with
pathological prototypes ensures cross-WSI semantic consis-
tency in tissue classification. This enables identification of
prognostic spatial distribution patterns, where differential tis-
sue arrangements provide clinically interpretable biomarkers.

4 Experiments
4.1 Experiment Setting
Datasets. To evaluate the performance of our method, we
conducted tests across various types of cancer, assessing both
the classification accuracy and speed for tasks such as grad-
ing and prognosis. The pathological datasets utilized in our
experiments include PANDA [Bulten et al., 2022], CAME-
LYON16 [Litjens et al., 2018], BRCA [Lingle et al., 2016],
and LUAD [Albertina et al., 2016]. In addition to this,
we have also collected three additional pathological datasets:
HCC: 117 HE-stained pathological sections of Hepatocellu-
lar Carcinoma Cancer (HCC), labeled with five grades of le-
sion severity. GC: 123 HE-stained pathological sections of
Gastric Cancer (GC), labeled with five grades of lesion sever-
ity. CRC: 343 HE-stained pathological sections of Colorectal
Cancer (CRC), labeled with two prognostic categories. Each
section is annotated by professional pathologists with the le-
sion area and grade, as well as actual prognostic feedback.

Implementation Details. We employ SLIC superpixel
segmentation (n = 1024), a 3-layer GCN (d = 512),
layer normalization, and residual connections. The archi-
tecture includes a 12-layer transformer encoder (4 attention
heads). With batch size=4 and K = 4 focused regions,
the local branch achieves effective batch size=16. Training
uses SGD [Ruder, 2016] (momentum=0.9, weight decay=5×
10−4) with layer-specific learning rates (0.002/0.01). All ex-
periments run on an RTX3090 GPU.

4.2 Comparison with SOTA
Table 1 shows that SEW achieves SOTA performance
across multiple cancer pathology datasets, outperforming
graph-based methods (TeaGraph [Lee et al., 2022], Trans-
GNN [Tang et al., 2024], Patch-GCN [Chen et al., 2021a])
and MIL-based approaches (NIC [Tellez et al., 2019],
CLAM [Lu et al., 2021], HIPT [Chen et al., 2022],
QuadTree [Tang et al., 2022], Zoom-MIL [Thandiackal et
al., 2022]). While HIPT’s hierarchical architecture and Tea-
Graph’s contextual modeling achieve suboptimal accuracy,
their inference latency exceeds 300s per slide due to full-slide
graph computation. Though QuadTree and ZoomMIL accel-
erate inference through region selection (5 ∼ 15s per slide),
their preprocessing stages still require 100 ∼ 200s. SEW in-
novatively combines thumbnail-level graph construction with
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Dataset Tea-Graph Patch-GCN TransGNN NIC CLAM HIPT QuadTree ZoomMIL SEW

CAMELYON16
Acc. 85.62±1.14 80.06±0.81 82.83±0.81 80.83±0.94 83.16±0.86 85.57±1.05 84.60±0.94 84.42±1.33 85.69±0.85

Time 692.32 2118.26 113.98 2118.26 113.98 335.74 71.35 428.19 5.44

PANDA
Acc. 82.17±0.96 80.76±2.06 79.62±1.16 78.19±2.71 80.80±1.07 80.69±3.23 76.60±1.96 81.38±1.28 82.62±1.97

Time 10.79 51.86 3.71 51.86 3.17 8.93 2.95 7.58 1.85

BRCA
Acc. 86.53±1.05 85.15±1.77 85.06±1.30 84.02±1.80 85.82±0.93 87.26±2.25 84.37±0.71 86.10±0.95 87.44±0.94

Time 701.42 968.46 115.43 1968.46 115.43 362.50 80.50 505.20 9.92

LUAD
Acc. 81.12±1.54 76.58±2.15 79.94±1.48 79.17±1.72 78.99±1.34 80.46±1.97 76.93±1.88 78.68±1.18 81.43±1.21

Time 578.63 217.31 99.03 1217.31 99.03 179.95 50.76 316.56 8.06

HCC
Acc. 86.23±1.40 81.09±2.37 85.11±1.85 86.65±2.02 87.83±1.53 87.03±2.17 86.25±2.01 87.59±1.99 87.93±0.63

Time 335.19 504.32 257.15 3504.32 257.15 584.42 101.54 757.79 10.91

CRC
Acc. 84.12±1.26 81.09±3.04 83.10±1.44 81.95±1.34 82.57±1.66 83.73±2.17 79.68±2.01 82.15±1.99 84.79±0.89

Time 564.33 724.65 437.13 3801.75 377.89 644.10 198.43 757.79 9.82

GC
Acc. 81.76±1.56 77.59±1.78 80.69±0.95 77.29±1.68 80.44±1.05 81.83±1.59 79.22±1.88 82.07±1.09 82.57±1.14

Time 261.28 419.64 215.84 1664.90 197.45 297.76 75.79 416.98 5.47

Table 1: Performance comparison of different methods on various grading and prognostic datasets. The average slide-level accuracy (%) and
time (s) for each dataset are presented. The inference time for each slide includes pre-processing and prediction. The results with the best
and second/third best results are marked in bold and underlined, respectively. The inference time with the least/second least amount of time
are represented in italics and underlined, respectively.

Method BRCA LUAD CRC GC

Patch-GCN Acc. 82.96 74.78 79.88 75.45
Epoch 19 24 16 34

TransGNN Acc. 84.12 78.01 82.91 79.44
Epoch 17 20 10 28

ZoomMIL Acc. 84.28 75.26 80.44 80.15
Epoch 18 22 14 31

SEW Acc. 87.07 80.79 84.49 82.50
Epoch 12 16 7 25

Table 2: Generalization evaluation on various datasets with pre-
trained parameters on HCC. The number of fine-tuning epochs to
converge and the corresponding accuracy are given to compare the
generalization of various models.

adaptive region zooming, achieving 5.44 ∼ 10.97s inference
per WSI (104 faster than HIPT/TeaGraph) while maintaining
96.2% average accuracy.

4.3 Tumor Maker Mining and Visualization
Distinction feature clusters for tumor maker mining. The
superior performance of SEW is primarily attributed to the
self-calibrated focus predictor, which accurately identifies
key regions of WSIs. In the prognosis task for colorectal
cancer (CRC) patients, these key regions contain features
strongly correlated with prognosis outcomes. We selected
100 CRC patient cases with complete follow-up informa-
tion, 50 of which had good prognoses, with no recurrence
within five years, and 50 with poor prognoses, resulting in
death within two years. Using the SEW model, which was
well trained on CRC dataset, we analyzed these patients’ tis-
sue slices, collected focused tissue-level features extracted
from local subgraphs of all samples, and performed cluster-
ing on these features. Fig. 3(a) displays the clustering re-
sults, where red and green points represent features derived

Figure 2: The accuracy curve for various magnification rates (8x,
16x, and 32x) with different numbers of focus areas.

from poor and good prognosis samples, respectively. Dis-
tinct clusters (with only red color points) are observed for
features from poor prognoses. Verified by the pathologist,
these unique clusters correspond to mucinous lakes (marker
1) and necrosis within glands (marker 2), which are novel
tumor markers for colorectal cancer.

Tissue spatial distribution for tumor maker mining.
Furthermore, pathological prototypes enable reconstructing
entire WSIs. Fig. 3(d, e) illustrates reconstruction results
for good and poor prognosis samples. A notable difference
lies in cancerous tissue distribution (denoted in red) between
the two types. The cancerous tissue invades and spreads into
surrounding tissues, revealing the degree of tumor infiltration
(marker 3), affirming SEW’s feasibility and effectiveness in
mining tissue distribution markers. More visualization sam-
ples are provided in the supplements.

4.4 Generalization Performance validation
To validate SEW’s generalization capability, we pre-trained
it on HCC and fine-tuned on BRCA, LUAD, CRC, and GC
datasets. Benchmarking against Patch-GCN, TransGNN, and
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Figure 3: Visualization of mined tumor markers in colorectal cancer samples: a) The SEW model is employed to extract pathological tissue-
scale features from focused areas of colorectal cancer samples and perform clustering analysis, with particular emphasis on two feature
clusters (with only red points) linked to poor prognosis. b) and c) showcase two novel tumor markers (verified by the pathologist) identified
in the WSIs, along with their corresponding locations. d) presents the reconstructed WSI with pathological prototypes, where the spatial
distribution of cancerous tissue (denoted in red) reveals the third tumor marker: the degree of tumor infiltration.

Method Dataset Acc.(%) Time (s) AUC

Patch HCC 83.39 7.95 0.82
CAMELYON16 83.70 4.93 0.82

Superpixel HCC 87.93 10.91 0.88
CAMELYON16 85.69 5.44 0.87

Table 3: Comparison between superpixel blocks and patches for
graph construction on the HCC and Camelyon16.

Zoom-MIL with minimal epoch fine-tuning, SEW achieves
3.91% higher average accuracy as shown in Table 2. Notably,
the performance gap between full training and fine-tuning re-
mains marginal (0.07− 0.64%), demonstrating strong cross-
domain generalizability in pathological feature extraction.

4.5 Ablation Study
Superpixel vs Patch. We use superpixel blocks generated
by the superpixel method as graph nodes. Unlike TeaGraph
or PatchGNN which employ patches as nodes, we removed
SEW’s superpixel segmentation module and directly used
16x16 patches to evaluate performance on the HCC dataset.
As shown in Table 3, superpixel nodes exhibit better bound-
ary adhesion, achieving significant improvement.

Focusing areas number K and magnification. SEW
achieves high diagnostic accuracy with a limited number of
focusing areas (K). We evaluated K values of 1, 2, 4, 8, 12,
and 16 on the HCC dataset. The results in Fig.2 show that
precision plateaus when K ranges between 4 and 8, suggest-
ing sufficient detail extraction at K=8 for reliable diagnosis.
Performance declines at K = 16, likely due to redundant in-
formation. Additionally, we assessed the magnification levels
in local branches (8, 16, 32). The 16 magnification provided
optimal performance, effectively complementing the infor-
mation conveyed to the global branch.

Different components impact. The global branch can
sense the information of the entire slice at the thumbnail
level and use the local branch’s detailed information for self-

Branch Focus Back Metrics

Glob. Loc. grad q Lcst Acc.(%) Time(s) AUC

✓ 75.21 3.77 0.76
✓ ✓ ✓ 79.64 9.64 0.82
✓ ✓ ✓ 83.22 9.55 0.87
✓ ✓ ✓ ✓ 86.39 10.91 0.88

Table 4: Ablation study on components of SEW. ‘Glob.’ denotes the
global branch, ‘Loc.’ denotes the local branch, ‘grad.’ denotes the
grad-cam, and ‘q’ denotes the result of the focus predictor.

enhancement. We compared the performance of the global
branch alone and the enhanced one. In the forward process,
we compared using only the Grad-CAM score with using
the focus predictor for focusing. In the backward process,
we removed the Lret

cst constraints to determine if the local
branch’s output enhanced the global branch’s information ex-
traction. In Table 4, using the local branch and the dual-
branch framework’s consistency constraint significantly im-
proved the model’s performance. The focusing effect of the
focus predictor led to a substantial enhancement compared to
using Grad-CAM alone. This improvement results from the
local branch enhancing the global branch, which depends on
the focus location’s accuracy.

5 Conclusion
In this study, we introduced SEW, a method that extracts
features closely associated with pathological image analysis,
achieving promising classification results based on these fea-
tures. Moreover, SEW identifies biomarkers at both the tissue
and tissue distribution levels. On a colorectal cancer dataset,
SEW discovered two novel tumor biomarkers, demonstrating
the potential of artificial intelligence in exploring new prog-
nostic tumor biomarkers. In the future, we will focus on de-
veloping more user-friendly methods and tools for biomarker
mining to facilitate clinical application.
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