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Abstract

Recently, the mathematical tool from fractal geom-
etry (i.e., fractal dimension) has been employed to
investigate optimization trajectory-dependent gener-
alization ability for some pointwise learning models
with independent and identically distributed (i.i.d.)
observations. This paper goes beyond the limita-
tions of pointwise learning and i.i.d. samples, and
establishes generalization bounds for pairwise learn-
ing with uniformly strong mixing samples. The
derived theoretical results fill the gap of trajectory-
dependent generalization analysis for pairwise learn-
ing, and can be applied to wide learning paradigms,
e.g., metric learning, ranking and gradient learn-
ing. Technically, our framework brings concentra-
tion estimation with Rademacher complexity and
trajectory-dependent fractal dimension together in a
coherent way for felicitous learning theory analysis.
In addition, the efficient computation of fractal di-
mension can be guaranteed for random algorithms
(e.g., stochastic gradient descent algorithm for deep
neural networks) by bridging topological data analy-
sis tools and the trajectory-dependent fractal dimen-
sion.

1 Introduction

As apopular learning paradigm, pairwise learning has attracted
much attention in the machine learning community, where the
loss function is associated with two samples simultaneously
[Lei et al., 2018; Huang er al., 2023]. Typical frameworks of
pairwise learning include metric learning [Cao et al., 2016],
gradient learning [Mukherjee and Zhou, 2006; Feng et al.,
2015], AUC maximization [Cortes and Mohri, 2003; Gao and

Zhou, 2015], and ranking [Rejchel, 2012; Huang e al., 2023].

In theory, the generalization performance of pairwise learning
has been well investigated from various analysis routines, such
as Rademacher complexity [Agarwal and Niyogi, 2009; Lei
et al., 2021], algorithmic stability [Jin et al., 2009; Lei et
al., 2021], integral operators [Mukherjee and Zhou, 2006;
Ying and Zhou, 2016; Zhao et al., 2017], etc. However, all
the existing results focus on the uniform convergence analysis

*Corresponding author.

independent of the real optimization algorithm, which often
ignores the crucial impact of computing trajectory on the
capacity of hypothesis space [Simsekli e al., 2021].
Recently, the computing trajectory of learning model has
been addressed increasingly in learning theory studies due
to its close relationship with generalization performance.
For deep neural networks (DNNs), the existing general-
ization analysis often focuses on the final trained network
[Neyshabur et al., 2017], where the computing trajectory
is ignored usually. In view of this situation, Simsekli et
al. [2021] have demonstrated that algorithmic trajectories
can exhibit a fractal structure when a stochastic optimiza-
tion algorithm is employed for implementing deep learning
models. Moreover, fractal dimensions w.r.t optimization tra-
jectories have been integrated into the generalization error
analysis, where the generalization bounds rely on the intrinsic
computing-dependent dimension rather than the hypothesis
space dimension [Camuto ef al., 2021; Birdal er al., 2021,
Hodgkinson et al., 2022]. To illustrate the recent progress
clearly, we summarize their main contributions in Table 1.
Indeed, these trajectory-dependent generalization guaran-
tees provide some explanation for the phenomena: why over-
parameterized networks may not exhibit overfitting in practical
scenarios [Dupuis ef al., 2023]. When the loss function ¢ is
L-Lipschitz and uniformly bounded by a constant B, the pre-
vious results in Simsekli e al. [2021], Camuto et al. [2021],
Birdal e al. [2021] and Sachs er al. [2023] stated that the
generalization error of learning models can be bounded by

LB \/ M (Wg.v) log(n) +log(1/Q)

with probability 1 — ¢, where

n is the sample size and M?(Wz ¢/) is the fractal dimension
with trajectory-dependent hypothesis space Wz 7 (see Section
3 for detail definitions). Moreover, [Dupuis ef al., 2023] got
the refined generalization bounds based on data-depend fractal
dimensions without Lipschitz assumption for loss function.
Although these algorithm-dependent bounds have brought a
new perspective on understanding generalization, they are lim-
ited to the pointwise learning with i.i.d. samples which often
violated in real-world applications [Kohler and Krzyzak, 2020;
Kurisu et al., 2022].

This paper focuses on the scenario where the observations
are drawn from a stationary ¢-mixing (or uniformly strong
mixing) process, which is a commonly used assumption in
learning theory [Yu, 1994; Meir, 2000; He et al., 2016]. The-
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Ref. Main contribution

Introduce the fractal tools

Simsekli et al. [2021] to generalization analysis

Study the generalization bound

Camuto ef al. [2021] under stationary distribution

Use the persistent homology

Birdal er al. [2021] to calculate fractal dimension

Propose an algorithm-dependent

Sachs et al, [2023] Rademacher complexity

Propose a pseudo-metric to

Dupuis e7 al. [2023] remove the Lipschitz condition

Study the pairwise learning

Ours . ..
with ¢-mixing samples

Table 1: Generalization analysis with Fractal dimension.

oretically, we establish generalization bounds for pairwise
learning with ¢-mixing samples with the help of trajectory-
based fractal dimensions, which assures the generalization
error of our estimator can achieve the polynomial decay rate

O(Vy/log(n)/n). Here n is the sample size and W is the sum
of the p-mixing coefficients (see Definition 1 in Section 3.1).
To the best of our knowledge, there is no theoretical character-
ization of the generalization guarantees of pairwise learning
with p-mixing samples before. The main contributions of this
paper are twofold:

* Optimization-dependent generalization bounds. We em-
ploy the fractal tool to bound the trajectory-dependent
generalization error for pairwise learning, where the tight
estimations can be derived benefit from much smaller hy-
pothesis space. This change has enabled us to transform
our focus from concerning the size of covering numbers
(independently of optimization processes, e.g., Rejchel
[2012] and Huang et al. [2023]) to fractal dimensions by
topological data analysis tools Simsekli ef al. [2021] and
Dupuis ef al. [2023]. Our results reduce the gap between
the theoretical properties and algorithmic implementation
of pairwise learning models, which improve the matching
degree of generalization bounds to real applications.

L]

Improved analysis techniques. Without the requirement
of independent observations, the previous analysis tech-
niques in Lei ef al. [2018] and Huang er al. [2023] can
not be applied to the pairwise learning with p-mixing
samples directly. This obstacle is conquered through
McDiarmid’s inequality for ¢-mixing processes [Mohri
and Rostamizadeh, 2010] and extending Lemma A.1
in Clémengon er al. [2008] to stationary processes.
In particular, our analysis framework removes the Lip-
schitz condition of pairwise loss [Cao er al., 2016;
Lei et al, 2018] by incorporating a data-dependent
pseudo-metric for capacity estimation.

2 Related Work

Now we review the related work about generalization bounds
for pairwise learning and learning theory with ¢-mixing sam-

ples. To better evaluate our work, we compare it with the
related results in Table 2 from the aspects of analysis tool,
learning models, and learning rate.

2.1 Generalization Bounds for Pairwise Learning

Stability Analysis. Due to the intrinsic relationship between
generalization and stability, there are some generalization guar-
antees of pairwise learning in terms of algorithmic stability
tools, see e.g., Jin et al. [2009], Agarwal and Niyogi [2009]
and Lei er al. [2021]. The derived results demonstrate that, un-
der the strong convexity of the objective function, the related
pairwise learning models enjoy the dimensional-independent

generalization bounds with the decay rate at O(n~2). All of
the existing studies require that the learned pairwise model
would change slightly if a single training example is replaced
by another one, and include ranking algorithm [Agarwal and
Niyogi, 20091, the iterative localized algorithm for pairwise
learning [Lei et al., 2021] as special examples.

Uniform Convergence Analysis. The concentration estima-
tion techniques in U-statistic were developed to tackle error
analysis of regularized metric learning [Cao et al., 2016] and
ranking [Rejchel, 2012; Huang et al., 2023]. The basic idea is
to control the generalization bound via a Rademacher complex-
ity [Lei ez al., 2018] which uses the symmetry of the U-statistic
[Clémencon ef al., 2008]. Moreover, there is also a classic
method using Hoeffding decomposition [Hoeffding, 1992] to
decompose the pairwise learning problem into i.i.d. terms
and degenerate U-statistic terms [Huang ef al., 2023]. Under
proper capacity assumptions of hypothesis function space and

independence of samples, convergence rate with O(n_%) is
obtained for the above pairwise learning models. However,
it is often difficult to verify the independence assumptions
directly in real applications, which limits the adaptivity of
learning theory analysis. For online pairwise learning, [Wang
et al.,2012] and [Kar er al., 2013] established regret bounds by
developing analysis techniques associated with covering num-
bers and Rademacher complexity, respectively. Furthermore,
the convergence rates for the final iteration of online pair-
wise learning algorithms have been examined through the lens
of convex analysis [Ying and Zhou, 2016; Guo et al., 2016;
Lin et al., 2017]. Despite rapid progress, all the uniform con-
vergence analysis doesn’t address the optimization trajectories
and just states the computation-independent error bounds.
Operator Approximation Analysis. The operator approxi-
mation technique, from functional analysis, is introduced to
characterize the generalization ability of least square regu-
larized ranking [Chen, 2012] and gradient learning [Mukher-
jee and Zhou, 2006]. Compared with the uniform conver-
gence depending heavily on the capacity assumption of hy-
pothesis space, the learning theory analysis framework of
operator approximation just requires that the minimizer of
optimization objectives can be expressed by the empirical
version of integral operator [Mukherjee and Zhou, 2006;
Kriukova et al., 2016]. Explicitly, for the least square ranking,
[Chen, 2012] gave the first operator approximation analysis
on its convergence rate and Chen et al. [2013] stated the de-
cay rate O(n‘i) for the excess risk of stochastic gradient
descent ranking under mild parameter conditions. Moreover,
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Ref. Technique Model Samples Convergence rate
Mukherjee and Zhou [2006] Integral operator Gradient learning iid. O (n=7/2(n+2+37)
Jin et al. [2009] Algorithmic stability Metric learning iid. O(1/y/n
Agarwal and Niyogi [2009] Algorithmic stability Ranking iid. O(1/v/n
Rejchel [2012] Rademacher complexity Ranking iid. O(1/y/n
Wang er al. [2012] Covering number Online learning iid. O(1/y/n
Ying and Zhou [2016] Integral operator Online learning ii.d. o (1 / n)
Guo et al. [2016] Rademacher complexity Online learning iid. o ( logn/ n)
Cao et al. [2016] Rademacher complexity Metric learning iid. O(1/y/n
Zhao et al. [2017] Integral operator Ranking iid. O(1/y/n
Lei er al. [2018] Rademacher complexity ~ Pairwise learning iid. o (l / \/W)
Lei et al. [2021] Algorithmic stability ~ Pairwise learning ~ i.i.d. O (1 / \/ﬁ)
Huang et al. [2023] Hoeffding decomposition Ranking iid. (’)(( log” n/n) oD
Ours Rademacher complexity ~ Pairwise learning ~ ¢-mixing (@) (\II log(n)/ n)

Table 2: Convergence analysis of pairwise learning (n: sample size, 8: strong convex coefficients, ¥ =1+ >"" | ©(k), ¢(k): the p-mixing
coefficients, r, d, 0: the parameter of hypothesis space, 7: the parameter of data distribution )

[Kriukova er al., 2016] obtained the improved estimations
O(n‘é) under general source conditions, and [Zhao et al.,
2017] got the same convergence rate by integrating Hoeffd-
ing’s decomposition and regression estimation techniques.

2.2 Learning Theory With p-Mixing Samples

Stationary Mixing Processes. The pioneering work of Yu et
al. [1994] led to VC-dimension bounds under the assump-
tion of stationary (-mixing observations. Later, [Meir, 2000]
derived the upper bounds of generalization error in terms
of covering numbers and reached the convergence rate with
O((log n/n)ﬂ%ow ), where 7y is the parameter in ¢-mixing
coefficient. Moreover, [Mohri and Rostamizadeh, 2010] es-
tablished the data-dependent learning bounds in terms of algo-
rithmic stability, where the blocks of points for Hoeffding’s
decomposition are not necessarily of equal size and the gen-
eralized McDiarmid’s inequality in Leo and Kavita [2008]
plays a crucial role. [Ralaivola et al., 2010] and [Alquier and
Wintenberger, 2012] provided PAC-Bayesian learning bounds
under the p-mixing assumptions. Additionally, Ralaivola et al.
[2010] employed fractional covers to address the dependen-
cies within the given set of random variables, and proposed a
strategy to construct subsets of independent random variables,
enabling the application of the standard i.i.d. PAC-Bayes
bound. For the pairwise ranking, [He et al., 2016] provided
the generalization bounds with p-mixing samples by com-
bining the independent block technique and the algorithmic
stability analysis together. However, the information of com-
puting trajectory isn’t addressed sufficiently in the previous
analysis for dependent observations.

Non-stationary Mixing Processes. For the the asymptoti-

cally stationary process, [Agarwal and Duchi, 2012] presented
generalization bounds of stable online learning algorithms.
Moreover, [Kuznetsov and Mohri, 2017] provided the first
generalization bounds for time series prediction with a non-
stationary (-mixing stochastic process. For the Lasso estima-
tor with ¢-mixing samples, [Peng et al., 2023] employed the
non-asymptotic concentration inequalities to the error estima-
tions. As far as known, there is no generalization guarantee
specifically addressing pairwise learning with -mixing sam-
ples based on algorithmic trajectory.

3 Preliminaries

This section introduces the framework of pairwise learning
in ¢-mixing process and recalls the definition of Minkowski
dimension.

3.1 Pairwise Learning in (-Mixing Process

Let the input space X C R” be a compact space and the output
set ) be a subset of R. The sample set

Z={z; = (xi,y:i) € Z2};,

is drawn from an unknown distribution. Usually, the objective
of a learning algorithm is to learn a prediction function f
based on Z. We consider parametric models where f,, can
be indexed by a vector element w € VW C R?. Recognizing
the limitations of the independent assumption in practical
scenarios [Mohri and Rostamizadeh, 20101, we opt to discard
it and instead investigate the set Z satisfying the exponentially
-mixing condition.

Definition 1. [Yu, 1994] The process {z;}32, is said to be
exponentially p-mixing or uniformly strong mixing if there
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exist some constants by > 0,co > 0,79 > 0 such that -
mixing coefficient (k) satisfying

o(k) = sup |P(A | B)—P(A)| < by exp(—cok™)
AEU;':JHC,BEU{"'
where of is the o-algebra generated by z;, - - - , z;.

A classical p-mixing example can be seen in Technical
appendix A.1. In this paper, we focus on the pairwise learning
problem on an example pair (z;, z;), in which the effectiveness
of the prediction function f, relies on a non-negative loss
function £ (w,z;,z;). To evaluate the ability of w learned
from set Z, we define the empirical risk

1
Rn(w, Z) = m ;g(W,Zi,Z]‘)

and its population version

R(w) = L /Z 0(w, 2, 2)dzds.

Typically, the optimal parameter w* can be found using a
learning algorithm A to minimize the empirical risk R,, (w, Z).
As mentioned in Molchanov [2005], the algorithm A can be
thought as a measurable map that generates the trajectories
Wz v (hypothesis space) from set Z and an external random
variable U € U. In general, U is assumed to be independent of
Z and accounting for the randomness of the learning algorithm
(such as the batch indices in training).

Definition 2. The trajectories of the algorithm A after T
iterations under the sample set Z can be defined as

Wz.u = {wi} o,

where the parameter wy is returned by A at time t.

A common example of A is the stochastic gradient descent
(SGD) algorithm, which can be viewed as a discretization of a
stochastic differential equation [Mandt et al., 2016; Jastrzebski
et al., 2017; Chaudhari and Soatto, 2018]:

th = _van(Wt7 Z)dt +X (Wt) dBt

where the second term accounts for randomness U coming
from Brownian motion B; and diffusion coefficient & : R¢ —
R?*d As considered in various studies [Mandt ef al., 2016;
Simsekli er al., 2021; Chaudhari and Soatto, 2018], the tra-
Jjectories Wy, i of SGD algorithm is the set {w},., with the
parameter w; returned by A at time . a

On this basis, we define the worst-case generalization error
which reflects the generalization ability

G(w,Z) = sup (R(w)—Rn(w,Z)), (1)
WGWZ,U

which is a trajectory-dependent definition of generalization

and widely used in the literature [Bousquet and Elisseeff, 2002;

Dupuis et al., 2023].

3.2 Minkowski Dimension

In this paper, we employ the Minkowski dimension to measure
the capacity of the hypothesis space Wz iy and bound the
worst-case generalization error (1). Before proceeding, we
first propose a data-dependent pseudo-metric dz(+, ) on space
Woz.u as follows:

[n/2]
. 2
dz (W, W) = max LJ ; |0(W, 2 (i) Z(Lnj2) 44)) )

— (W, 2 (i), Zr(|n/2)+0)) |-
where |n/2] rounds down n/2, [n/2] rounds up n/2 and II
is the set of all permutations of {1, --- ,n}. The fundamental
requirements of pseudo-metric (2) which include the triangle
inequality, symmetry, and non-negativity, have been verified
and demonstrated in Technical appendix A.1. Based on this
pseudo-metric, we present the definition of the covering num-
ber.
Definition 3. [Simgekli et al., 2021] A set {w,}}, is the §-
cover of pseudo-metric space Wz 17, dz), if Y'w € Wz,
there exists wi, € {w; I\, such that

dz(wg,w) < 6.

The covering number N Wz, v, dz, 0) is the minimum cardi-
nal of all §-covers.

As demonstrated in Dupuis ef al. [2023], the §-cover in-
duced by pseudo-metric dz(-, -) is measurable which can in-
duce the correct Minkowski dimension.

Definition 4. [Falconer, 2004] For a bounded pseudo-metric
space Wz 17, dz,), the Minkowski dimension is defined as:
. log(N(Wz U dz (5))
M1z =1 L
Waz.o) =l === 075)
Besides, the upper Minkowski dimension and the lower
Minkowski dimension are respectively defined as :
———dz . log(/\/(Wz U,dz,(S))
M= (W = limsu : ,
Waw) =Bt = og(1/5)

3

and
log(N(Wz,u,dz,9))
log(1/9)

M2 (Wg. ) = liminf
6—0
which will be used in Section 4.2.

4 Main Results

This section presents our main theoretical results. The follow-
ing assumptions are involved in our error analysis.

Assumption 1. The loss function £ : Wz X Z x Z = Ris
continuous and bounded by B.

Assumption 1 requires the continuity of loss function, which
ensures that the quantities like (1) are well-defined random
variables [Molchanov, 2005]. The bounded condition is stan-
dard in many generalization error estimations, see e.g., Dupuis
et al. [1999] and Schmidt-Hieber [2017]. Different from
Simgekli et al. [2021] and Camuto ef al. [2021], we eliminate
the necessity of the Lipschitz condition with respect to w for
loss function ¢ due to the utilization of pseudo-metric (2).
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Assumption 2. The strictly stationary process {z; };>1 satis-
fies the exponentially p-mixing condition.

Assumption 2 imposes the dependence constraint among
input variables. To handle this type of data, the generalized
McDiarmid’s inequality for ¢-mixing observations is intro-
duced in Leo and Kavita [2008] and Mohri and Rostamizadeh
[2010].

Assumption 3. [Dupuis et al., 2023] Let C C R? be any
closed set, 6 > 0,Z € Z" and Z' € Z™. We can con-
struct minimal §-coverings N (C N\ Wz v, dz, 6), which are
random finite sets with respect to the product o-algebra
Fz @ Fz: @ Fy (measurability with respect to Z, 7/, U ).

Assumption 3 can be cast as a selection property. Indeed,
there may be a wide range of possible minimal coverings for
each realization of (Z,Z’, U). This paper assumes that we can
select one of them satisfying that the obtained random set is
measurable. In addition, since the Minkowski dimension (3)
can be expressed as a countable limit, Assumption 3 implies
that M9z (Wz ;) is a random variable [Dupuis et al., 2023].
Please see Dupuis et al. [2023] for more detailed discussions.

In our analysis, the capacity of searching space is mea-
sured by the Rademacher complexity and Gaussian complex-
ity, which are defined as follows.

Definition 5. [Dupuis et al., 2023] Given the sample set Z. =
{2;}?_,, the parameter space W, and the function l, indexed
by w € W, the empirical Rademacher complexity over VV on
Z can be defined as

1 n

REW) = LB s Y] @
where the set € = {&;}I'_, is composed of Rademacher ran-
dom variables satisfying P(e; = 1) = P(g; = —1) = 0.5.
Similarly, the empirical Gaussian complexity over W on Z is
defined as

1 n
I'(Z,W) = —E; | sup Gilw(z; 5)
@W) = B | sup > giu(z)
where g1,--- ,gn are independent Gaussian random vari-
ables.

4.1 Upper Bound of Generalization Error

Now we introduce the following stepping-stone lemma, which
is an extension of Lemma A.1. in Clémencon et al. [2008]
and plays a crucial role in our error estimations.

Lemma 1. Let ¢, : Z X Z — R be real-valued functions
indexed by T belonging to a set T. If {z;}!"_, is a stationary
process, then

i#g
97 /2l
€ mdx Beup | 2 , »
< 1;16312[( ‘,S—Lelg)‘ ’7”‘—‘ ; qr (ZTr(z)7Z7T(|_n/2J+l)) 5
where 11 is the set of all permutations of {1,--- ,n}.

The proof of Lemma 1 is shown in Technical appendix A.2.
Then we establish the upper bound of generalization error for
general pairwise learning with -mixing samples.

Theorem 1. Under Assumptions 1-3, for any €,~,( > 0 and
n € Ny there exists 6y, > 0 such that with probability at
least 1 — 2( — ~, we have:

log(2/¢) + (M*2(Waz,u) + €) log(1/6)

G(w,Z) <QB\I/\/
26,56 < 0y

where U =1+2%" | (7).

The proof of Theorem 1 is given in Technical appendix A.2,
where essential improvement of analysis techniques [Dudley,
2014] are required due to the non-i.i.d. nature of the sequences.

Remark 1. We employ Rademacher complexity and Mc-
Diarmid’s inequality to deal with the difficulties brought
by U-statistic [Rejchel, 2012; Cao et al., 2016; Lei et al.,
2018]. Generally, traditional methods require Lemma A.1
in Clémengon et al. [2008] to transform the pairwise learn-
ing to the single index problem. However, it is not working
for p-mixing samples. To overcome this difficulty, we intro-
duce Lemma 1 for rearranging the training samples and the
generalized McDiarmid’s inequality proved in Mohri and Ros-
tamizadeh [2010] for handling the p-mixing samples.

For learning models with complex hypothesis space (e.g.,
deep neural networks), it often leads to trivial bound when
directly applying the uniform convergence analysis framework
independently of computing algorithms [Zhang et al., 2021].
To address this issue, we integrate the fractal tools into error
analysis of pairwise learning, where the refined bound benefits
from trajectory-dependent capacity estimation of hypothesis
space.

Remark 2. Our capacity estimation is similar to the classical
bounds for pointwise learning based on topological tools [ Ca-
muto et al., 2021; Birdal et al., 2021; Hodgkinson et al., 2022;
Dupuis et al., 2023]. To our knowledge, our results are the
first endeavor on applying topological tools to pairwise learn-
ing. In particular, the Lipschitz condition for loss function is
abrogated using a data-dependent pseudo-metric. The derived
result in Theorem 1 illustrates the impact of mixing samples
(via the coefficient W) on the convergence rate. As the depen-
dency among samples increases, the convergence rate will
slow down.

Remark 3. It should be pointed out that M9%(Wg 1) can
be calculated by topological data analysis tools [ Pérez et al.,
2021]. And it always can be bounded by a positive constant
in SGD algorithm (if {w}>0 is a family of Feller processes)
[Simgekli et al., 2021].

It is well known that i.i.d. process can be viewed as a special
case of p-mixing process where the ¢-mixing coefficients
w(k) = 0,k = 1,2,---. As a byproduct, we also state the
corresponding result of Theorem 1 for i.i.d. samples.

Corollary 1. Under Assumptions 1 and 3, for i.i.d. samples
and any €,7v,( > 0, there exists 6y, ¢ > 0 such that with
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probability at least 1 — 2( — vy, we have

log(2/¢) + (M2 (Waz,u) + €) log(1/6)

G(w,2Z) §9B\/
+ 26,5 < By

Theorem 1 shows that the generalization error depends
on the Minkowski dimension of algorithmic trajectories,
which extends the previous results of pointwise learning with
i.i.d samples [Simgekli ef al., 2021; Camuto et al., 2021;
Birdal et al., 2021; Sachs et al., 2023] to the pairwise set-
ting with mixing observations. From Lemma A.15, we know
that M9z (Wz,u) can be computed efficiently by tools of topo-
logical data analysis.

Remark 4. Typically, we can set 6 = 1/\/n. From Egoroff’s
Theorem in Technical appendix A.1, there exists ay > 0 such
that with probability at 1 —v, N Wz 7, dz, 1/+/n) uniformly
converges to M2 (Wz, 1) with respect to 1//n — 0. Thus,
we have

log N Wz vr,dz, 1/v/n) < (MY2Wgz ) + 1)

for a sufficiently large n. Then under Assumptions 1-3, for
any ¢ > 0 and a sufficiently large n, there exists a v > 0 such
that with probability at least 1 — 2 — -, we have

log(2/¢) + 5(Mz(Wg ) + 1) log(n)

G(w,Z) §9B‘I’\/
2

i

Here, we recover a convergence rate \/log(n)/n with
iid. setting (¥ = 1) which is analogous to results relied
on fractal tools in pointwise learning [Simsekli et al., 2021;
Camuto ef al., 2021; Dupuis et al., 2023]. To ensure a fair
comparison with the works of Simsekli ez al. [2021] and Ca-
muto et al. [2021], we present the generalization bound under

the assumption that the loss function satisfies the Lipschitz
condition.

_|_

Corollary 2. Under Assumptions 1-3 and the L-Lipschitz
assumption for the loss function {, for any v, > 0 and a
sufficiently large n such that with probability at least 1 —2( —,
we have:

log(2/¢) + 5 (M (Waz,ur)) log(L*n)

G(w,Z) SQB\I/\/

L2
NG

where d, is the Euclidean metric.

The proof of Corollary 2 is shown in Technical appendix
A.4. This result is similar to Simsekli ef al. [2021]. Moreover,
it can be observed that in the absence of the Lipschitz condi-
tion, we have shifted the analytical challenge to M2 (Wz r7).

4.2 Lower Bound of Generalization Error

As an additional theoretical outcome, we endeavor to establish
a lower bound by incorporating the introduced data-dependent

fractal dimension. The next theorem is based on the classical
arguments involving Sudakov’s theorem [Vershynin, 2018]
and Gaussian complexity. Here, we extend the technique for
analyzing lower bound from the pointwise learning [Dupuis
et al., 2023] to the pairwise learning with -mixing samples.
The lower bound considered here requires a slightly different
definition of the worst-case generalization error:

G(w,Z)= sup |Rn(w,Z)— R(w)|. ©)

WEWZ7U

Furthermore, we define a new pseudo-metric

dg,Z(W’VAV) = \/E |:(GW,Z - GW,Z)2:|7 W7w S WZ,U7

where {Gw,z }wew, ,, is a Gaussian process related to Z (see
Technical appendix A.1 for more details). In this Section, we
replace dz(-, -) in Assumption 3 with dg 7 (-, -). Now we can
provide the lower bound of generalization error for pairwise
learning with -mixing samples.

Theorem 2. Under Assumptions 1-3, for any €, > 0, there
exist a constant ¢ > 0 and 6y, ¢ ¢ > 0 such that

- 2 2log(1/8) M %(Wg 1)
G(w,2) = 4 \/ n(log(n) —log(2))

2log(2) + 21og(2/¢)
_ 93\1;\/ 73] VO < bpec

holds true with probability at least 1 — ( — €.

Remark 5. Theorem 2 states a novel lower bound for pair-
wise learning through constructing a pseudo-metric dg 7(-, ),
whose effectiveness is guaranteed by Assumption 3. The main
differences between our proposed lower bound and the exist-
ing result [Dupuis et al., 2023] are the additional p-mixing
coefficient and the different fractal dimensions, which are in-
duced by the mixing samples and the U -statistic associated
with pairwise loss.

S Experiment

In this section, we conduct several numerical experiments to
investigate the relationship between the Minkowski dimension
and generalization bound. Subsequently, we sought to validate
our theoretical findings regarding the convergence properties
through these experiments. More experiment details can be
found in Technical appendix A.6.

5.1 Experimental Setup

Our experimental design is similar to Birdal et al. [2021] and
Dupuis et al. [2023]. Given a fixed positive integer mg, we
generate the random series {e;},-,, which are i.i.d. drawn

from Gaussian distribution N (Op ,_Ipxp). Forany ¢ > 1, let
mo
1 T
Xq = (Xia"' ’X?) = Zei-i-j ERP,
Jj=0

then the sequence {xi}i21 is an mg-dependent process and
hence p-mixing [Peng er al., 2023]. Consider the intrinsic
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Figure 1: Generalization gap versus PH dimension for a seven-layer
FCN with 2756 ¢-mixing samples. Different colors indicate different
learning rates (green: 0.1; red: 0.01; blue: 0.001) and different
markers indicate different batch sizes.

relationship between the input and its response defined as
Mukherjee and Zhou [2006],

P
Yi = Z (cos(x!) +sin(x?)), i =1, - ,n.
q=1

During the experiment, we focus on the case of gradient learn-
ing model (more details for gradient learning model can be
found in Technical appendix A.6). It is easy to verify that
pairwise loss ¢(w;z;,z;) satisfies the Assumption 1 for the
aforementioned data generating process. Now we describe
the implementation details of the empirical evaluation. Given
the dataset Z = {z1, - , 2, }, we employ the SGD algorithm
to train three fully connected networks (FCN) with different
layers under different parameter settings (batch size: 24, 48,
64, learning rate: 0.1, 0.01, 0.001, sample size n: 225, 900,
1406, 2025, 2756, 4556, 5625, 6806). During the training, the
softmax activation function is employed. Subsequently, we
consider the optimization trajectory near the local minimum
discovered by SGD as the hypothesis set Wz 7. To be specific,
we assume the SGD algorithm reaches a local minimum after
k* iterations. Then, we continue running this algorithm for
1000 iterations and set Wz 17 t0 be {Wp+41,-+* , Wis+1000}-

Indeed, the Minkowski dimension often can be calculated
by the persistent homology (PH) dimension dim’ling0 Wz v,
which can be further approximated numerically in terms of
the PH software provided by Pérez et al. [2021]. For more
detailed information on PH, please refer to Technical appendix
A.S.

5.2 Experimental Analysis

To ensure the fairness and impartiality, each experiment is
repeated nine times for different scenarios. Figure 1 presents
the PH dimension dim%Z P, VWz,u and the generalization gap
of a seven-layer FCN (64 32, 16 8, 8, 8, 4) under various
settings. Among them, different colors indicate different learn-
ing rates (green: 0.1; red: 0.01; blue: 0.001) and different

—6— (24,0.1)
—6—(24,0.01)
(24,0.001)
—6— (48,0.1)
—O— (48,0.01)
(48,0.001)
—6—(64,0.1)
—O— (64,0.01)
—— (64,0.001)
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Figure 2: Generalization gap versus the sample size n across diverse
scenarios for a seven-layer FCN.

markers indicate different batch sizes (plus: 24, triangle: 48,
circle: 64). We observe a strong correlation between the PH
dimension and the generalization gap in the case of a batch
size 64. Besides, we find that the smaller batch size seems to
show less correlation, which is consistent with the previous
observation in Birdal e al. [2021] and Dupuis er al. [2023].
Intuitively, this phenomena maybe caused by the increased
noise (such as the randomness associated with selecting k£ sam-
ples as the batch) in Wz ry which may lead to more complex
fractal structures. As a result, more points are required for
precise computation of the PH dimension in such cases.

Figure 2 shows the average generalization gaps of nine trials
with different sample sizes under nine various scenarios (batch
size, learning rate). As the sample size n increases, we observe
a gradual decrease in the average generalization gaps. This
observation aligns with our theoretical results and provides
empirical evidence to support our findings.

The simulation experiments are also conducted on vari-
ous settings using a five-layers FCN (64, 32,16, 8,4) and a
nine-layers FCN (64,32, 16, 8,8,8,8,8,4). Please refer to
Technical appendix A.6 for the experimental results.

6 Conclusions

This paper established the trajectory-dependent generaliza-
tion analysis for pairwise learning with ¢-mixing observa-
tions. For pairwise learning models, the derived theoretical
results alleviate their sampling assumption on training data
(i.e., i.i.d. observations) and match their real implementing
algorithms tightly by employing the fractal theory to measure
the computing trajectories in the hypothesis space. As far as
we know, the current analysis is the first touch of optimiza-
tion trajectory-dependent generalization characterization for
general pairwise learning. In the future, it would be interest-
ing to extend our analysis to much general dependent pro-
cess, e.g., the 7-mixing process [Dedecker and Prieur, 2005;
Liu et al., 2025].



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (NSFC) (Nos. 62376104, 12426512,
12301651) and the Open Research Fund of Engineering Re-
search Center of Intelligent Technology for Agriculture, Min-
istry of Education (No. ERCITA-KF002).

References

[Agarwal and Duchi, 2012] Alekh Agarwal and John C
Duchi. The generalization ability of online algorithms for
dependent data. IEEE Transactions on Information Theory,
59(1):573-587, 2012.

[Agarwal and Niyogi, 2009] Shivani Agarwal and Partha
Niyogi. Generalization bounds for ranking algorithms via
algorithmic stability. Journal of Machine Learning Re-
search, 10(2), 2009.

[Alquier and Wintenberger, 2012] Pierre Alquier and Olivier
Wintenberger. Model selection for weakly dependent time
series forecasting. Bernoulli, 18(3):883-913, 2012.

[Birdal et al., 2021] Tolga Birdal, Aaron Lou, Leonidas J
Guibas, and Umut Simsekli. Intrinsic dimension, persistent
homology and generalization in neural networks. Advances
in Neural Information Processing Systems, 34:6776—6789,
2021.

[Bousquet and Elisseeff, 2002] Olivier Bousquet and André
Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499-526, 2002.

[Camuto et al., 2021] Alexander Camuto, George Deligian-
nidis, Murat A Erdogdu, Mert Gurbuzbalaban, Umut
Simsekli, and Lingjiong Zhu. Fractal structure and general-
ization properties of stochastic optimization algorithms. Ad-
vances in neural information processing systems, 34:18774—
18788, 2021.

[Cao et al., 2016] Qiong Cao, Zheng-Chu Guo, and Yiming
Ying. Generalization bounds for metric and similarity learn-
ing. Machine Learning, 102(1):115-132, 2016.

[Chaudhari and Soatto, 2018] Pratik Chaudhari and Stefano
Soatto. Stochastic gradient descent performs variational
inference, converges to limit cycles for deep networks. In
Information Theory and Applications Workshop, pages 1—
10. IEEE, 2018.

[Chen et al., 2013] Hong Chen, Yi Tang, Luoging Li, Yuan
Yuan, Xuelong Li, and Yuanyan Tang. Error analysis of
stochastic gradient descent ranking. /IEEE transactions on
cybernetics, 43(3):898-909, 2013.

[Chen, 2012] Hong Chen. The convergence rate of a regular-
ized ranking algorithm. Journal of Approximation Theory,
164(12):1513-1519, 2012.

[Clémengon et al., 2008] Stéphan Clémengon, Gabor Lugosi,
and Nicolas Vayatis. Ranking and empirical minimization
of u-statistics. The Annals of Statistics, pages 844-874,
2008.

[Cortes and Mohri, 2003] Corinna Cortes and Mehryar
Mohri. Auc optimization vs. error rate minimization.

Advances in neural information processing systems, 16,
2003.

[Dedecker and Prieur, 2005] Jérome Dedecker and
Clémentine Prieur. New dependence coefficients.
examples and applications to statistics. Probability Theory
and Related Fields, 132:203-236, 2005.

[Dudley, 2014] Richard M Dudley. Uniform central limit
theorems, volume 142. Cambridge university press, 2014.

[Dupuis et al., 2023] Benjamin Dupuis, George Deligianni-
dis, and Umut Simsekli. Generalization bounds using data-
dependent fractal dimensions. In International Conference
on Machine Learning, page 8922-8968, 2023.

[Falconer, 2004] Kenneth Falconer. Fractal geometry: math-
ematical foundations and applications. John Wiley & Sons,
2004.

[Feng et al., 2015] Yunlong Feng, Yuning Yang, and Jo-
han AK Suykens. Robust gradient learning with applica-
tions. IEEE transactions on neural networks and learning
systems, 27(4):822-835, 2015.

[Gao and Zhou, 2015] Wei Gao and Zhi-Hua Zhou. On the
consistency of auc pairwise optimization. In International
Conference on Artificial Intelligence, pages 939-945, 2015.

[Guo et al., 2016] Zheng-Chu Guo, Yiming Ying, and Ding-
Xuan Zhou. Online regularized learning with pairwise
loss functions. Advances in Computational Mathematics,
28(4):1-24, 2016.

[He et al., 2016] Fangchao He, Ling Zuo, and Hong Chen.

Stability analysis for ranking with stationary ¢-mixing sam-
ples. Neurocomputing, 171:1556-1562, 2016.

[Hodgkinson et al., 2022] Liam Hodgkinson, Umut Simsekli,
Rajiv Khanna, and Michael Mahoney. Generalization
bounds using lower tail exponents in stochastic optimizers.
In International Conference on Machine Learning, pages
8774-8795. PMLR, 2022.

[Hoeffding, 1992] Wassily Hoeffding. A class of statistics
with asymptotically normal distribution. Breakthroughs in
Statistics: Foundations and Basic Theory, pages 308-334,
1992.

[Huang et al., 2023] Shuo Huang, Junyu Zhou, Han Feng,
and Ding-Xuan Zhou. Generalization analysis of pairwise
learning for ranking with deep neural networks. Neural
Computation, pages 1-24, 2023.

[Jastrzebski et al., 2017] Stanislaw Jastrzebski, Zachary Ken-
ton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing min-
ima in sgd. arXiv preprint arXiv:1711.04623, 2017.

[Jin er al., 2009] Rong Jin, Shijun Wang, and Yang Zhou.
Regularized distance metric learning: Theory and algo-
rithm. Advances in neural information processing systems,
22, 2009.

[Kar ef al., 2013] Purushottam Kar, Bharath Sriperumbudur,
Prateek Jain, and Harish Karnick. On the generalization
ability of online learning algorithms for pairwise loss func-
tions. In International Conference on Machine Learning,
pages 441449, 2013.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Kohler and Krzyzak, 2020] Michael Kohler and Adam
Krzyzak. On the rate of convergence of a deep recurrent
neural network estimate in a regression problem with de-
pendent data. arXiv preprint arXiv:2011.00328, 2020.

[Kriukova ef al., 2016] Galyna  Kriukova, Sergei V
Pereverzyev, and Pavlo Tkachenko. On the conver-
gence rate and some applications of regularized ranking
algorithms. Journal of Complexity, 33:14-29, 2016.

[Kurisu et al., 2022] Daisuke Kurisu, Riku Fukami, and Yuta
Koike. Adaptive deep learning for nonparametric time
series regression. arXiv preprint arXiv:2207.02546, 2022.

[Kuznetsov and Mohri, 2017] Vitaly Kuznetsov and Mehryar
Mohri. Generalization bounds for non-stationary mixing
processes. Machine Learning, 106(1):93-117, 2017.

[Lei et al., 2018] Yunwen Lei, Shao-Bo Lin, and Ke Tang.
Generalization bounds for regularized pairwise learning. In
International Joint Conference on Artificial Intelligence,
pages 2376-2382, 2018.

[Lei et al., 2021] Yunwen Lei, Mingrui Liu, and Yiming
Ying. Generalization guarantee of sgd for pairwise learn-
ing. Advances in Neural Information Processing Systems,
34:21216-21228, 2021.

[Leo and Kavita, 2008] Kontorovich Leo and Ramanan
Kavita. Concentration inequalities for dependent random
variables via the martingale method. Annals of Probability,
36(6):2126-2158, 2008.

[Lin et al., 2017] Junhong Lin, Yunwen Lei, Bo Zhang, and
Ding-Xuan Zhou. Online pairwise learning algorithms with
convex loss functions. Information Sciences, 406:57-70,
2017.

[Liu er al., 2025] Liyuan Liu, Yaohui Chen, Weifu Li, Yingjie
Wang, Bin Gu, Feng Zheng, and Hong Chen. Generaliza-
tion bounds of deep neural networks with 7 -mixing sam-
ples. IEEE Transactions on Neural Networks and Learning
Systems, pages 1-15, 2025.

[Mandt et al., 2016] Stephan Mandt, Matthew Hoffman, and
David Blei. A variational analysis of stochastic gradient al-
gorithms. In International conference on machine learning,

pages 354-363. PMLR, 2016.

[McAllester, 1999] David A McAllester. Pac-bayesian model
averaging. In Proceedings of the Twelfth Annual Confer-
ence on Computational Learning Theory, page 164—170,
1999.

[Meir, 2000] Ron Meir. Nonparametric time series prediction
through adaptive model selection. Machine learning, 39:5—
34, 2000.

[Mohri and Rostamizadeh, 2010] Mehryar Mohri and Afshin
Rostamizadeh. Stability bounds for stationary -mixing
and S-mixing processes. Journal of Machine Learning
Research, 11(2), 2010.

[Molchanov, 2005] Ilya S Molchanov. Theory of random sets,
volume 19. Springer, 2005.

[Mukherjee and Zhou, 2006] Sayan Mukherjee and Ding-
Xuan Zhou. Learning coordinate covariances via gradients.
Journal of Machine Learning Research, 7(3), 2006.

[Neyshabur er al., 2017] Behnam Neyshabur, Srinadh Bho-
janapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. Advances in neural infor-
mation processing systems, 30, 2017.

[Peng et al., 2023] Ling Peng, Yan Zhu, and Wenxuan Zhong.
Lasso regression in sparse linear model with p-mixing
errors. Metrika, 86(1):1-26, 2023.

[Pérez et al., 2021] Julidn Burella Pérez, Sydney Hauke, Um-
berto Lupo, Matteo Caorsi, and Alberto Dassatti. giotto-ph:
A python library for high-performance computation of per-
sistent homology of vietoris-rips filtrations. arXiv preprint
arXiv:2107.05412, 2021.

[Ralaivola et al., 2010] Liva Ralaivola, Marie Szafranski, and
Guillaume Stempfel. Chromatic pac-bayes bounds for non-
iid data: Applications to ranking and stationary S-mixing
processes. The Journal of Machine Learning Research,
11:1927-1956, 2010.

[Rejchel, 2012] Wojciech Rejchel. On ranking and general-
ization bounds. Journal of Machine Learning Research,
13(5), 2012.

[Sachs et al., 2023] Sarah Sachs, Tim van Erven, Liam
Hodgkinson, Rajiv Khanna, and Umut Simsekli. Gener-
alization guarantees via algorithm-dependent rademacher
complexity. In Annual Conference on Learning Theory,
pages 4863-4880. PMLR, 2023.

[Schmidt-Hieber, 2017] Johannes Schmidt-Hieber. Nonpara-
metric regression using deep neural networks with relu
activation function. Annals of Statistics, 48, 2017.

[Simsekli et al., 2021] Umut Simsekli, Ozan Sener, George
Deligiannidis, and Murat A Erdogdu. Hausdorff dimen-
sion, heavy tails, and generalization in neural networks.
Journal of Statistical Mechanics: Theory and Experiment,
2021(12):124014, 2021.

[Vershynin, 2018] Roman Vershynin.  High-dimensional
probability: An introduction with applications in data sci-
ence, volume 47. Cambridge university press, 2018.

[Wang et al., 2012] Yuyang Wang, Roni Khardon, Dmitry
Pechyony, and Rosie Jones. Generalization bounds for
online learning algorithms with pairwise loss functions.
In Conference on Learning Theory, pages 13—1. IMLR
Workshop and Conference Proceedings, 2012.

[Ying and Zhou, 2016] Yiming Ying and Ding-Xuan Zhou.
Online pairwise learning algorithms. Neural Computation,
28(4):743-7717, 2016.

[Yu, 1994] Bin Yu. Rates of convergence for empirical pro-
cesses of stationary mixing sequences. The Annals of Prob-
ability, pages 94—116, 1994.

[Zhang er al., 2021] Chiyuan Zhang, Samy Bengio, Moritz
Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning (still) requires rethinking generalization.
Communications of the ACM, 64(3):107-115, 2021.

[Zhao et al., 2017] Yulong Zhao, Jun Fan, and Lei Shi. Learn-
ing rates for regularized least squares ranking algorithm.
Analysis and Applications, 15(06):815-836, 2017.



