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Abstract
Remote sensing image-text retrieval is a fundamen-
tal task in remote sensing multimodal analysis, pro-
moting the alignment of visual and language repre-
sentations. The mainstream approaches commonly
focus on capturing shared semantic representa-
tions between visual and textual modalities. How-
ever, the inherent characteristics of remote sensing
image-text pairs lead to a semantic confusion prob-
lem, stemming from redundant visual representa-
tions and high inter-class similarity. To tackle this
problem, we propose a novel Discriminative and
Fine-grained Information Mining (DFIM) model,
which aims to enhance semantic clarity by reduc-
ing visual redundancy and increasing the seman-
tic gap between different classes. Specifically,
the Dynamic Visual Enhancement (DVE) module
adaptively enhances the visual discriminative fea-
tures under the guidance of multimodal fusion in-
formation. Meanwhile, the Fine-grained Seman-
tic Matching (FSM) module cleverly models the
matching relationship between image regions and
text words as an optimal transport problem, thereby
refining intra-instance matching. Extensive experi-
ments on two benchmark datasets justify the supe-
riority of DFIM in terms of retrieval accuracy and
visual interpretability over the leading methods.

1 Introduction
Remote Sensing Image-Text Retrieval (RSITR) aims to re-
trieve texts or images with high semantic relevance to a given
image or text from massive remote sensing databases col-
lected by satellites or aerial drones. In recent years, there
has been a growing interest in RSITR [Yuan et al., 2022b;
Liu et al., 2024a] due to its important applications in disaster
monitoring [Joyce et al., 2009], natural resource exploration
and remote sensing image captioning [Yang et al., 2024a].
This task is of great significance yet highly challenging, as it
requires precise visual-linguistic alignment.

∗ Corresponding author.

(a) A toy example to show redundant visual representations.

(b) High similarity across different scenes.
Figure 1: Causes of semantic confusion: (a) Redundant visual rep-
resentations, and (b) high inter-class similarity.

Towards this end, many RSITR models have emerged
[Pan et al., 2023; Yang et al., 2024b; Ma et al., 2024].
Early works [Mao et al., 2018; Lv et al., 2021] achieve
modal alignment by directly mapping different modalities
to a semantic space or using cross-modal interaction. To
optimize representation, [Yuan et al., 2022a] proposes a
multi-scale visual self-attention module to filter visual redun-
dant features. [Mi et al., 2022] improves text representa-
tion through a knowledge graph-based textual enhancement
method. [Yuan et al., 2022b] designs a module that dynam-
ically fuses global and local visual features to better under-
stand the relationships between different visual objects. The
above studies have contributed prominently to RSITR. How-
ever, due to the performance limitations of feature extractors,
the retrieval effect is often unsatisfactory. Recently, vision-
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language pre-training (VLP) models have achieved signifi-
cant success in the field of multimodal analysis. Inspired by
this, several studies [Liu et al., 2024a; Zhang et al., 2024;
Wang et al., 2024] have successfully applied the Contrastive
Language Image Pre-training (CLIP) model [Radford et al.,
2021] to the RSITR task. [Liu et al., 2024a] first proposes
a vision-language model for remote sensing. Both [Zhang
et al., 2024] and [Wang et al., 2024] promote the perfor-
mance improvement of remote sensing vision-language mod-
els (RSVLMs) by collecting large and high-quality remote
sensing image-text datasets.

Although promising, RSVLMs focus primarily on broad
application scenarios and overlook the unique semantic con-
fusion challenges that RSITR encounters. Specifically, cur-
rent methods face semantic confusion for two key reasons:
1) redundant visual representations, and 2) high inter-class
similarity. Redundant visual representations mean that in
remote sensing images, the proportion of the foreground is
often small, making its semantic representation easily dis-
turbed by retrieval-irrelevant areas. As depicted in Fig.1 (a),
retrieval-relevant areas (i.e., aircraft and tarmac) are often af-
fected by the surrounding irrelevant objects (e.g., buildings
and grass). High inter-class similarity refers to the obvious
similarity of image-text pairs with different scenes, which
undermines the accuracy of multimodal semantic representa-
tion. As shown in Fig.1 (b), although the remote sensing im-
ages belong to different scenes (i.e., school, playground, com-
mercial area, and dense residential), their visual contents are
similar, and the corresponding descriptions (e.g., buildings)
are apparently similar as well. These insights prompt a piv-
otal research question that motivates this study: “How can we
reduce visual semantic redundancy and increase inter-class
representation distance to enhance semantic clarity?”

To answer this, we present a novel Discriminative and
Fine-grained Information Mining (DFIM) model, which con-
sists of two crucial modules: 1) Dynamic Visual Enhance-
ment (DVE), and 2) Fine-grained Semantic Matching (FSM).
Concretely, the DVE module first utilizes a multimodal in-
teraction guidance strategy to integrate semantic information
from different modalities, offering precise direction for en-
hancing discriminative features. It then adopts a dynamic
fusion strategy to flexibly refine these features, thereby ef-
fectively suppressing visual redundancy. The FSM module
cleverly models the fine-grained alignment between image re-
gions and text words as an optimal transport problem [Liu et
al., 2020]. By striving to minimize the transport cost between
the distributions of regions and words, it can accurately dis-
tinguish subtle differences between similar pairs. Finally, we
integrate the advantages of DVE and FSM to alleviate seman-
tic redundancy and improve overall performance. The com-
prehensive experimental results show that our method has a
significant advantage over the current state-of-the-art meth-
ods, while also possessing good visual interpretability. The
main contributions of this study are summarized as follows:

• We propose a new remote sensing image-text retrieval
model, DFIM, which can effectively solve the semantic
confusion problem and significantly strengthen the connec-
tion between vision and language.

• To reduce visual redundancy, DVE adaptively enhances the
visual discriminative features by combining multimodal in-
teraction guidance with dynamic fusion strategies.

• To alleviate inter-class semantic confusion, FSM employs
optimal transport learning strategy to identify fine-grained
correspondences between image regions and text words.

• We justify the superiority of DFIM on two popular bench-
mark datasets (i.e., RSICD and RSITMD) with extensive
experiments, where our design outperforms the state-of-the-
art models. Moreover, our method exhibits excellent visual
interpretability.

2 Related Work
Remote Sensing Image-Text Retrieval (RSITR) aims to en-
sure semantic consistency between remote sensing images
and text descriptions. Recently, RSITR has become a re-
search hotspot. According to modal interaction methods [Pan
et al., 2023] before entering the latent semantic space, RSITR
methods can be roughly classified into two categories: intra-
modal interaction methods, and inter-modal interaction meth-
ods. The former [Yuan et al., 2022b; Zhang et al., 2022] per-
forms information interactions only for the same modality,
while the latter [Lv et al., 2021; Yuan et al., 2022a] performs
information interactions for different modalities. Although
existing methods advance through enhanced unimodal fea-
tures or cross-modal interactions, their effectiveness remains
constrained by limited feature extractor capabilities. Recent
studies [Liu et al., 2024a; Pan et al., 2025; Yang et al., 2024c;
Liu et al., 2024b]have shown that the contrastive language
image pre-training (CLIP) model has been successfully ap-
plied to various tasks including RSITR. Instead, we focus on
improving model retrieval accuracy while enhancing visual
interpretability.
Token Pruning has become a hot research topic [Wei et al.,
2023; Cao et al., 2024], aiming to dynamically reduce less
important tokens based on input-dependent importance. Re-
searchers have proposed various methods [Bolya et al., 2022;
Wei et al., 2023] to remove redundant tokens in ViT [Alexey,
2020] to improve the model’s computational efficiency. In
addition, some studies [Chen et al., 2025; Cao et al., 2024]
have reduced the computational cost of vision-language mod-
els through pruning techniques. Although these methods ef-
fectively reduce computational overhead, they may result in
a certain degree of accuracy loss. On the contrary, we re-
duce the redundancy of visual information via token pruning,
thereby extracting discriminative information and further en-
hancing the task-relevant representation.
Optimal Transport Strategy (OT) is initially developed to
quantify the distance between two probability distributions.
It is frequently used to establish correspondences between
learnable features or to measure the distances between distri-
butions. OT has been applied to various fields such as domain
adaptation [Courty et al., 2016] and person re-identification
[Wang et al., 2022]. [Cuturi, 2013] proposes a lightning-fast
approach that efficiently tackles large-scale problems by us-
ing the Sinkhorn algorithm. Unbalanced Optimal Transport
[Chapel et al., 2021] reformulates the corresponding opti-
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Figure 2: Overview of our proposed DFIM framework, which incorporates two principal components: the DVE module and the FSM module.
The DVE and FSM modules effectively mitigate the semantic confusion problem by enhancing global discriminative visual information and
mining fine-grained matching, respectively.

mization problem as a non-negative penalized linear regres-
sion problem. In contrast, we apply OT to minimize the trans-
port cost between image patches and word embeddings, ef-
fectively capturing fine-grained semantic alignment.

3 Methodology
3.1 Problem Overview
Given a remote sensing image-text dataset D, RSITR task is
to learn the cross-modal similarity for retrieval. Formally, D
consists of K image-text pairs, denoted as D = {vi, ti}Ki=1.
Drawing inspiration from the partial success of transferring
knowledge from CLIP [Radford et al., 2021] to RSITR [Liu
et al., 2024a; Zhang et al., 2024], we directly initialize our
DFIM with the complete CLIP image and text encoders,
thereby bolstering its inherent cross-modal alignment capa-
bilities. In detail, given an image-text pair (vi, ti), the vi-
sual encoder performs patch embedding to the image vi to
generate the visual representation Vi = {vclsi , v1i , ..., v

N
i } ∈

R(N+1)×d, which contains global visual feature vclsi ∈ R1×d

and visual patch features vloci = {v1i , ..., vNi } ∈ RN×d.
The language encoder processes words in text ti using to-
ken embedding, converting them into a textual representa-
tion Ti = {tsosi , t1i , ...t

eos
i } ∈ R(M+2)×d, which consists

of global textual feature teosi ∈ R1×d and token features
tloci = {t1i , ..., tMi } ∈ RM×d. Finally, we compute cosine
similarity as a similarity score between the output vectors
of the two modalities. Considering the above introduction
of the RSITR task, it is intuitive that the alignment of the
two modalities determines the model’s performance. How-
ever, as illustrated in Fig.1, learning an effective feature ex-
traction network is challenging due to the semantic confusion
problem. Therefore, our primary research questions are how
to accurately identify visual discriminative features and how
to distinguish similar pairs by learning fine-grained match-
ing. The pipeline of our Discriminative and Fine-grained
Information Mining (DFIM) method is shown in Fig.2.

3.2 Our Proposed Method: DFIM
Our DFIM method consists of two key components: Dynamic
Visual Enhancement and Fine-grained Semantic Matching,
which will be elaborated in Sec. 3.2 and 3.2.
Dynamic Visual Enhancement
As discussed in Sec.1, redundant visual representations exac-
erbate the semantic confusion problem. To address this chal-
lenge, we propose a Dynamic Visual Enhancement (DVE)
module, which dynamically enhances discriminative features
to promote multimodal alignment from a global perspective.
There are two important strategies: multimodal interaction
guidance, and adaptive fusion enhancement.
Multimodal Interaction Guidance (MIG). To ensure that the
retained tokens are essential for both modalities, we first ob-
tain guidance information via the MIG strategy. The core
of this strategy is to establish the correlation between visual
and textual modalities by using learnable interaction prompts
p = {p1, p2, ...pl} ∈ Rl×d, where l is the length of tokens.
Specifically, we use an attention layer to obtain visual token
attention weights Aw ∈ Rl×N guided by multimodal interac-
tion information. The detailed calculation process is as:

Aw = softmax(
p(teosi )T vclsi (vloci )T√

dk
), (1)

where dk represents a scaling factor. Afterward, the visual
token attention maps Aw are fed into the adaptive fusion en-
hancement strategy to guide the fusion process of the visual
features, ensuring that the enhanced features are meaningful
in both modalities, which is exemplified in Fig.2.
Adaptive Fusion Enhancement (AFE). The dynamic token
pruning methods [Chen et al., 2025; Cao et al., 2024] have
been demonstrated to be more effective than static token
pruning because they can adaptively adjust the model’s com-
pression rate in accordance with the complexity of the in-
put instances. Inspired by this, we propose the AFE strategy
to dynamically strengthen discriminative visual features. As
depicted in Fig.2, we first compute the discriminant feature
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score for each token. Then, a learnable threshold is used to
dynamically filter the tokens based on the complexity of the
instances. Finally, we introduce feature fusion operations to
further enhance the visual representation. Detailed descrip-
tion as follows:
(1) Discriminant Feature Score (DFS). To effectively avoid
discarding key tokens, our approach not only considers token
importance based on class attention map [Liu et al., 2022;
Cao et al., 2024], but also extends to the importance of tokens
across different modalities. The DFS is obtained by averaging
two types of scores:

DFS = (Scls + Stoken)/2. (2)

Here, Scls is the class attention score as implemented by [Liu
et al., 2022]. Stoken denotes the token attention score. We
use the visual token attention weights Aw ∈ Rl×N from the
MIG strategy to calculate the Stoken as follows:

Sn
token =

max(An
w)∑N

n=1 max(An
w)

, (3)

where N is the length of tokens and max(An
w) is the maxi-

mum value for the n-th token in the attention weights Aw.
(2) Token Filtering. To implement instance-wise adaptive to-
ken filtering, we first compute learnable thresholds θ using
the token attention weight Aw learned from the MIG strat-
egy. The computation of θ is defined as follows:

θ = min(Âw ⊗DFS), (4)

where Âw represents the sparse token attention maps ob-
tained by applying the sparsemax function [Martins and As-
tudillo, 2016] on Aw. Based on the above DFS and threshold
θ, we perform discriminative tokens filtering. Specifically, we
compare the DFS of each token with θ to obtain the filtering
mask Mm, which is expressed as follows:

Mm(vni ) =

{
1, if DFS(vni ) > θ,

0, otherwise.
(5)

Here, vni is the n-th token in the visual patch features vloci .
Retain primary tokens vimp

i with scores above the threshold
θ and exclude the rest according to the filter mask Mm.
(3) Feature Fusion. To prevent the loss of information caused
by directly discarding tokens, we first aggregate the primary
tokens vimp

i to obtain a new global feature v̂clsi , which con-
tains more discriminative information than the original global
feature vclsi . In detail, we employ an embedding transforma-
tion [Qin et al., 2024] to the updated sequence of important
tokens. Subsequently, we fuse v̂clsi with vclsi in a specific ra-
tio. The process is defined as follows:

v̂clsi = MaxPool(mlp(vimp
i + f(vimp

i ))), (6)

v̂i = λv̂clsi + vclsi , (7)
where mlp(·) refers to a multi-layer perceptron, f(·) repre-
sents a linear layer. λ is the balance coefficient. So far, we
obtain a non-redundant global visual representation v̂i that
contains both contextual information and enhanced discrimi-
native properties.

Fine-grained Semantic Matching
While vclsi and teosi provide a comprehensive understanding
of global alignment relationships, due to high inter-class sim-
ilarity, it may lack some fine-grained matching information
to distinguish subtle differences between similar objects or
scenarios. Although existing methods [Yuan et al., 2022a;
Zhou et al., 2024] have recognized the significance of extract-
ing fine-grained information, most of them focus exclusively
on visual fine-grained details, neglecting multimodal fine-
grained matching, which is of vital importance to RSITR.
To mitigate this issue, we propose a Fine-grained Semantic
Matching (FSM) module to enhance multimodal fine-grained
awareness. Specifically, for the given N suppliers (image
patches) and M demanders (words). The supplier supplies
image patches to the demander, described as a vector x, and
the demander receives image patches from the supplier, de-
scribed as a vector y. We formulate the fine-grained match-
ing task as an optimal transport problem [Liu et al., 2020],
which is to find an optimal transportation plan P ∈ RN×M to
minimize the transport cost C. It can be expressed as:

P ∗ = argmax
P∈P

⟨P,C⟩F + λ1H(P ), (8)

where ⟨P,C⟩F is the Frobenius inner product between the
transportation (matching) plan P and cost matrix C. The ma-
trix c(vni , t

m
i ) is an element of C, which denotes the transport

costs between vni and tmi . It can be expressed as c(vni , t
m
i ) =

1 − cos(vni , t
m
i ). In addition, we add entropy regularization

on P as H(P ) =
∑

nm Pnm logPnm to ensure that P is not
over-concentrated on a few elements. Ultimately, the solution
of Eq. 8 can limit a transportation polytope:

P = {P ∈ RN×M |P1M = x, PT1N = y}, (9)

where Pnm represents the transport plan between the n-th im-
age patch and the m-th word, and P contains all non-negative
N×M elements, with row and column sums equal to x and y,
respectively. We employ the inexact proximal point method
for optimal transport (IPOT) [Xie et al., 2020] to approximate
the transport plan, which is formulated as follows:

P ∗ = Diag(µ) exp(C/λ2)Diag(v), (10)

where µ and v are row and column normalized vectors, re-
spectively, and can be computed via the iterative Sinkhorn-
Knopp algorithm [Cuturi, 2013]. To maximize inter-class dis-
tinctions and learn fine-grained matching, each image patch
should be closely aligned with the corresponding text word.
Thus, we define the patch-to-word alignment loss Lp2w as:

Lp2w = min
P∈P(µ,v)

N∑
n=1

M∑
m=1

Pnm · c(vni , tmi ). (11)

Overall, the FSM module reduces the inter-class similar-
ity by explicitly establishing fine-grained alignment between
patches and words, thereby effectively alleviating the seman-
tic confusion problem.
Learning Strategies
Our training objective consists of two parts: 1) We leverage
the bi-directional similarity distribution matching loss [Jiang
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and Ye, 2023] LSDM to supervise the learning of the global
representations across different modalities:

LSDM = Lsdm(v̂i, t
eos
j ) + Lsdm(teosi , v̂j),

Lsdm =
1

K

K∑
i=1

K∑
j=1

pi,j log(
pi,j

qi,j + ϵ
),

(12)

where pi,j is the probability of matching pairs, and qi,j =

yi,j/
∑K

k=1 yi,k is the true matching probability. 2) We also
adopt the proposed Lp2w to supervise the fine-grained match-
ing as described in Sec. 3.2. The total loss is given by:

Ltotal = αLSDM + βLp2w, (13)

where α and β denote the balance coefficient.

4 Experiments
This section conducts experiments to answer the following
questions. RQ1: How effective is DFIM in improving the
model performance across different settings? RQ2: How do
the Dynamic Visual Enhancement (DVE) module and Fine-
grained Semantic Matching (FSM) module contribute to the
performance? RQ3: What are the learning patterns and in-
sights of DFIM?

4.1 Settings
Datasets. We evaluate our method on the RSICD and
RSITMD datasets. RSICD [Lu et al., 2017] consists of a
total of 10,921 images, each image is associated with five
text descriptions. Following [Yuan et al., 2022a], we divide
the dataset into 7,862 training images, 1,966 validation im-
ages, and 1,093 test images. RSITMD [Yuan et al., 2022a]
includes 4,743 images, with each image annotated by five
sentences offering a finer-grained description than RSICD.
Utilizing the same division strategy as [Yuan et al., 2022b],
we split the dataset into 3,435 training images, 856 valida-
tion images, and 452 test images. Additionally, to investigate
the model’s performance on both significant and insignificant
sample pairs, we divide the RSICD and RSITMD test sets ac-
cording to [Ma et al., 2024]. The distinction between signif-
icant and insignificant images is determined by whether they
contain prominent objects.
Evaluation Protocol. Following standard practices in image-
text retrieval, we evaluate the performance of DFIM by R@K
(K = 1, 5, 10) and mR. R@K denotes the proportion of ac-
curately matched pairs within the top K retrieval outcomes,
while mR represents the mean of these R@K values.
Implementation Details. All experiments are conducted in
a station equipped with RTX4090 24GB GPU. We use CLIP
(ViT-B-32) [Radford et al., 2021] as the backbone, and em-
ploy ViT-B-32-RET-2 [Zhang et al., 2024] for parameter ini-
tialization. All input images are resized to 224 × 224 and
then randomly cropped and rotated to enhance the training
samples. The maximum length of the textual token sequence
is set to 77. We set the epoch to 20 and the batchsize to 128 on
both datasets. We use Adam [Kingma, 2014] as the model op-
timizer. A cosine learning rate decay is applied, starting with
an initial learning rate of 1× 10−4 for RSICD and 1× 10−5

for RSITMD. The hyper-parameters λ, α and β are set to 0.5,
1.0 and 0.7 for RSICD, respectively. The hyper-parameters λ,
α and β are set to 0.6, 0.8 and 1.1 for RSITMD, respectively.

4.2 Quantitative Comparison (RQ1)
In this section, we comprehensively evaluate our DFIM on
two widely-used RSITR datasets (i.e., RSICD [Lu et al.,
2017] and RSITMD [Yuan et al., 2022a]). According to dif-
ferent training paradigms, the methods for comparison with
DFIM can be roughly divided into two categories: 1) Tra-
ditional cross-modal retrieval methods, including AMFMN
[Yuan et al., 2022a], GaLR [Yuan et al., 2022b], SWAN
[Pan et al., 2023], HVSA[Zhang et al., 2023] and DOVE
[Ma et al., 2024]. 2) CLIP-based methods, such as Adapt-
Former [Chen et al., 2022], PE-RSITR [Yuan et al., 2023],
GeoRSCLIP [Zhang et al., 2024] and HarMA [Huang, 2024].
Results on RSICD Dataset. According to the comparison
results on RSICD reported in Tab.1, we can find that our
DFIM shows a significant increase compared to the SOTA
approach HarMA. For example, R@1 improves 14.1% (23.42
vs. 20.52) and 11.7% (17.70 vs. 15.84) in sentence and im-
age retrieval, respectively. In general, there is a 10.7% (43.14
vs. 38.95) improvement on the mR metric. Thus, our method
outperforms traditional and CLIP-based retrieval methods on
the RSICD dataset, reflecting its superior performance in re-
solving semantic confusion problem.
Results on RSITMD Dataset. Tab.1 presents the results on
RSITMD. It is evident that DFIM has a high performance
advantage, as it achieves considerable improvements across
all metrics relative to state-of-the-art methods. Specifically,
compared to HarMA, the R@1 of image-query-text is im-
proved by 6.8% (34.97 vs. 32.74), and mR is improved by
5.2% (55.01 vs. 52.27). The above results demonstrate the ef-
fectiveness of DFIM in reducing the semantic confusion and
the superiority of the scene perception capability.
Results on significant and insignificant test sets. To further
explore the capability of DFIM in matching significance and
insignificance objects, we conduct controlled experiments: 1)
the complete test set; 2) the significant test set; and 3) the in-
significant test set. The difference between significant and
insignificant images depends on whether they contain salient
objects or not. Fig.3 displays results on the complete, signif-
icant and insignificant test sets of the RSICD and RSITMD
datasets. DFIM has achieved substantial improvements over
traditional methods (i.e., SWAN and DOVE). Besides, we
implement a baseline approach CLIP*, which uses ViT-B-
32-RET-2 [Zhang et al., 2024] for parameter initialization.
Our method achieves the best performance on the mR met-
ric for all three experimental setups. That is, our method
significantly improves the retrieval effect by reducing visual
redundancy and mining fine-grained alignment information,
regardless of whether the object is salient or not.

4.3 In-depth Studies of DFIM (RQ2)
Contributions of the DFIM’s components. To fully under-
stand the DFIM, we explore the effectiveness of the DVE and
FSM modules on the RSITMD dataset. The corresponding
performances are reported in Tab.2. Effectiveness of DVE.
Observing w/o FSM, we can find a 3.0% (53.36 vs. 55.01)
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RSICD dataset RSITMD dataset

Method Ref
Image-query-Text

R@1 / R@5 / R@10
Text-query-Image

R@1 / R@5 / R@10
mR

Image-query-Text
R@1 / R@5 / R@10

Text-query-Image
R@1 / R@5 / R@10

mR

AMFMN TGRS’22 5.21 / 14.72 / 21.57 4.08 / 17.00 / 30.60 15.53 10.63 / 24.78 / 41.81 11.51 / 34.69 / 54.87 29.72

GaLR TGRS’22 6.59 / 19.85 / 31.04 4.69 / 19.48 / 32.13 18.96 14.82 / 31.64 / 42.48 11.15 / 36.68 / 51.68 31.41

SWAN ICMR’23 7.41 / 20.13 / 30.86 5.56 / 22.26 / 37.41 20.61 13.35 / 32.15 / 46.90 11.24 / 40.40 / 60.60 34.11

HVSA TGRS’23 7.47 / 20.62 / 32.11 5.51 / 21.13 / 34.13 20.16 13.20 / 32.08 / 45.58 11.43 / 39.20 / 57.45 33.16

DOVE TGRS’24 8.66 / 22.35 / 34.95 6.04 / 23.95 / 40.35 22.72 16.81 / 36.80 / 49.93 12.20 / 44.13 / 66.50 37.73

AdaptFormer NIPS’22 12.46 / 28.49 / 41.86 9.09 / 29.89 / 46.91 28.1 16.71 / 30.16 / 42.91 14.27 / 41.53 / 61.46 34.81

PE-RSITR TGRS’22 14.16 / 31.51 / 44.78 11.63 / 33.92 / 50.73 31.12 23.67 / 44.07 / 60.36 20.10 / 50.63 / 67.97 44.47

GeoRSCLIP TGRS’24 21.13 / 41.72 / 55.63 15.59 / 41.19 / 57.99 38.87 32.30 / 53.32 / 67.92 25.04 / 57.88 / 74.38 51.81

HarMA ICLRW’24 20.52 / 41.37 / 54.66 15.84 / 41.92 / 59.39 38.95 32.74 / 53.76 / 69.25 25.62 / 57.65 / 74.60 52.27

DFIM Ours 23.42 / 45.09 / 62.63 17.70 / 46.61 / 63.42 43.14 34.97 / 57.36 / 71.25 28.72 / 59.83 / 77.92 55.01

Table 1: Comparisons of image-text retrieval results on RSICD and RSITMD.

Figure 3: Results from the complete, significant, and insignificant test sets of the RSICD and RSITMD datasets are presented, assessing the
performance of various retrieval methods in recognizing significant and insignificant objects. The complete dataset is divided into significant
and insignificant subsets based on whether the image contains categories of common remote sensing objects or not.

performance drop in the mR metric. This shows DVE can
substantially improve retrieval ability. Effectiveness of FSM.
Without using FSM (i.e., w/o FSM), it can be found that a
4.1% (52.73 vs. 55.01) performance drop in the mR metric.
This indicates that FSM can significantly improve the fine-
grained matching performance. Overall, the results show that
the combination of DVE and FSM can effectively mitigate
the semantic confusion.

Method
Sentence Retrieval Image Retrieval

R@1 / R@5 / R@10 R@1 / R@5 / R@10 mR
baseline 31.24 / 53.68 / 68.31 25.36 / 57.04 / 73.61 51.54

w/o DVE 33.27 / 55.19 / 70.06 27.38 / 58.09 / 76.15 53.36

w/o FSM 33.01 / 54.43 / 69.58 26.23 / 57.96 / 75.17 52.73

DFIM 34.97 / 57.36 / 71.25 28.72 / 59.83 / 77.92 55.01

Table 2: Ablation studies for DFIM’s components on RSITMD.

Analysis of Hyper-parameters. The sensitivity analysis of
hyper-parameters λ, α and β is shown in Fig.4. λ represents
the intensity of visual feature enhancement. α and β balance

the contributions of global and local matching, respectively.
Over a wide range of hyper-parameters, our model shows
very small fluctuations. In general, variations in the hyper-
parameters do not lead to significant degradation in perfor-
mance, which demonstrates the stability of our DFIM.

Figure 4: Ablation studies of Hyper-parameters.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 5: Several examples of visualizations illustrating the region-word alignment. Highlighted regions correspond to the relevant words.

Figure 6: Visualization of token filtering results. The white mask in
the image represents the pruned visual tokens.

4.4 Qualitative Analysis (RQ3)
To capture the learning insights of DFIM, we perform a se-
ries of detailed visual analyses. (1) Visual Token Selection
Visualization. In Fig.6, we display the visualization results
of token filtering on the RSICD dataset. The figure consists
of textual descriptions, the original images, and the corre-
sponding processed outputs, where the white mask indicates
redundant patches. It can be observed that based on the tex-
tual descriptions, our DFIM retains key tokens and prunes
irrelevant ones. For instance, DFIM preserves the “baseball
field” in the second row of the example shown in Fig.6. Be-
sides, we observe that for different scenes (i.e., airport, base-
ball field, and church), DFIM can adaptively distinguish be-
tween primary and redundant tokens based on the size of dif-
ferent targets. These visualization results highlight DFIM’s
capacity to accredit diverse scenes and also validate its inter-
pretability in dealing with visual redundant representations.
(2) Region-Word Alignment Visualization. In order to further
evaluate the DFIM’s capacity to capture fine-grained relation-
ships, we leverage gradient-weighted attention [Chefer et al.,
2021] to generate heat maps, where colors closer to red indi-
cate more semantic relevance. As shown in Fig.5 (a), “trees”,
“buildings”, and “pool” are accurately mapped to their corre-

sponding image regions. It is worth noting that, although the
“pool” area is very small, DFIM is still able to align the re-
gion and word accurately. In addition, there are multiple dis-
persed small targets (i.e., vehicles) in Fig.5 (b), we observe
that DFIM can accurately match the word “vehicles” with the
dispersed targets in the image. Meanwhile, DFIM can accu-
rately identify the entire region associated with color-related
words (e.g., “red” and “green”), rather than merely the tar-
get object that exhibits that color. As shown in Fig.5 (c), the
region corresponding to “green” encompasses not only areas
associated with green plants but also all green regions in the
image. This indicates that DFIM can achieve fine-grained
matching and resist overfitting.

5 Conclusion
In this paper, we propose a novel Discriminative and Fine-
grained Information Mining (DFIM) approach to alleviate se-
mantic confusion in the RSITR task. We first analyze two
causes of semantic confusion: visual representation redun-
dancy and excessive inter-class similarity. To address these
issues, we design a Dynamic Visual Enhancement (DVE)
module and a Fine-grained Semantic Matching (FSM) mod-
ule, respectively. Specifically, the DVE module can adap-
tively strengthen the visual discriminative features that are
critical to both modalities. Meanwhile, the FSM module
cleverly formulates the fine-grained matching relationship be-
tween image regions and text words as an optimal trans-
port problem, amplifying inter-class distinctions. Compre-
hensive experiments validate DFIM’s effectiveness in both
retrieval accuracy and visual interpretability. In future work,
we plan to extend DFIM to more tasks [Yang et al., 2023;
Wu et al., 2025; Xu et al., 2025; Yang et al., 2021] and assess
its effectiveness in diverse scenarios.
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