
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Exact Algorithms with New Upper Bounds for the Maximum k-plex Problem

Jiongzhi Zheng , Mingming Jin and Kun He∗

School of Computer Science and Technology, Huazhong University of Science and Technology, China
brooklet60@hust.edu.cn

Abstract
The Maximum k-plex Problem (MKP) is a de-
gree relaxation of the widely known Maximum
Clique Problem. As a practical NP-hard problem,
MKP has many important real-world applications,
such as the analysis of various complex networks.
Branch-and-bound (BnB) algorithms are a type
of well-studied and effective exact algorithms for
MKP, and the key for BnB algorithms is the bound
design. Recent BnB MKP algorithms involve two
kinds of upper bounds based on graph coloring and
partition, respectively, that work in different per-
spectives and thus are complementary with each
other. We first propose a new coloring-based upper
bound, termed Relaxed Graph Color Bound (Re-
laxGCB), that significantly outperforms the previ-
ous coloring-based upper bound. Then we further
propose another new upper bound, termed Relax-
PUB, that incorporates RelaxGCB and a partition-
based upper bound in a novel way, making use of
their complementarity. We apply RelaxGCB and
RelaxPUB to state-of-the-art BnB MKP algorithms
and produce eight new BnB algorithms. Extensive
experiments using diverse k values based on dense
or massive sparse graphs demonstrate the excellent
performance and robustness of our methods.

1 Introduction
Given an undirected graph G = (V,E), a clique is a set of
vertices that are pairwise adjacent, and a k-plex [Seidman and
Foster, 1978] is a set of vertices S ⊆ V where each vertex
v ∈ S is non-adjacent to at most k vertices (including v itself)
in S. Thus, a clique is a 1-plex, and k-plex is a relaxation
structure of clique. The Maximum Clique Problem (MCP)
is to find the largest clique in G, while the Maximum k-plex
Problem (MKP) is to find the largest k-plex in G.

MCP is a famous and fundamental NP-hard problem,
and the clique model has been widely investigated in the
past decades. However, in many real-world applications,
such as social network mining [Seidman and Foster, 1978;
Pattillo et al., 2013; Conte et al., 2018; Zhu et al., 2020;

∗Corresponding author.

Wang et al., 2023a] and biological network analysis [Gr-
bic et al., 2020], dense subgraphs need not to be restrictive
cliques but allow missing a few connections. Therefore, in-
vestigating relaxation clique structures like k-plex is signif-
icant, and studies related to k-plex have sustainably grown
in recent decades [Balasundaram et al., 2011; McClosky
and Hicks, 2012; Berlowitz et al., 2015; Conte et al., 2017;
Wang et al., 2022; Matsugu et al., 2023].

Many efficient exact methods for the NP-hard MKP have
been proposed [Xiao et al., 2017; Gao et al., 2018; Zhou et
al., 2021; Jiang et al., 2021; Chang et al., 2022; Wang et al.,
2023b; Jiang et al., 2023; Chang and Yao, 2024], resulting
in various effective techniques, such as reduction rules, up-
per bounds, inprocessing methods, etc. Most of these stud-
ies follow the branch-and-bound (BnB) framework [Lawler
and Wood, 1966], whose performance heavily depends on the
quality of the upper bounds.

A BnB MKP algorithm usually maintains the current grow-
ing partial k-plex S ⊆ V and the corresponding candidate
vertex set C ⊆ V \S. Existing methods for calculating the
upper bound on the number of vertices that C can provide for
S can be divided into two categories. The first considers the
connectivity between vertices in C only, such as the graph
color bound (GCB) proposed in the Maplex algorithm [Zhou
et al., 2021]. The second considers the connectivity between
vertices in C and vertices in S, including the partition-based
upper bounds (PUB) proposed in the KpLeX [Jiang et al.,
2021] algorithm and also used in the kPlexS [Chang et al.,
2022] and KPLEX [Wang et al., 2023b] algorithms.

In this work, we observe that the existing upper bounds
are still not very tight. For a graph G, an independent set
I is a subset of V where any two vertices are non-adjacent.
Graph coloring assigns a color to each vertex such that adja-
cent vertices are in different colors, which is widely used for
finding independent sets in graphs. GCB [Zhou et al., 2021]
claims that an independent set I ⊆ C can provide at most
min{|I|, k} vertices for S, ignoring the connectivity between
vertices in I and vertices in S. While PUB [Jiang et al., 2021]
simply regards C as a clique. Also, due to different motiva-
tions of the two kinds of upper bounds, they show comple-
mentary performance in various instances, as indicated in our
follow-up examples and experiments.

Based on our observation, We propose a new upper bound
based on graph coloring called Relaxed Graph Color Bound

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(RelaxGCB) with two new techniques, bringing new ideas
for coloring-based upper bounds in relaxation clique prob-
lems. RelaxGCB first calculates an upper bound for each in-
dependent set I ⊆ C that is strictly no worse than GCB by
considering the connectivity between not only vertices in I
themselves but also vertices in I and vertices in S. Further-
more, RelaxGCB relaxes the restrictive structure of indepen-
dent sets, allowing to add some extra vertices to a maximal
independent set (i.e., not contained by any other independent
set) I ⊆ C without increasing the upper bound.

Based on our another observation that the coloring-based
and partition-based upper bounds are complementary, we
propose another new upper bound called RelaxPUB. Relax-
PUB combines our RelaxGCB with a refined PUB called Dis-
ePUB [Jiang et al., 2023]. Different from common methods
for combining various upper bounds that sequentially calcu-
late them until the branch can be pruned or cannot be pruned
by any upper bound, RelaxPUB combines RelaxGCB and
DisePUB in a novel and compact way. When calculating
the upper bound of the number of vertices that C can pro-
vide for S, both of them iteratively extracts a subset I ⊆ C
from C, calculating the upper bound of the number of vertices
that I can provide for S and accumulating the upper bounds.
In each iteration, RelaxPUB uses RelaxGCB and DisePUB
to respectively extract a subset from C and selects the better
one, and repeats this process until C is empty.

We evaluate our proposed two upper bounds by apply-
ing them to state-of-the-art (SOTA) BnB MKP algorithms,
including Maplex, kPlexS, DiseMKP, and KPLEX. Among
them, Maplex only applies coloring-based upper bound, i.e.,
GCB, and the others only apply PUB. We replace their orig-
inal upper bounds with our RelaxGCB and RelaxPUB and
gain new BnB algorithms. Extensive experiments show that
in both dense and massive sparse graphs using various k
values, RelaxGCB significantly outperforms GCB, and Re-
laxPUB can significantly improve the baselines and lead to
SOTA BnB algorithms, indicating the excellent and generic
performance of our methods.

2 Preliminaries
2.1 Definitions
Given an undirected graph G = (V,E), where V is the vertex
set and E the edge set, the density of G is 2|E|/(|V |(|V | −
1)), we denote N(v) as the set of vertices adjacent to v, which
are also called the neighbors of v. Given a vertex set S ⊆
V , we denote G[S] as the subgraph induced by S. Given an
integer k, S ⊆ V is a k-plex if each vertex v ∈ S satisfies
that |S\N(v)| ≤ k.

For a growing partial k-plex S, we define ωk(G,S) as the
size of the maximum k-plex that includes all vertices in S,
and δ(S, v) = |S\N(v)| as the number of non-neighbors
of vertex v in S. Given an integer k, we further define
δ−k (S, v) = k − δ(S, v) to facilitate our algorithm descrip-
tion. If v ∈ S, δ−k (S, v) indicates the maximum number of
non-adjacent vertices of v that can be added to S. Otherwise,
it indicates that, including v itself, the maximum number of
its non-adjacent vertices that can be added to S.

2.2 Framework of BnB MKP Algorithms
During the course of a general BnB MKP algorithm, a
lower bound lb on the size of the maximum k-plex is main-
tained, which is usually initialized by some heuristic algo-
rithms [Zhou et al., 2021; Jiang et al., 2021; Chang et al.,
2022], and is updated once a larger k-plex is found.

A general BnB MKP algorithm usually contains a prepro-
cessing stage and a BnB search stage. During the prepro-
cessing, the algorithm uses some reduction rules [Gao et al.,
2018; Zhou et al., 2021; Chang et al., 2022] to remove ver-
tices that are impossible to belong to a k-plex of size larger
than lb. In the BnB search stage, the algorithm traverses the
search tree to find the optimal solution. During the search,
the algorithm always maintains two vertex sets, the current
growing partial k-plex S, and its corresponding candidate set
C containing vertices that might be added to S. Once the al-
gorithm selects a branching vertex v to be added to S from C,
it calculates an upper bound ub on the size of the maximum
k-plex that can be extended from S ∪ {v}, and the branch of
adding v to S will be pruned if ub ≤ lb.

3 The RelaxGCB Bound
The proposed RelaxGCB brings two new ideas of using the
coloring technique for calculating the upper bound. Specifi-
cally, it first calculates a tighter bound for each independent
set I ⊆ C, and then allows add extra vertices to a maximal
independent set without changing the upper bound.

In the following, we first introduce our two improvements
and provide an example for illustration, then present our Re-
laxColoring algorithm for calculating the RelaxGCB bound.

3.1 A Tighter Upper Bound for Independent Sets
Since vertices in the candidate set C might be non-adjacent to
some vertices in the growing partial k-plex S, an independent
set I ⊆ C actually cannot provide k vertices for S sometimes
even when |I| > k. We introduce a Tighter Independent Set
Upper Bound (TISUB) on the number of vertices that an in-
dependent set I ⊆ C can provide for S.
Lemma 1 (TISUB). Suppose I = {v1, v2, · · · , v|I|} ⊆ C

is an independent set and δ−k (S, v1) ≥ δ−k (S, v2) ≥ · · · ≥
δ−k (S, v|I|), max{i|δ−k (S, vi) ≥ i} is an upper bound of the
number of vertices that I can provide for S.

Proof. Firstly, ignoring the constraint of at most k non-
neighbors of vertices in S, v1, v2, · · · , v|I| is one of the best
orders for adding vertices in I to S to obtain the largest
k-plex in G[S ∪ I], because the more non-neighbors in S
(as indicated by δ(S, v)), the easier it is for vertices to vio-
late the constraint. Secondly, suppose vertices v1, · · · , vi are
going to be added to S, further adding vi+1 to S leads to
δ(S, vi+1)+ i+1 non-neighbors of vi+1 in S (including vi+1

itself). Therefore, only vertices vi ∈ I with δ(S, vi) + i ≤ k,
i.e., δ−k (S, vi) ≥ i, can be added to S, and I can provide at
most max{i|δ−k (S, vi) ≥ i} vertices for S.

To better understand the TISUB, we suggest borrowing
from the h-index defined in Wikipedia. If you regard each
vertex v ∈ I as a paper of an author and δ−k (S, v) as the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

citation times of this paper. Then, TISUB(I, S) equals the
h-index of this author.

For convenience, in the rest of this paper, we regard the
vertices in any independent set I ⊆ C, i.e., {v1, v2, · · · , v|I|},
as sorted in non-ascending order of their δ−k (S, v) values. We
further define TISUB(I, S) = max{i|δ−k (S, vi) ≥ i} as the
upper bound calculated by TISUB on the number of vertices
that I can provide for S. Note that the value of TISUB(I, S)
is bounded by |I| since i ≤ |I|, which eliminates the need for
term |I| in TISUB. Moreover, since δ(S, v) ≥ 0, δ−k (S, v) ≤
k holds, and TISUB(I, S) is also bounded by k. Therefore,
we have TISUB(I, S) ≤ min{|I|, k}, and TISUB is strictly
never worse than GCB, which claims that I can provide at
most min{|I|, k} vertices for S.

3.2 Relax the Independent Sets
Since the relaxation property of k-plex over clique, an inde-
pendent set I ∈ C can usually provide more than one vertices
for the growing partial k-plex S, and the restriction of inde-
pendent sets can be relaxed to contain more vertices.

In the following, we define two kinds of vertices and then
introduce two different rules for relaxing the restriction of in-
dependent sets and making maximal independent sets contain
extra vertices without increasing their TISUB.
Definition 1 (Conflict Vertex). Given a vertex set I , we de-
note vertices v ∈ I that are adjacent to at least one vertex in
I as conflict vertices.
Definition 2 (Loose Vertex). Given a k-plex S and a vertex
set I ⊆ C, suppose UB is an upper bound of the number of
vertices that I can provide for S, we denote each vertex v ∈ I
with δ−k (S, v) > UB as a loose vertex.
Rule 1. Suppose UB is an upper bound of the number of ver-
tices that a vertex set I ⊆ C can provide for S. It is allowed
to add vertex v to I if the number of vertices that are loose or
conflict in I ∪ {v} is no more than UB .
Lemma 2. After adding any vertex v to I ⊆ C according to
Rule 1, UB is still an upper bound of the number of vertices
that I ′ = I ∪ {v} can provide for S.

Proof. On one hand, if adding a vertex v ∈ I ′ that is neither
conflict nor loose to S, then at most δ−k (S, v)−1 < UB other
vertices in I ′ can be added to S. On the other hand, by Rule
1, we require the number of conflict or loose vertices in I ′ to
be no more than UB . Therefore, at most UB vertices in I ′

can be added to S.

Rule 2. Suppose UB is an upper bound of the number of ver-
tices that a vertex set I ⊆ C can provide for S. It is allowed
to add vertex v to I if v is adjacent to at most UB − δ−k (S, v)
vertices in I .
Lemma 3. After adding any vertex v to I ⊆ C according to
Rule 2, UB is still an upper bound of the number of vertices
that I ′ = I ∪ {v} can provide for S.

Proof. On one hand, if adding v to S, at most δ−k (S, v) − 1
other vertices that are non-adjacent to v in I ′ can be added to
S. Since v is adjacent to at most UB−δ−k (S, v) vertices in I ′,
thus after adding v to S, I ′ can still provide at most UB − 1

Figure 1: An example for comparing the upper bounds.

vertices for S. On the other hand, if not adding v to S, I ′
itself can only provide at most UB vertices for S.

Given a maximal independent set I ⊆ C, both Rule 1
and Rule 2 can add extra vertices to I without increasing
its TISUB. Actually, Rule 1 allows us to add finite (at most
TISUB(I, S) - 1) conflict vertices to I , and Rule 2 can be re-
peatedly used to add any vertex satisfying the rule to I .

3.3 An Example for Illustration
We provide an example in Figure 1 to show how the up-
per bounds are calculated and rules are used. Figure 1
shows a subgraph of G induced by the candidate set C =
{v1, v2, · · · , v8}, i.e., G[C], of a 4-plex S, where vi|t identi-
fies vertex vi ∈ C with δ−k (S, vi) = t. For simplification, we
hide the 4-plex S and only depict the candidate vertices.

Suppose we sequentially color vertices v1, v2, · · · , v8 un-
der the constraint that adjacent vertices cannot be in the
same color, C can be partitioned into 3 independent sets,
I1 = {v1, v2, v3}, I2 = {v4, v5, v6, v8} and I3 = {v7}, as
indicated by the colors of the vertices. The GCB of ω4(G,S)

is |S| +
∑3

i=1 min{|Ii|, 4} = |S| + 3 + 4 + 1 = |S| + 8.
The TISUB of ω4(G,S) is |S| +

∑3
i=1 TISUB(Ii, S) =

|S|+ 3 + 2 + 1 = |S|+ 6.
Then, let us use Rule 1 to make independent set I1 con-

tain more vertices. For I1, since TISUB(I1, S) = 3, there
is only one loose vertex v1 in I1. By applying Rule 1, we
can add vertices v6 and v7 to I1 without increasing the upper
bound of ω4(G[S ∪ I1], S), since there are only 3 loose or
conflict vertices, i.e., v1, v6, v7, in I1 ∪ {v6, v7}. After the
operation, C is partitioned into two sets, I5 = I1 ∪ {v6, v7}
and I6 = {v4, v5, v8}. The new upper bound of ω4(G,S) is
|S|+TISUB(I5, S)+TISUB(I6, S) = |S|+3+1 = |S|+4.

Finally, let us use Rule 2 to further make set I5 contain
more vertices. According to Rule 2, all vertices in I6 can be
added to I5 without increasing the upper bound of ω4(G[S ∪
I5], S). After the operation, the final RelaxGCB of ω4(G,S)
is |S|+ TISUB(I5, S) = |S|+ 3.

3.4 The RelaxColoring Algorithm
The RelaxColoring algorithm for calculating the RelaxGCB
is summarized in Algorithm 1. The algorithm first uses |S|
to initialize the upper bound UB (line 1), and then repeatedly
uses the TryColor() function to extract a subset I ⊆ C and
calculate the upper bound on the number of vertices that I
can provide for S, i.e., ub (line 3) until C = ∅ (line 2). After
each execution of function TryColor(), the candidate set C
and upper bound UB are both updated (line 4).

Function TryColor() is summarized in Algorithm 2, which
first finds a maximal independent set I ⊆ C (lines 1-3) and
calculates its TISUB (line 4). Then, the algorithm initializes

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1: RelaxColoring(G, k, S, C)

Input: A graph G = (V,E), an integer k, the current
partial k-plex S, the candidate set C

Output: RelaxGCB of ωk(G,S)
1 initialize the upper bound UB ← |S|;
2 while C ̸= ∅ do
3 {I, ub} ← TryColor(G, k, S, C);
4 C ← C\I , UB ← UB + ub;
5 return UB ;

Algorithm 2: TryColor(G, k, S, C)

Input: A graph G = (V,E), an integer k, the current
partial k-plex S, the candidate set C

Output: A vertex set I , an upper bound ub of the
number of vertices that I can provide for S

1 initialize I ← ∅;
2 for each vertex v ∈ C do
3 if N(v) ∩ I = ∅ then I ← I ∪ {v};
4 ub← TISUB(I, S);
5 initialize the set of loose or conflict vertices

LC ← {v ∈ I|δ−k (S, v) > ub};
6 if |LC| < ub then
7 for each vertex v ∈ C\I do
8 CV ← {v} ∪ {N(v) ∩ I\LC};
9 if |LC|+ |CV | ≤ ub then

10 I ← I ∪ {v};
11 LC ← LC ∪ CV ;
12 if |LC| = ub then break;

13 for each vertex v ∈ C\I ∧ δ−k (S, v) < ub do
14 if |N(v) ∩ I| ≤ ub− δ−k (S, v) then
15 I ← I ∪ {v};

16 return {I, ub};

the set of loose or conflict vertices LC (line 5) and tries to add
as many vertices as possible to I according to Rule 1 (lines
6-12). Once trying to add each vertex v, the algorithm uses
CV to denote the extra conflict vertices caused by adding v
to I (line 8). Since I is a maximal independent set in C,
adding any vertex v to I increases at least one conflict ver-
tices, i.e., v itself (line 8). Thus, the utilization of Rule 1 can
be terminated when |LC| ≥ ub (lines 6 and 12). Finally, the
algorithm applies Rule 2 to further add vertices to I (lines 13-
15). Since for each vertex v ∈ C\I , |N(v) ∩ I| > 0 holds,
only vertex v ∈ C\I with δ−k (S, v) < ub can be added to I
according to Rule 2 (line 13).

The time complexities of RelaxColoring algorithm and
TryColor function are O(|C|2 × T) and O(|C| × T), respec-
tively, where O(T) is the time complexity of the intersection
operation between N(v) and I (or I\LC) used in lines 3, 8,
and 14 in Algorithm 2. Actually, O(T) is bounded by O(|V |)
and much smaller than O(|V |) with the bitset encoding [Se-
gundo et al., 2011].

Algorithm 3: SelectPartition(G, k, S, C)

Input: A graph G = (V,E), an integer k, the current
partial k-plex S, the candidate set C

Output: A vertex set I , an upper bound ub of the
number of vertices that I can provide for S

1 initialize dise∗ ← 0, ub∗ ← 0, I∗ ← ∅;
2 for each vertex v ∈ S ∧ δ−k (S, v) > 0 do
3 I ← C\N(v);
4 ub← min{|I|, δ−k (S, v)};
5 if |I|/ub > dise∗ ∨ (|I|/ub = dise∗ ∧ |I| > |I∗|)

then dise∗ ← |I|/ub, ub∗ ← ub, I∗ ← I ;
6 return {I∗, ub∗};

4 The RelaxPUB Bound
Motivated by the complementarity of the coloring-based and
partition-based upper bounds, we propose to combine Re-
laxGCB with the newest PUB, DisePUB [Jiang et al., 2023],
and propose a better and generic upper bound for MKP. In
this section, we first introduce DisePUB, then provide two
examples to illustrate the complementarity of the coloring-
based and partition-based upper bounds, and finally present
our new upper bound, RelaxPUB.

4.1 Revisiting DisePUB
Given a growing partial k-plex S and the corresponding can-
didate set C, for each vertex v ∈ S, DisePUB claims that a
subset I ⊆ C can provide at most min{|I|, δ−k (S, v)} vertices
for S if N(v)∩I = ∅. Given a vertex v ∈ S, let I = C\N(v)
and ub = min{|I|, δ−k (S, v)}, DisePUB defines a metric for
I , i.e., dise(I) = |I|/ub, to evaluate the extraction of ver-
tex set I . The larger the value of dise(I), the more vertices
that can be extracted from C and the fewer increments on the
upper bound of ωk(G,S).

In each step, DisePUB traverses each vertex v ∈ S with
δ−k (S, v) > 0 and selects the corresponding set I = C\N(v)
with the largest value of dise(I). Ties are broken by prefer-
ring larger extractions. We use function SelectPartition() to
describe the selection, which is shown in Algorithm 3. Then,
DisePUB extracts C\N(v) from C and increases the upper
bound of ωk(G,S) by min{|C\N(v)|, δ−k (S, v)}.

DisePUB repeats the above process until vertices remain-
ing in C are adjacent to all vertices in S. DisePUB denotes
the set of remaining vertices in C as π0 and finally increases
the upper bound of ωk(G,S) by |π0|.

4.2 Complementarity of GCB and PUB
To better illustrate the complementarity of the coloring-based
and partition-based upper bounds (i.e., GCB and PUB), we
provide two examples in Figure 2, where the growing 2-plex
S contains only one vertex v0 and its corresponding candidate
set C = {v1, v2, v3, v4, v5}.

In Figure 2(a), the GCB is tighter than the PUB. The ver-
tices in C are all adjacent to v0, which means the vertices in C
are all in π0. Thus, the PUB is |S|+|π0| = 6. While by color-
ing the vertices in C, it can be partitioned into 2 independent
sets I1 = {v1, v2, v3, v5} and I2 = {v4}, and the GCB is

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 4: SelectUB(G, k, S, C)

Input: A graph G = (V,E), an integer k, the current
partial k-plex S, the candidate set C

Output: RelaxPUB of ωk(G,S)
1 initialize the upper bound UB ← |S|;
2 while C ̸= ∅ do
3 {IC , ubC} ← TryColor(G, k, S, C);
4 {IP , ubP } ← SelectPartition(G, k, S, C);
5 if |IC |/ubC > |IP |/ubP ∨ (|IC |/ubC =

|IP |/ubP ∧ |IC | > |IP |) then
6 C ← C\IC , UB ← UB + ubC ;
7 else
8 C ← C\IP , UB ← UB + ubP ;

9 return UB ;

(a) GCB prevails (b) PUB prevails

Figure 2: Examples for demonstrating the complementarity.

|S|+
∑2

i=1 min{|Ii|, 2} = 4. In contrast, the PUB is tighter
than the GCB in Figure 2(b), where C can be partitioned into
3 independent sets I1 = {v1, v5}, I2 = {v2, v3}, and I3 =

{v4}. Thus, the GCB is |S|+
∑3

i=1 min{|Ii|, 2} = 6. While
vertices in C except v1 are non-adjacent to v0, π0 = {v1},
thus the PUB is |S|+ |π0|+ δ−2 (S, v0) = 3.

4.3 Combining RelaxGCB and DisePUB
Both RelaxGCB and DisePUB extract a subset from C and
accumulate the upper bound of ωk(G,S). The dise metric
in DisePUB can also be used for the vertex set returned by
TryColor(). RelaxPUB combines RelaxGCB and DisePUB
by using them to select a promising extraction in each step.

We propose an algorithm called SelectUB for calculat-
ing the RelaxPUB of ωk(G,S), which is presented in Algo-
rithm 4. The algorithm calls TryColor() and SelectPartition()
in each step and figures out whose returned vertex set is better
according to the dise metric. Ties are broken by preferring
larger extraction. Once a better extraction is selected, The
algorithm updates the candidate set C and accumulates the
upper bound of ωk(G,S).

The time complexities of functions TryColor() and Select-
Partition() are O(|C| × T) and O(|C| × |S|) [Jiang et al.,
2023], respectively, where O(T) is much smaller than O(|V |)
as referred to Section 3.4. The time complexity of the Selec-
tUB algorithm is O(|C|2 × (|S|+ T)).

5 Experimental Results
This section presents experiments to evaluate the perfor-
mance of RelaxGCB and RelaxPUB. Baselines contain SOTA
BnB algorithms with GCB and PUB, i.e., Maplex [Zhou et
al., 2021], kPlexS [Chang et al., 2022], DiseMKP [Jiang et

al., 2023], an improvement version of KpLeX [Jiang et al.,
2021], and KPLEX [Wang et al., 2023b]. We replace the
original bounds in these baselines with RelaxGCB and Relax-
PUB, conducting eight new BnB algorithms. Moreover, the
recent kplexT algorithm [Chang and Yao, 2024] is also con-
sidered as a baseline, which does not contain GCB or PUB,
and we compare it with our RelaxPUB-based algorithms.

5.1 Experimental Setup
All the algorithms1 were implemented in C++ and run on
a server using an AMD EPYC 7H12 CPU, running Ubuntu
18.04 Linux operation system. We test the algorithms on two
public benchmarks that are widely used in the literature of
the baselines, the 2nd DIMACS benchmark2 that contains 80
(almost dense) graphs with up to 4,000 vertices and densities
ranging from 0.03 to 0.99, and the Real-world benchmark3

that contains 139 real-world sparse graphs from the Network
Data Repository [Rossi and Ahmed, 2015].

We choose the two datasets because the 2nd DIMACS
benchmark is also widely used to evaluate MCP, one of the
most closely related problems to MKP, and the Real-world
benchmark is widely used for analyzing various complex net-
works, one of the most important application areas of MKP.
Moreover, the structures of the two benchmarks are distinct,
helping evaluate the robustness of the algorithms.

For each graph, we generate 8 MKP instances with k ∈
{2, 3, 4, 5, 6, 7, 10, 15}, and set the cut-off time to 1,800 sec-
onds per instance, following the settings of the baselines.

5.2 Performance Evaluation
The comparison results between the algorithms with Re-
laxGCB and RelaxPUB (RGCB and RPUB in short) and
the baselines in dense 2nd DIMACS and sparse Real-world
benchmarks are summarized in Figures 3 and 4, respectively.
The results are expressed by the number of MKP instances
solved by each algorithm within the cut-off time for differ-
ent k values. Note that Maplex only contains the GCB, and
the other three baselines only contain the PUB. 1) From (a)
of the two figures, one can observe that our RelaxGCB sig-
nificantly outperforms GCB. 2) From (b) to (d) of the two
figures, one can observe that RelaxGCB is complementary to
PUB. 3) From all the figures, one can observe that our Re-
laxPUB makes full use of the complementarity of RelaxGCB
and PUB, and significantly improves all the baselines in solv-
ing both dense and massive sparse graphs over diverse k
values, indicating its dominant performance over the SOTA
baselines, excellent generalization over different graphs, and
strong robustness over diverse k values.

Following the convention of the baselines, we also present
detailed results of the baselines and their improvements with
RelaxPUB in solving 30 representative 2nd DIMACS and
Real-world instances with k = 2, 3, 6, 10, 15 in Table 1. We
report their running times in seconds (column Time), the sizes

1Source code: https://github.com/JHL-HUST/RelaxPUB
2http://archive.dimacs.rutgers.edu/pub/challenge/graph/

benchmarks/clique/
3http://lcs.ios.ac.cn/%7Ecaisw/Resource/realworld%20

graphs.tar.gz

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

6
11
16
21
26
31
36

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-Maplex RGCB-Maplex Maplex

(a) Comparison with Maplex

12

16

20

24

28

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-kPlexS RGCB-kPlexS kPlexS

(b) Comparison with kPlexS

10
15
20
25
30
35

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-MKP RGCB-MKP DiseMKP

(c) Comparisons with DiseMKP

10
15
20
25
30
35

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-KPLEX RGCB-KPLEX KPLEX

(d) Comparison with KPLEX

Figure 3: Comparisons on the 2nd DIMACS benchmark. Note that Maplex is based on GCB while the other baselines on PUB.

75
85
95

105
115
125
135

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-Maplex RGCB-Maplex Maplex

(a) Comparison with Maplex

130

132

134

136

138

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-kPlexS RGCB-kPlexS kPlexS

(b) Comparison with kPlexS

75

95

115

135

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-MKP RGCB-MKP DiseMKP

(c) Comparison with DiseMKP

130

132

134

136

138

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-KPLEX RGCB-KPLEX KPLEX

(d) Comparison with KPLEX

Figure 4: Comparisons on the Real-world benchmark. Note that Maplex is based on GCB while the other baselines on PUB.

k Instance RelaxPUB-Maplex Maplex RelaxPUB-kPlexS kPlexS RelaxPUB-MKP DiseMKP RelaxPUB-KPLEX KPLEX
Tree Time Percent Tree Time Tree Time Percent Tree Time Tree Time Percent Tree Time Tree Time Percent Tree Time

2

brock200-3 9.432 10.06 49.7% 790.8 107.8 8.343 292.0 49.9% 52.35 1,615 7.393 21.93 46.2% 85.88 26.06 27.43 34.63 79.8% 225.2 80.52
brock200-4 24.99 30.07 50.2% 4015 576.9 23.84 695.8 49.7% - - 12.60 47.20 49.8% 279.6 103.1 68.81 84.81 78.8% 780.2 250.0
C125.9 88.36 186.3 66.3% - - 24.56 162.8 71.8% - - 15.32 69.65 70.5% - - 29.61 37.93 88.0% - -
keller4 3.715 4.015 46.1% 1273 182.3 3.961 87.18 44.3% 92.45 1,238 2.666 8.016 42.0% 69.11 21.15 19.29 17.38 79.6% 562.6 105.3
san200-0-9-1 0.004 0.051 93.0% - - 0.024 0.660 94.8% - - 0.003 0.105 95.2% - - 0.057 0.619 98.4% 64.21 27.33
sanr200-0-7 96.72 135.8 49.5% - - 66.05 1,656 51.5% - - 40.59 153.0 49.9% 1130 475.4 171.7 206.6 79.5% 2681 752.0
socfb-Duke14 0.579 2.313 78.7% 195.6 45.05 0.110 4.397 85.8% 1.046 36.58 0.213 2.121 83.4% 243.6 154.5 0.281 2.403 94.3% 1.598 2.957
socfb-UF 0.253 3.217 88.3% - - 0.094 2.012 93.2% 0.190 3.310 0.069 2.800 91.5% 413.1 299.3 0.107 1.741 91.9% 0.234 1.850
socfb-Uillinois 0.229 7.991 89.3% - - 0.022 2.224 92.8% 0.023 2.628 0.168 4.138 81.0% 18.33 13.05 0.024 1.774 85.8% 0.027 1.845

3

hamming6-2 393.2 399.6 57.6% - - 204.4 349.2 49.8% - - 137.4 234.1 49.1% 826.6 304.6 197.0 136.2 60.2% 1157 203.3
MANN-a81 0.001 0.001 100% - - 0.001 534.9 96.3% 0.001 556.1 0.001 62.67 98.3% 0.003 63.61 0.004 568.4 98.9% 0.406 605.2
p-hat300-2 174.7 340.9 57.0% - - 123.6 1,565 57.2% - - 36.99 200.0 59.2% - - 401.9 470.9 75.3% 1293 529.0
socfb-UF 82.41 254.3 87.3% - - 0.094 1.975 82.1% 0.324 4.172 6.950 40.60 86.7% 440.6 413.4 0.067 1.877 89.4% 0.079 2.104
socfb-Indiana 2.437 8.069 89.1% 1002 308.6 0.007 1.722 82.8% 0.008 1.879 1.110 7.302 84.9% 587.8 391.5 0.006 1.436 89.9% 0.006 1.708
soc-flixster 8.732 20.00 74.6% - - 0.725 8.152 73.5% 7.394 110.5 2.084 13.15 76.2% 118.0 85.04 0.280 3.982 84.7% 0.470 5.674
soc-lastfm 1.384 6.018 54.8% 78.33 29.91 0.327 17.86 60.2% 0.785 43.87 0.729 9.750 52.4% 7.163 10.26 1.549 53.88 77.5% 2.819 95.76
soc-slashdot 1.607 1.922 74.2% 2461 289.2 0.095 0.715 72.3% 0.299 2.825 0.245 0.910 76.9% 7.847 4.577 0.096 0.829 82.4% 0.131 0.766
tech-WHOIS 24.96 72.23 85.3% - - 0.049 0.451 84.4% 0.134 1.647 0.384 2.514 89.8% 6.996 6.043 0.028 0.279 90.9% 0.034 0.483

6

c-fat200-1 0.001 0.001 92.8% 0.003 0.001 0.001 0.001 80.6% 0.001 0.002 0.002 0.014 82.9% 0.002 0.018 0.001 0.001 66.0% 0.001 0.001
san200-0-7-1 0.001 0.017 95.9% - - 0.001 0.040 93.3% 3.163 4.928 0.001 0.037 93.7% 0.329 0.177 0.001 0.043 87.1% - -
san200-0-7-2 0.001 0.012 80.1% 11.99 6.417 0.004 0.156 70.4% - - 0.005 0.066 68.8% - - 0.002 0.122 81.8% - -
socfb-Berkeley13 0.078 1.514 94.4% 1780 249.5 0.001 0.890 50.0% 0.001 0.905 0.244 1.890 90.4% 4.509 4.586 0.001 0.828 28.2% 0.001 0.867
socfb-MIT 0.189 0.591 78.4% 15876 1684 0.002 0.317 70.7% 0.002 0.319 0.041 0.523 91.4% 2.220 1.764 0.002 0.271 57.0% 0.002 0.340
soc-gowalla 12.45 11.61 54.2% 779.5 120.1 0.003 0.430 63.4% 0.005 0.572 6.042 16.65 53.1% 59.68 43.12 0.004 0.199 69.3% 0.004 0.242

10
bio-dmela 1.245 14.64 39.1% - - 0.004 0.067 48.7% 0.007 0.076 0.085 0.113 30.9% 4.615 0.221 0.019 0.037 57.1% 0.030 0.038
ia-enron-large 5.779 4.850 55.4% 156.3 24.10 0.001 0.103 76.3% 0.001 0.115 14.80 24.89 39.6% 266.7 178.1 0.002 0.064 72.1% 0.002 0.065
tech-RL-caida 0.662 0.803 46.9% 18.52 4.693 0.001 0.251 65.9% 0.001 0.258 0.017 0.363 73.2% 1.160 0.500 0.001 0.067 83.3% 0.001 0.068

15
C125-9 152.7 507.5 79.6% - - 5.460 30.22 70.4% 12.21 96.15 2.712 16.10 82.6% 7.771 22.62 1.194 5.414 83.5% 17.47 40.32
bio-diseasome 0.234 0.145 80.1% 1011 169.0 0.001 0.001 81.3% 0.001 0.001 0.055 0.024 57.7% 80.71 2.321 0.000 0.000 100% 0.000 0.001
socfb-uci-uni 22.61 107.5 47.9% - - 0.019 49.43 58.1% 0.517 53.96 26.93 295.4 35.6% - - 0.185 6.775 62.7% 1.096 9.322

Table 1: Comparisons on 30 representative instances with five k values. The search tree size is in 105, and the time is in seconds. The percent
indicates the percentage of times RelaxGCB is used in RelaxPUB. Better results appear in bold.

10

20

30

40

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-KPLEX
RPUB-MKP
RPUB-kPlexS
RPUB-Maplex
kplexT

(a) On DIMACS2 benchmark

100

110

120

130

140

2 3 4 5 6 7 10 15

So

lv
ed

k values

RPUB-KPLEX
RPUB-MKP
RPUB-kPlexS
RPUB-Maplex
kplexT

(b) On Real-world benchmark

Figure 5: Comparisons of our RelaxPUB algorithms and kplexT.

of their entire search trees in 105 (column Tree) to solve the
instances, and the percentage of the number of times Re-
laxGCB is selected and outperforms the DisePUB in Relax-
PUB (column Percent). Better results are highlighted in bold,

and symbol ‘-’ means the algorithm cannot solve the instance
within the cut-off time.

The results show that for each pair of tested algorithms,
our new upper bounds can help the baseline algorithm prune
significantly more branches, reducing its search tree sizes
by several orders of magnitude for instances that both can
solve within the cut-off time. There are also many instances
that the baseline algorithms cannot solve within the cut-off
time, while the algorithms with our upper bounds can solve
with few branches and much less calculation time. Moreover,
we can observe that RelaxGCB contributes a lot in solving
these instances, indicating again the complementarity of Re-
laxGCB and DisePUB.

Moreover, we compare our RelaxPUB algorithms with

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

800

900

1000

1100

1200

0 300 600 900 1200 1500 1800

So

lv
ed

Running time

RelaxPUB-Maplex
Norules-Maplex
Maplex
RelaxGCB-Maplex

(a) On Maplex

1000

1100

1200

1300

0 300 600 900 1200 1500 1800

So

lv
ed

Running time

RelaxPUB-kPlexS
Norules-kPlexS
GCBPUB-kPlexS
Dise-kPlexS
kPlexS
RelaxGCB-kPlexS

(b) On kPlexS

800

900

1000

1100

1200

0 300 600 900 1200 1500 1800

So

lv
ed

Running time

RelaxPUB-MKP
Norules-MKP
GCBPUB-MKP
DiseMKP
RelaxGCB-MKP

(c) On DiseMKP

1000

1100

1200

1300

0 300 600 900 1200 1500 1800

So

lv
ed

Running time

RelaxPUB-KPLEX
Norules-KPLEX
GCBPUB-KPLEX
Dise-KPLEX
KPLEX
RelaxGCB-KPLEX

(d) On KPLEX

Figure 6: Ablation studies on each baseline over all the tested instances.

1050

1100

1150

1200

1250

1300

KPLEX DiseMKP kPlexS

So

lv
ed

RelaxPUB version
Portfolio with RelaxGCB version

Figure 7: Comparison of the RelaxPUB algorithms with the portfo-
lios of the baselines and their RelaxGCB algorithms.

the kplexT algorithm. The results are shown in Figure 5.
We can observe that in Real-world benchmark, RelaxPUB-
kPlexS and RelaxPUB-KPLEX show better performance than
kplexT, and in DIMACS2 benchmark, kplexT shows the
worst performance, indicating that our method indeed leads
to SOTA BnB algorithms for MKP. By the way, kplexT men-
tioned that the PUB may be used to improve it in its future
work [Chang and Yao, 2024], indicating that our method in-
deed improves a general and popular technique.

5.3 Ablation Study
The ablation studies contain two parts. The first part is to
evaluate the effectiveness of the proposed TISUB and the two
rules (see Lemmas 1, 2, and 3) in our proposed upper bounds.
For the kPlexS, DiseMKP, and KPLEX baselines having the
PUB, we generate a “Norules” variant, which uses our Relax-
PUB without Rules 1 and 2, and a “GCBPUB” variant, which
uses our RelaxPUB and replaces its RelaxGCB with the GCB
in Maplex. Moreover, since the kPlexS and KPLEX algo-
rithms use the previous PUB proposed in [Jiang et al., 2021],
we apply the newest DisePUB to them and obtain two vari-
ants: Dise-kPlexS and Dise-KPLEX. For the Maplex baseline
that is only based on GCB, its “Norules” variant uses our Re-
laxGCB without Rules 1 and 2.

We perform four groups of ablation studies based on each
baseline over all the 1,752 instances, as summarized in Fig-
ure 6. The results are expressed by the variation in the num-
ber of solved instances for each algorithm over the running
time (in seconds). The results show that the “GCBPUB”
variants are better than the baselines, indicating that combin-
ing coloring-based and partition-based upper bounds by the
mechanism in RelaxPUB can make use of their complemen-
tarity. The “Norules” variants are better than the “GCBPUB”
variants, indicating that TISUB is a significant improvement

over GCB. The new algorithms with RelaxPUB are better
than the “Norules” variants, indicating that our proposed two
rules can further improve TISUB. Moreover, DisePUB can
hardly improve kPlexS and KPLEX, indicating that the im-
provements of the RelaxPUB series over the baselines origi-
nate from RelaxGCB rather than using the newest DisePUB.

The second part is to evaluate the effectiveness of the com-
bination scheme designed in RelaxPUB. In this part, we com-
pare each of the RelaxPUB algorithms with the portfolio con-
sist of the corresponding baseline and its RelaxGCB algo-
rithm. For example for the KPLEX algorithm, the portfo-
lio version outputs the better result found by KPLEX and
RelaxGCB-KPLEX, i.e., if any of KPLEX and RelaxGCB-
KPLEX solve the solution, the portfolio solves the solution.
The comparison results on all the 1,752 tested instances are
shown in Figure 7. Note that we only perform on the base-
lines with PUB, i.e., KPLEX, DiseMKP, and kPlexS. The re-
sults show that the RelaxPUB algorithms can solve more in-
stances than the portfolio ones, indicating the advantages of
the combination scheme in RelaxPUB, which can make fully
use of the complementarity of RelaxGCB and PUB.

6 Conclusion
We proposed two new upper bounds for the Maximum k-
plex Problem (MKP), termed RelaxGCB and RelaxPUB. Re-
laxGCB considers the connectivity between vertices more
thoroughly and relaxes the restrictive independent set struc-
ture to contain more vertices without increasing the upper
bound. Provided theoretical proof indicates that RelaxGCB
is strictly better than the previous graph color bound (GCB).
RelaxPUB further combines RelaxGCB and an advanced
partition-based upper bound in a novel way, making fully
use of their complementarity. We replaced the GCB in
Maplex and the partition-based upper bounds in kPlexS, Dis-
eMKP, and KPLEX with RelaxGCB and RelaxPUB, respec-
tively, producing eight new BnB MKP algorithms. Experi-
ments on both dense and sparse graph datasets show that Re-
laxGCB significantly outperforms GCB, and RelaxPUB ex-
hibits clearly priority over the baselines and exhibits excel-
lent robustness over various k values and high generalization
capability over different graphs and algorithms.

RelaxGCB contains ideas of enhancing coloring-based up-
per bounds in relaxation clique problems, and RelaxPUB con-
tains ideas of combining complementary upper bounds. We
believe our methods can be applied for improving BnB algo-
rithms of other relaxation clique problems.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Contribution Statement
The first two authors, Jiongzhi Zheng and Mingming Jin, con-
tributed equally.

References
[Balasundaram et al., 2011] Balabhaskar Balasundaram,

Sergiy Butenko, and Illya V. Hicks. Clique relaxations in
social network analysis: The maximum k-plex problem.
Operations Research, 59(1):133–142, 2011.

[Berlowitz et al., 2015] Devora Berlowitz, Sara Cohen, and
Benny Kimelfeld. Efficient enumeration of maximal k-
plexes. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, pages 431–
444, 2015.

[Chang and Yao, 2024] Lijun Chang and Kai Yao. Max-
imum k-plex computation: Theory and practice. Pro-
ceedings of the ACM on Management of Data, 2(1):63:1–
63:26, 2024.

[Chang et al., 2022] Lijun Chang, Mouyi Xu, and Darren
Strash. Efficient maximum k-plex computation over large
sparse graphs. Proceedings of the VLDB Endowment,
16(2):127–139, 2022.

[Conte et al., 2017] Alessio Conte, Donatella Firmani, Cate-
rina Mordente, Maurizio Patrignani, and Riccardo Tor-
lone. Fast enumeration of large k-plexes. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 115–124,
2017.

[Conte et al., 2018] Alessio Conte, Tiziano De Matteis,
Daniele De Sensi, Roberto Grossi, Andrea Marino, and
Luca Versari. D2K: scalable community detection in mas-
sive networks via small-diameter k-plexes. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1272–
1281, 2018.

[Gao et al., 2018] Jian Gao, Jiejiang Chen, Minghao Yin,
Rong Chen, and Yiyuan Wang. An exact algorithm for
maximum k-plexes in massive graphs. In Proceedings of
the 27th International Joint Conference on Artificial Intel-
ligence, pages 1449–1455, 2018.

[Grbic et al., 2020] Milana Grbic, Aleksandar Kartelj, Savka
Jankovic, Dragan Matic, and Vladimir Filipovic. Vari-
able neighborhood search for partitioning sparse biolog-
ical networks into the maximum edge-weighted k-plexes.
IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 17(5):1822–1831, 2020.

[Jiang et al., 2021] Hua Jiang, Dongming Zhu, Zhichao Xie,
Shaowen Yao, and Zhang-Hua Fu. A new upper bound
based on vertex partitioning for the maximum k-plex prob-
lem. In Proceedings of the 30th International Joint Con-
ference on Artificial Intelligence, pages 1689–1696, 2021.

[Jiang et al., 2023] Hua Jiang, Fusheng Xu, Zhifei Zheng,
Bowen Wang, and Wei Zhou. A refined upper bound and
inprocessing for the maximum k-plex problem. In Pro-
ceedings of the 32nd International Joint Conference on
Artificial Intelligence, 2023.

[Lawler and Wood, 1966] E. L. Lawler and D. E. Wood.
Branch-and-bound methods: A survey. Operations Re-
search, 14(4):699–719, 1966.

[Matsugu et al., 2023] Shohei Matsugu, Yasuhiro Fujiwara,
and Hiroaki Shiokawa. Uncovering the largest community
in social networks at scale. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence,
pages 2251–2260, 2023.

[McClosky and Hicks, 2012] Benjamin McClosky and
Illya V. Hicks. Combinatorial algorithms for the
maximum k-plex problem. Journal of Combinatorial
Optimization, 23(1):29–49, 2012.

[Pattillo et al., 2013] Jeffrey Pattillo, Nataly Youssef, and
Sergiy Butenko. On clique relaxation models in network
analysis. European Journal of Operational Research,
226(1):9–18, 2013.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K.
Ahmed. The network data repository with interactive
graph analytics and visualization. In Proceedings of the
29th AAAI Conference on Artificial Intelligence, pages
4292–4293, 2015.

[Segundo et al., 2011] Pablo San Segundo, Diego
Rodrı́guez-Losada, and Agustı́n Jiménez. An exact
bit-parallel algorithm for the maximum clique problem.
Computers & Operations Research, 38(2):571–581, 2011.

[Seidman and Foster, 1978] Stephen B. Seidman and
Brian L. Foster. A graph theoretic generalization of
the clique concept. Journal of Mathematical Sociology,
6(1):139–154, 1978.

[Wang et al., 2022] Zhengren Wang, Yi Zhou, Mingyu Xiao,
and Bakhadyr Khoussainov. Listing maximal k-plexes in
large real-world graphs. In Proceedings of the ACM Web
Conference, pages 1517–1527, 2022.

[Wang et al., 2023a] Meng Wang, Boyu Li, Kun He, and
John E. Hopcroft. Uncovering the local hidden community
structure in social networks. ACM Trans. Knowl. Discov.
Data, 17(5):67:1–67:25, 2023.

[Wang et al., 2023b] Zhengren Wang, Yi Zhou, Chunyu
Luo, and Mingyu Xiao. A fast maximum k-plex algorithm
parameterized by the degeneracy gap. In Proceedings of
the 32nd International Joint Conference on Artificial In-
telligence, 2023.

[Xiao et al., 2017] Mingyu Xiao, Weibo Lin, Yuanshun Dai,
and Yifeng Zeng. A fast algorithm to compute maximum
k-plexes in social network analysis. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence, pages
919–925, 2017.

[Zhou et al., 2021] Yi Zhou, Shan Hu, Mingyu Xiao, and
Zhang-Hua Fu. Improving maximum k-plex solver via
second-order reduction and graph color bounding. In Pro-
ceedings of the 35th AAAI Conference on Artificial Intelli-
gence, pages 12453–12460, 2021.

[Zhu et al., 2020] Jinrong Zhu, Bilian Chen, and Yifeng
Zeng. Community detection based on modularity and k-
plexes. Information Sciences, 513:127–142, 2020.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

