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Abstract

Infrared-visible image fusion and semantic seg-
mentation are pivotal tasks for robust scene under-
standing under challenging conditions such as low
light. However, existing methods often struggle
with high noise, modality inconsistencies, and in-
efficient cross-modal interactions, limiting fusion
quality and segmentation accuracy. To this end,
we propose CMFS, a unified framework that lever-
ages CLIP-guided modality interaction to mitigate
noise in multi-modal image fusion and segmenta-
tion. Our approach features a region-aware Modal
Interaction Alignment module that combines a
VMamba-based encoder with an additional shuffle
layer to obtain more robust features and a CLIP-
guided, regionally constrained multi-modal feature
interaction block to emphasize foreground targets
while suppressing low-light noise. Additionally, a
Frequency-Spatial Collaboration module uses se-
lective scanning and integrates wavelet-, spatial-
, and Fourier-domain features to achieve adaptive
denoising and balanced feature allocation. Further-
more, we employ a low-rank mixture-of-experts
with dynamic routing to improve region-specific
fusion and enhance pixel-level accuracy. Exten-
sive experiments on several benchmarks show that,
compared with state-of-the-art methods, the pro-
posed approach demonstrates effectiveness in both
image fusion quality and semantic segmentation
accuracy, especially in complex environments. The
source code will be released at [JCAI2025-CMFS.

1 Introduction

Infrared-visible image fusion (IVF) and multi-modal seman-
tic segmentation (MMSS) are critical for robust scene under-
standing, especially under challenging conditions such as low
light or adverse weather. IVF combines thermal and visible
images to provide a comprehensive view, enhancing appli-
cations like night-time driving assistance and safety surveil-
lance [Zhao et al., 2023; Yi et al., 2024]. Concurrently,
MMSS assigns semantic labels to each pixel by leveraging
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(¢) Comparison of feature map attention visualization after modal interaction.

Figure 1: Visual comparison of image fusion and semantic segmen-
tation under low-light conditions. Our method effectively perceives
faint thermal objects with the guidance of CLIP, while the interaction
between modal features profoundly suppresses background noise,
highlights salient objects, and maintains robust performance.

information from multiple sensors, thereby improving con-
textual and structural scene interpretation essential for au-
tonomous driving, robotics, and surveillance [Lv et al., 2023].
Despite their importance, current approaches often treat
IVF and MMSS as separate tasks, resulting in challenges re-
lated to high noise, modality inconsistencies, and inefficient
cross-modal interactions. These limitations compromise both
the visual quality of fused images and the accuracy of seman-
tic segmentation. Even joint modeling attempts [Zhang et al.,
2024a] that use attention-based frameworks tend to be com-
putationally intensive and sensitive to noise or imbalanced
inputs. As a result, they may struggle with fine structures,
elongated object shapes, and complex backgrounds, leading
to incomplete scene interpretations and suboptimal fusion.
Jointly addressing IVF and MMSS remains challenging
due to several factors. First, the domain gap between ther-
mal and visible images can introduce significant noise, par-
ticularly under adverse conditions. At the same time, sim-
ple fusion strategies might propagate irrelevant or distorted
information by treating all regions equally. Second, seman-
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tic segmentation requires precise pixel- and region-level cues.
However, noise and inconsistencies arising during fusion can
hinder accurate pixel categorization. Finally, the high com-
putational complexity inherent in many attention-based meth-
ods limits their real-time applicability. These challenges un-
derscore the need for a robust approach to adaptively isolate
inter-modal interference, preserve critical features, and effi-
ciently model long-range dependencies.

To address these challenges, we propose a unified multi-
task learning framework that simultaneously performs IVF
and MMSS. Our approach begins with a Multi-modal In-
teraction Alignment (MIA) module, which employs a bidi-
rectional VMamba-based encoder with an additional shuf-
fle layer to obtain more robust features, enhancing unimodal
representations and foreground saliency. This encoder par-
titions features and exploits CLIP’s powerful classification
priors using category-specific text prompts to dynamically
guide region localization, as Figure 1 shows. Building on
this, we introduce a regionally constrained hybrid attention
(Hybrid-Att) module that selectively suppresses background
noise and facilitates precise cross-modal feature interaction.
Furthermore, we develop a Frequency-Space Collaboration
(FSC) module to achieve joint multi-domain feature enhance-
ment and denoising. The FSC module integrates wavelet-
and spatial-domain features and leverages global Fourier-
domain modeling to provide adaptive noise reduction and bal-
anced feature allocation. Additionally, we employ a low-rank
mixture-of-experts (MoE) with dynamic routing to enhance
region-specific fusion and improve pixel-level accuracy while
maintaining computational efficiency. The main contribu-
tions of this work can be summarized as follows:

* We propose a region-aware Modal Interaction Align-
ment module that combines a bidirectional VMamba-
based encoder—with an additional shuffle layer and
a CLIP-guided multi-modal interaction block to em-
phasize target regions dynamically, enhance foreground
saliency, and mitigate noise.

* We develop a Frequency-Spatial Collaboration module
that leverages selective scanning and integrates wavelet-,
spatial-, and Fourier-domain features to achieve adaptive
denoising and balanced feature allocation.

* We introduce a low-rank MoE with dynamic to improve
region-specific fusion and spatial pixel accuracy.

2 Related Work

2.1 Multi-modal Learning

Multi-modal learning integrates information from diverse
modalities to improve performance, overcoming the limita-
tions of single-modal approaches, such as context sensitivity
and incomplete scene understanding. In this work, we mainly
focus on RGB-T tasks, where collaboration between visible
and thermal images may improve robustness in challenging
conditions such as low light and adverse weather.

Multi-modal Image Fusion is a fundamental task that inte-
grates relevant and informative features from multiple modal-
ities to generate comprehensive fused images. Autoencoders
pioneered the use of deep learning techniques in this field,

with methods such as DenseFuse [Li and Wu, 2018] lever-
aging autoencoders for feature extraction and fusion through
predefined strategies. To enhance fusion effectiveness, recent
approaches [Liu er al., 2023; Zhang et al., 2024b] incorporate
high-level visual tasks to provide richer semantic guidance.
TextIF [Yi er al., 2024] further exploit textual cues to improve
visual fidelity and perceptual robustness. However, existing
multi-modal fusion methods [Zhao et al., 2024c] often fail to
produce visually coherent images in low-light and noisy en-
vironments, revealing significant potential for improvement.

Multi-modal Semantic Segmentation is a dense predic-
tion task that assigns category labels to each pixel by in-
tegrating information from multiple modalities to improve
accuracy and contextual understanding. Early methods like
MFNet [Ha et al., 2017a] used element-wise summation or
concatenation for cross-modal feature fusion, often leading to
redundancy and overlooking modality differences. To address
these limitations, researchers introduced specialized fusion
operations. For example, [Guo et al., 2021] used multi-level
skip connections to enhance feature flow, while [Zhang et
al., 2021] proposed a bridging-then-fusing strategy for multi-
scale feature fusion. Attention mechanisms later became piv-
otal, with [Deng et al., 2021] incorporating channel and spa-
tial attention in the encoder and [Zhou et al., 2022] combin-
ing cross-modal features with boundary-aware supervision
for refined outputs. Recent advances emphasize exploiting
modality complementarity, such as [Zhou et al., 2023b]’s
Transformer-based approach to leverage cross-modal correla-
tions. However, challenges remain in fully exploring feature
relationships, and interactions, and preserving spatial details.

2.2 Frequency Exploration

The Fast Fourier Transform (FFT) is a fundamental tool in
frequency domain analysis, enabling efficient conversion of
signals to a domain where global statistical properties are
more accessible. FECNet [Huang et al., 2022] leverages
Fourier feature amplitudes to isolate global lightness com-
ponents, improving image clarity and aesthetics. Similarly,
FSDGN [Yu et al., 2022] uses Fourier amplitudes as global
haze indicators for image dehazing. [Kong et al., 2023] in-
troduced a frequency-domain self-attention mechanism for
efficient image deblurring, and [Zhou et al., 2023a] uti-
lized the Fourier transform to model global dependencies in
a novel backbone network for image degradation. While FFT
has advanced many applications, its signal processing limi-
tations highlight improvement areas. Complementing FFT,
the Wavelet Transform offers multi-resolution analysis, ef-
fectively capturing localized signal variations.

2.3 State Space Models

State space models (SSMs) have gained attention for mod-
eling long-range dependencies in sequences. The structured
state-space sequence model (S4) [Gu er al., 2021] was in-
troduced to capture these dependencies with linear complex-
ity, followed by improvements in S5 [Smith ef al., 2022],
H3 [Fu et al., 2023], and Mamba [Gu and Dao, 2023]. No-
tably, Mamba outperforms Transformers in linear scalability
on long-sequence NLP tasks due to its data-dependent selec-
tive state space mechanism and hardware optimization. The
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Figure 2: The overall network architecture of our CMFS. Given paired source images, multi-scale features are extracted and processed
through the Modal Interaction Alignment module to enhance multi-modal interaction and target saliency. These features are then refined in
the Frequency-Spatial Collaboration module, which eliminates inter-modal noise and resolves inconsistencies. The processed features are
passed to the image fusion head for high-quality fusion, while the Multi-Modal Feature Enhancement module removes redundancies and
further optimizes the features. Finally, the refined features are used for accurate semantic segmentation.

applicability of SSMs extends beyond NLP, with pioneer-
ing works applying Mamba to various tasks, including im-
age classification [Zhu ef al., 2024; Liu et al., 2024], image
restoration [Guo et al., 2025] and others [Li et al., 2025].

3 Method

3.1 Preliminaries

State Space Models. State Space Models (SSMs) describe
the dynamics of continuous systems by employing a method
based on linear ordinary differential equations. They model
the relationship between the input z(¢) € R and the output
y(t) € R through a latent state h(t) € RY, which can be
formulated as follows:

B'(t) = Ah(t) + Bx(t), y(t) = Ch(t), (1)

where A, B, C are state transition matrices. The discrete vari-
ants of SSMs, such as Mamba, incorporate a discretization
step parameterized by a timescale A, transforming the con-
tinuous parameters A,B into their discrete counterparts A, B
through the zero-order hold (ZOH) method, expressed as:

A =exp(AA),

= —1 @)
B =(AA) "(exp(AA) —I)- AB.

In addition, Mamba [Gu and Dao, 2023] incorporates a se-
lective scanning mechanism that dynamically adjusts to the
input, enabling it to capture long-range contextual dependen-
cies across different regions. This capability makes it partic-
ularly valuable for tackling complex computer vision tasks.

3.2 Overall Framework

As shown in Figure 2, CMFS is a multi-task framework
that jointly tackles infrared-visible image fusion and semantic
segmentation. It takes a visible image I"* € R¥>*Wx3 and
thermal image I € R¥*W >3 where H, W denote the height
and width, respectively. To enhance the feature representa-
tions, CMFS progressively extracts and refines multi-modal

features over n scales. At each ¢-th scale, VMamba-based
encoders [Liu ez al., 2024] EY* and E!, which incorporate a
bidirectional Mamba module with an additional shuffle layer
to obtain more robust features, extract and refine unimodal
features ®¢¢ and ®.

In extremely dark environments, both modalities often fail
to capture meaningful details for objects lacking thermal ra-
diation, resulting in severe noise and potentially introduc-
ing additional interference after interaction. To address this,
the Multi-Modal Feature Interaction (MMFI) block lever-
ages CLIP’s [Radford et al., 2021] category prompts and a
hybrid pooling-based attention mechanism to assign region-
specific weights, thereby suppressing background noise while
facilitating robust inter-modal interactions. Subsequently, the
Frequency-Spatial Collaboration (FSC) module further elim-
inates residual and amplified noise introduced during cross-
modal interaction by performing long-range modeling in both
the spatial and wavelet domains. Afterward, the features are
sent to the Multi-Modal Feature Enhancement Module for
pixel-level feature representation learning. The resulting de-
noised features are then fed into the fusion head to produce
the final fused image F'. Simultaneously, these fused features
pass through a ResMoE block to extract fine-grained details,
which are then fed into the segmentation head to generate the
final semantic segmentation results /.

3.3 Multi-modal Interaction Alignment Module

RGB images provide texture information, while thermal im-
ages highlight crucial boundary cues. Fully leveraging intra-
modal self-reinforcement and aligning inter-modal interac-
tions is essential. To this end, the Multi-modal Interaction
Alignment (MIA) module achieves this by combining bidi-
rectional Mamba (BM) blocks and a MMFI block [Zhang
et al., 2024c] shown in Figure 3. Each BM block first up-
dates the unimodal feature {®V, ®'} to {YV? Y!} through
unimodal self-reinforcement and contextual modeling. The
MMFI block then uses CLIP-based category prompts to guide
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Figure 3: Structure of the Multi-modal Interaction Alignment Module. We use CLIP to achieve perception of regional importance.

region-level weighting, ensuring discriminative cross-modal
interactions while suppressing background noise. Formally,

{0V, 0"} = by rr(dpam (B, dpar(®Y)),  (3)

where ©F represents the output of related features.
Bidirectional Mamba Block. To enhance the intrinsic qual-
ity of unimodal features, we adopt a ShuffleNet-inspired ap-
proach [Zhang et al., 2018] that reorders channel arrange-
ments. This method improves feature diversity and strength-
ens intra-modal representations. Additionally, spatial per-
ceptual understanding is achieved through sequential for-
ward and backward scanning, leveraging SSM to model intra-
modal relations and effectively refine and integrate critical
contextual information within each modality. This process
can be formulated as:

{Y", 1"} = SSM(Shuffle({®"*, ®'})). )
Multi-Modal Feature Interaction (MMFI) Block. The
MMFI block is designed to integrate visible and thermal fea-
tures under challenging conditions. First, each unimodal fea-
ture is partitioned into non-overlapping patches to allow lo-
calized processing. Within each patch, channel attention re-
scales channel responses based on global pooling descrip-
tors, while spatial attention pinpoints crucial pixel-level lo-
cations. A learnable gating mechanism then adaptively fuses
signals from both modalities, preserving complementary cues
while mitigating noise. To further reinforce fusion, CLIP’s
text encoder provides category guidance by transforming a
prompt (e.g., The photo of a person) into text features. Each
patch is compared with these text features, and patches with
higher similarity scores, likely containing the target, receive
stronger cross-modal attention. Finally, channel-spatial at-
tention weights, gating outputs, and the CLIP-based attention
map are combined to yield the updated unimodal features.
The final update for each modality is defined as:

oVl = RC(CI’” + Re(®F x WVie + dt x W““) x W9 x M)

t t Vi te Vi t (5)
O = Re(®" + Re(®” x Whe + & x W) x (1 — W9) x M),
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Figure 4: Overview of Frequency-Spatial Collaboration Module.

where Re(-) indicates a reshape operation, and W; are learn-
able attention weights, and M denotes the CLIP-based atten-
tion map. This synergy between localized attention, cross-
modal gating, and category prompts enables robust fusion of
visible and thermal streams, effectively suppressing noise and
emphasizing patches most likely to contain target objects.

3.4 Frequency-Spatial Collaboration Module

Multi-modal interactions may introduce inconsistencies and
noise that degrade fusion quality. As illustrated in Figure 4,
the proposed FSC module addresses these by jointly model-
ing feature representations in both the wavelet and spatial do-
mains, thus mitigating noise and enhancing the overall qual-
ity of the fused output. The FSC module comprises two main
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Method | MEFNet | PST900 | FMB
‘Car Person Bike Curve CarStop Guar. Cone Bump mloU‘Hand-Drill BackPack Frie-Ext. Survivor mloU‘ Car Person Truck T-Lamp T-Sign Buil. Vege. Pole mloU
SeAFusion [Tang et al., 2022] [84.2 71.1 587 33.1 20.1 0.0 404 339 488 65.6 59.6 41.1 29.5 5890762 59.6 151 344 68.0 80.1 83.5 384 519
SegFormer [Xie et al., 2021] (89.5 732 63.8 459 20.8 4.14 448 51.5 54.7 74.3 86.4 61.1 693 78.1|76.5 684 387 209 70.6 81.4 83.8 43.9 56.3
EGFNet [Zhou et al., 2022] |87.6 69.8 58.8 42.8 338 7.0 483 47.1 54.8 64.7 83.1 71.3 743 785| - - - - - - - - -
LASNet [Li ez al., 2023al 842 67.1 569 41.1 39.6 189 488 40.1 54.9 71.8 86.5 82.8 755 844732 583 331 326 685 80.8 83.4 41.0 55.7
SegMiF [Liu et al., 2023] 87.8 714 632 475 31.1 0.0 489 503 56.1 66.0 81.4 76.3 755 79.7|78.77 655 424 356 71.7 80.1 85.1 357 58.5
MDRNet+ [Zhao et al., 2024a] [87.1 69.8 60.9 47.8 342 8.2 50.2 550 56.8 63.0 76.3 63.5 713 746|754 67.0 27.0 414 684 79.8 82.7 453 555
GMNet [Zhou et al., 2021]  |86.5 73.1 61.7 440 423 145 48.7 474 573 85.2 83.8 73.8 784 841 | - - - - - - - - =
SGFNet [Wang er al., 2023] (88.4 77.6 64.3 458 31.0 6.0 57.1 55.0 57.6 82.8 75.8 79.9 7277 82.1(75.0 67.2 346 458 714 782 82.7 42.8 56.0
MMSMCNet [Zhou et al., 2023¢](89.2 69.1 63.5 464 41.9 88 48.8 57.6 58.1 62.4 89.2 733 747 798| - - - - - - - - =
CAINet [Lv et al., 2023] 88.5 663 68.7 554 315 9.0 489 60.7 58.6 80.3 88.0 77.2 787 847 | - - - - - - - - -
MREFS [Zhang et al., 2024a] [89.4 754 65.0 49.0 372 54 53.1 58.8 59.1 79.7 87.4 88.0 79.6 869|762 71.3 344 50.1 75.8 85.4 87.0 53.6 612
Ours 90.5 75.6 663 492 385 55 52.7 644 60.1 78.5 88.7 88.4 842 879825 712 563 422 759 854 87.3 54.0 66.3

Table 1: Quantitative segmentation performance on the MFNet, PST900, and FMB datasets.

components: the Hybrid Mamba Compensation Conversion
(HMCC) Block and the Frequency Denoising (FD) Block.
Hybrid Mamba Compensation Conversion (HMCC)
Block. The HMCC block operates in two parallel branches:
one for wavelet-domain modeling and the other for spatial-
domain modeling. ©F (with z € {vi, t}) denote the output of
the related features. We first modulate ©* with a 1 x 1 convo-
lution, then apply a second-order discrete wavelet transform
(DWT) to decompose the features into multiple frequency
bands (LL, LH, HL, HH). A state space model with lo-
cal 2D scanning [Huang et al., 2024] refines these frequency
bands. Finally, an inverse wavelet transform (IWT) recon-
structs the wavelet-domain features [Zou et al., 2024]:

O3 = IWT(SSM(LN(DWT(Convi,1 (67))) ), (6)

wav

where LN(-) denotes LayerNorm. In the spatial branch, we
capture both local and global relations. Specifically, we first
apply a vanilla 2D scanning within SSM to model long-range
spatial correlations, then a channel attention (CA) operation
to enhance local consistency. Formally,

or, = SSM(LN(@f)) + 500,
(N
or = CA(LN(@gp,)) + 508,
where s1, s9 € R are learnable scale factors controlling the
flow of skip information. Both outputs, ©F,,, and OF,, are
then concatenated as follows:

ef'req—init = [quav’ @i‘cp] . (8)
Frequency Denoising (FD) Block. To further suppress
mixed noise and refine the multi-domain features, we employ
a Frequency Denoising (FD) block. After concatenation, we
apply a Fast Fourier Transform (its degeneration-separation
characteristics were validated in the supplementary materi-
als.) to ©F., ;> decomposing it into amplitude and phase
components, Amp” and Pha®. A denoising convolution fil-
ters out noise in the amplitude domain, then an inverse FFT
(IFFT) reconstructs the signal back to the spatial domain:

Oy = DConv (IFFT (DeConv(Amp®), Pha‘”)), 9)

where DConv(-) is a depth-wise convolution that adjusts the
channel count to match the module’s input dimension, and
DeConv operation involves continuous pixel-wise convolu-
tion followed by the LeakyReL.U activation function. Finally,
we apply a simple channel attention (SCA) mechanism:

OFeq = SCA(OFeg—mia) © Ofreyrs (10)

where efrequi 4 indicates an intermediate representation
used for channel-attention recalibration. The result @?TG 4 Pre-
serves both global structure and local detail, ensuring a ro-
bust feature representation suitable for subsequent tasks. This
wavelet-spatial modeling and frequency-domain denoising
fully leverage multi-domain information to suppress noise,
retain crucial details, and yield semantically fused features.
The denoising capability of the FSC module was further vali-
dated through the Gaussian color denoising task in the supple-
mentary materials, demonstrating encouraging performance.

3.5 Multi-Modal Feature Enhancement Module

Semantic segmentation demands precise pixel-level classifi-
cation, with different regions requiring distinct semantic cues.
Prior approaches [Zhang et al., 2024a] often employ self-
and cross-attention mechanisms for cross-modal fusion, in-
curring high computational costs. To mitigate this, we pro-
pose a low-rank mixture-of-experts (MoE) mechanism that
efficiently encodes fused features while eliminating redun-
dancy. First, frequency-domain features ;;e o, and @}m o are
fused in a Channel Embed Block via residual convolution to
produce the initial fused feature 6 fyseq:

6fused =BN (PCOHV([ ?ieqv G?req]) (11)
+ CE([ ?':"eq? 93"7”6(1]))’

where [-] is concatenation, CE(-) is a channel embedding
module composed of three convolution layers and a normal-
ization layer, and BN(-) denotes BatchNorm. Next, low-rank
experts refine the fused features by compressing the feature
space via low-rank decomposition, reducing computational
complexity and filtering out redundancy. Jointly leveraging
diverse subspace expressions to simplify the fused feature
representation [Zamfir et al., 2024]. Dynamic routing acti-
vates the most relevant experts for specific regions, enhancing
semantic representations. The detailed refinement process is
provided in Algorithm 1 in the supplementary materials, with
the final output denoted as 0fyscq. Finally, for object cat-
egories with elongated shapes or intricate spatial continuity,
large-kernel strip convolutions (following Hou et al. [Hou et
al., 2024]) are applied to refine fine-grained features, thereby
improving the segmentation of strip-shaped targets.

3.6 Training Objective

To generate a high-quality fused image Iy, we integrate a
Gradient Residual Dense Block into the fusion head to di-
rectly produce a three-channel image with enhanced textures
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Figure 6: Qualitative segmentation results on the FMB dataset.

and without Y CbC'r distortions. A color loss Lo aligns
the fused Cbp and C'rp with the gamma-corrected channels
of I,;, while contrast stretching 5 on the thermal image im-
proves gradient and intensity alignment. The fusion loss is
defined as

Lifusion = Aint L1 (F7 max(]vi, Iﬂt)) + Acolor Licolor
(12)
+ Agrad L1 (VF, max(V1,;, wﬁt)) .

For semantic segmentation, we use the cross-entropy loss,

Ly = — Y _ Plog(I,), (13)
where P is the ground truth. The overall loss is
L = Atus Ltusion + )\seg Lseg' (14)

4 Experiments

4.1 Experimental Setting

Datasets. We evaluate the performance of CMFS on se-
mantic segmentation and image fusion tasks using the
MFNet [Ha et al., 2017b], PST900 [Shivakumar et al., 20201,
and FMB [Liu et al., 2023] datasets. Specifically, these
datasets comprise 1569, 1038, and 1500 paired infrared and
visible images, with resolutions of 480 x 640, 720 x 1280,
and 600 x 800, respectively. Among these, 393, 288, and 280
image pairs are used for testing.

Implementation Details. The semantic segmentation and
image fusion tasks are trained jointly for 500 epochs to en-
able effective multi-task learning. The training process adopts
an initial learning rate of 6 X 102, a batch size of 4, and
the Adam optimizer with a weight decay coefficient of 0.01.
During training, standard data augmentation techniques such
as horizontal flipping, random scaling, and cropping are ap-
plied. All training images are cropped to a uniform size of
480 x 640. Refining coefficient value settings in the loss func-
tion: Ajpz = 0.5, Agrad = 0.2, Aeotor = 1.0, Apys = 0.1,
Aseg = 1.0. As shown in Figure 2, we adopt a four-stage
Vmamba-tiny encoder, which operates across four distinct
scales. All experiments are conducted on the NVIDIA L40
GPU with 46GB of memory, coupled with an Intel Xeon Sil-
ver 4310 10-Core Processor CPU.

SeAFusion SegMiF

Visible Infrared U2Fusion SDNet DIDFuse

CDDFuse LRRNet EMMA SHIP MRFS TextIF Ours

Visible Infrared U2Fusion SDNet DIDFuse SeAFusion SegMiF

CDDFuse LRRNet EMMA SHIP MRFS TextIF Ours

Figure 7: Visual comparison of image fusion on the MFNet dataset.
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Figure 8: Visual comparison of image fusion on the FMB dataset.

4.2 Multi-modal Semantic Segmentation

To ensure a fair comparison, we primarily used data
from [Zhang et al., 2024a] and quantitative results reported in
the respective papers, with visualizations sourced from their
open-source code. Since most methods were not trained on
the FMB dataset, we compared only models with publicly
available optimal weights. We used mean Intersection over
Union (mloU) as the evaluation metric, which effectively
reflects segmentation performance in complex scenes while
mitigating the impact of class imbalance. As Figure 5 and
Figure 6 shown, our method demonstrates precise segmenta-
tion of target categories in both day and night conditions, with
accurate classification of edge pixels, aided by the MMFE
module. It performs consistently across categories and han-
dles ambiguous pixels effectively, even in low-light settings.
For example, in Figure 5, our method delineates the contours
of objects like bikes and bumps with high accuracy, achiev-
ing realistic visual results. In contrast, other methods either
approximate the regions or miss features entirely. The quan-
titative results in Table 1 demonstrate the superiority of our
method. It achieves the highest mIoU on all three datasets,
with a maximum gain of 5.1% over the second-best method.
To this end, we substituted the PC-Att module in the state-
of-the-art MRFS model with our MMFE module, adhering
strictly to its original training settings. After training for the
same number of epochs on the FMB dataset, we observed a
significant improvement in segmentation performance, with
the mloU increasing from 61.2 to 63.7. Additionally, the
GFLOPs were reduced from 219.13 to 177.65, demonstrating
a substantial reduction in computational complexity. Overall,
quantitative and qualitative evaluations indicate that CMFS
performs well in semantic segmentation.

4.3 Multi-modal Image Fusion

We evaluate the image fusion performance of CMFS on the
MEFNet and FMB datasets using metrics such as standard de-
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MFNet Dataset FMB Dataset
SDT ENT  MIT SDT ENT  MIT

TPAMI'20  25.273 6.002 2.385 30.783 6.678 3.046
DIDFuse [Zhao er al., 2020] 1ICAT'20 35.682 6.383 2938 37.796 6989 3278
SDNet [Zhang and Ma, 2021] ucv:2l 19.623 5.808 1.902 34.832 6.606 3.173
SeAFusion [Tang er al., 2022]  Inf.Fusion’22 34.011 6.422 3479 36.161 6.754 3.883
SegMiF [Liu et al., 2023] ICCv’23 36.066 6.557 2.648 37.430 6872 3.263
CDDFuse [Zhao et al., 2023] CVPR’23 38.062 6.496 4.252 37.034 6.776 4.276
LRRNet [Li et al., 2023b] TPAMI'23 32369 6.379 3.005 26258 6.278 3.021
EMMA [Zhao et al., 2024b] CVPR24 40316 6.612 3.730 36.797 6.773 4.012
SHIP [Zheng et al., 2024] CVPR24 34759 6.474 4.052 34.090 6.657 5.131
MREFS [Zhang et al., 2024al CVPR’24 42.333 7.046 3.182 38.039 6.777 3.461
TextIF [Yi er al., 2024] CVPR24 39.997 6.723 4.246 32813 6.639 4.281
Ours Ours 41.931 7.045 3.240 43.083 6.898 3.522

Methods Venue

U2Fusion [Xu et al., 20201

Table 2: Quantitative image fusion results on the MFNet and FMB
datasets. The best and second-best performances are highlighted in
bold and underlined, respectively.

Module MMFI FSC MMFE Fusion mloU
Ablation Part BiMamba Feature Partition & CLIP FSC ResMoE Fusion Head
Baseline v 63.8 (-2.5)
I v v v v 65.9 (-0.4)
i v v v v 64.4(-1.9)
m v v v v 64.6 (-1.7)
v v ' v ' 62.7 (-3.6)
v v ' v v 63.2(-3.1)
Full Model v v v v v 66.3 (0.0)

Table 3: Ablation experiments of CMFS on the FMB dataset. The
relative decrease in mloU, following the ablation of each component
compared to the Full Model, is highlighted in blue.

viation (SD) [Aslantas and Bendes, 2015], entropy (EN), and
mutual information (MI) [Qu er al., 2002] to assess image
detail preservation, multi-modal information integration, and
retention of complementary information. Visual results in
Figure 7 and 8 show that CMFS achieves high visual fidelity,
effectively removing noise even in low-light conditions. As
shown in Figure 7, CMFS avoids the style bias in nighttime
infrared images and effectively restores texture details like
road traffic signs. Figure 8 highlights its ability to elimi-
nate modality misalignment artifacts, ensuring sharper ob-
ject boundaries. The FSC module further enhances texture,
sharpens edges, and aligns the output with human percep-
tion. Quantitative results in Table 2 confirm CMFS’s good
performance, achieving encouraging scores across most met-
rics compared to state-of-the-art methods.

4.4 Ablation Studies

We conduct comprehensive ablation studies to assess the ef-
fectiveness of the specific design choices in our method, sys-
tematically evaluating six variants. Baseline Model: re-
moves all components of our design, retaining only the fu-
sion and semantic segmentation heads, and uses residual con-
volutional networks (Channel Embed) to fuse features from
the two modalities. Model I: removes the Bimamba block to
evaluate the impact of intra-modal feature self-reinforcement.
Model II: omits the feature partitioning step and CLIP re-
gional importance guidance in the MMFI module, keeping
only the hybrid attention mechanism with gated correction.
Model III: discards the FSC module to highlight the contri-
bution of multi-domain joint modeling for denoising. Model
IV: replaces the MMFE module with a simple single-layer
1x1 convolution to demonstrate the necessity of feature re-
finement and spatial modulation. Model V: removes the im-

Figure 9: Qualitative segmentation of ablation studies. Our full
model consistently achieves accurate segmentation of objects across
different categories, even in smoke-filled environments.

Figure 10: Qualitative fusion of ablation studies. Removing any
component from the full model increases the blurriness of salient
objects, such as the person in the red box.

age fusion head to assess the mutual enhancement between
the two tasks. Based on the controlled variable analysis pre-
sented in Table 3, it is evident that removing any individ-
ual module from the full model results in a decrease in seg-
mentation performance, indicating that each of the designed
modules contributes positively to overall segmentation accu-
racy. In comparison to the baseline, the Model IV and V
configurations show lower performance, highlighting the im-
portance of initial fusion via the residual network (Channel
Embed Block) and the synergistic interaction between mul-
timodal fusion and segmentation. Notably, the performance
drop is most pronounced upon removal of the ResMoE Block,
reinforcing the value of utilizing a MoE mechanism to refine
features and eliminate redundancy, which provides a novel
approach for enhancing segmentation performance. Visual
comparisons in Figure 9 support these findings by introducing
another extreme environment of smoke, confirming that our
framework effectively meets the objectives of multi-modal
segmentation and fusion tasks and demonstrates broad ap-
plicability. Additionally, the visual results in Figure 10 also
substantiate the positive contribution of the designed mod-
ules to image fusion fidelity. The conclusion can be drawn
by comparing the distribution and contrast of the surrounding
artifacts of the person in the image. These results emphasize
the effectiveness of these designs in improving image fusion
and highlight the positive impact of semantic segmentation.

5 Conclusion

In this work, we presented a unified framework for infrared-
visible image fusion and multi-modal semantic segmentation
that effectively tackles noise, modality inconsistencies, and
inefficient cross-modal interactions. Our approach improves
both fusion quality and segmentation accuracy through ro-
bust feature extraction, CLIP-guided alignment, and adaptive
denoising, as validated by extensive experiments that outper-
form state-of-the-art methods.
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