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Abstract

Graph Neural Networks (GNNs), with their abil-
ity to effectively handle non-Euclidean data struc-
tures, have demonstrated state-of-the-art perfor-
mance in learning node and graph-level represen-
tations. However, GNNs face significant com-
putational overhead due to their message-passing
mechanisms, making them impractical for real-
time large-scale applications. Recently, Graph-to-
MLP (G2M) knowledge distillation has emerged
as a promising solution, utilizing MLPs to reduce
inference latency. However, existing methods of-
ten lack structural awareness (SA), limiting their
ability to capture essential graph-specific informa-
tion. Moreover, some methods require access to
large-scale graphs, undermining their scalability.
To address these issues, we propose SALE-MLP
(Structure-Aware Latent Embeddings for GNN-to-
Graph-Free MLP Distillation), a novel graph-free
and structure-aware approach that leverages unsu-
pervised structural losses to align the MLP feature
space with the underlying graph structure. SALE-
MLP does not rely on precomputed GNN embed-
dings nor require graph during inference, mak-
ing it efficient for real-world applications. Ex-
tensive experiments demonstrate that SALE-MLP
outperforms existing G2M methods across tasks
and datasets, achieving 3—4% improvement in node
classification for inductive settings while maintain-
ing strong transductive performance.

1 Introduction

Graphs have emerged as essential data structures for model-
ing non-Euclidean relations and their interactions. From ap-
plications such as protein interactions [Jha er al., 2022], en-
tity alignment [Chaurasiya et al., 2022; Surisetty et al., 20221,
and social media [Zhang er al., 2022b], these interconnected
networks effectively represent the intricacies of such sys-
tems. To learn rich node and graph-level representations from
these graph structures, GNNs employ message-passing mech-
anisms by aggregating information from neighboring nodes
[Kipf and Welling, 2022]. As aresult, GNNs achieve state-of-
the-art performance in tasks such as node classification, link

prediction, and graph classification, demonstrating their po-
tential in handling non-Euclidean data [Hamilton et al., 2017,
Veli¢kovi¢ et al., 2018; Wu et al., 2020].

Despite their success, GNNs face critical challenges such
as high latency and computational overhead. Due to the
neighborhood aggregation process, the applicability of GNNs
in real-world scenarios remains limited [Hamilton et al.,
2017; Kipf and Welling, 2022]. To address the latency bottle-
neck [Liu et al., 2022], techniques such as pruning [Huang et
al., 2024], partitioning [Modak et al., 2024], and quantization
[Ding et al., 2021; Tailor et al., 2021; Zhao et al., 2020] aim
to reduce computational complexity. However, these methods
fail to eliminate the message-passing overhead in GNNs. Al-
ternatively, knowledge distillation (KD) [Zhang et al., 2022a;
Tian et al., 2022; Lu et al., 2024; Yan et al., 2020; Malik et
al., 2024] transfers the knowledge of computationally inten-
sive teacher models to lightweight student models. KD meth-
ods replicate the teacher’s output through soft labels or latent
embedding spaces. MLPs are often selected as student mod-
els in such distillation approaches due to their strong mem-
ory capabilities [Szegedy, 2013]. By leveraging only node
features, MLPs can effectively capture the knowledge trans-
ferred from GNNs while maintaining lower inference latency.

Though lightweight, student MLPs struggle to fully cap-
ture the crucial graph-specific structural knowledge from
GNNs. Traditional MLP-based methods, such as GLNN
[Zhang et al., 2022al, rely solely on node features. They
lack explicit structural information and often lead to subop-
timal performance. Additionally, DeepWalk-based methods
like NOSMOG]ITian et al., 2022] are unsuitable for online
training or inductive scenarios, where models must general-
ize to unseen nodes without accessing the entire graph. Main-
taining the whole graph in such cases is resource-intensive
and undermines the purpose of large-scale graph distilla-
tion. While structure-aware methods [Chen et al., 2022;
Wang et al., 2024] improve performance, they struggle with
heterophilic graphs. Furthermore, methods [Wu er al., 2023c]
attempt to make MLPs more structure-aware through knowl-
edge transfer from GNN embeddings. However, it remains
unclear whether distilling the GNN latent embedding space
is the best approach for student MLPs, particularly for node
classification tasks and their effectiveness is not well es-
tablished. This raises the question: can we make MLPs
structure-aware while maintaining graph-free inference?
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In this work, we propose SALE-MLP, a novel, flexible, and
adaptable structure-aware (G2M) KD method. SALE-MLP
learns structure-aware latent embeddings from node features
by distilling GNNs into MLPs, without relying on GNN em-
beddings or explicit graphs as input. SALE-MLP enhances
the student model’s generalization by mimicking GNN-like
message passing and improving the embedding space to bet-
ter represent graph structures. Our approach can integrate
with any unsupervised graph-structure loss and adopt diverse
GNN teachers, making the framework fundamentally loss,
teacher, and task-agnostic (suitable for both node classifica-
tion and link prediction). It excels in unseen scenarios where
structural information is vital. Extensive experiments on node
classification and link prediction tasks show that SALE-MLP
outperforms existing G2M distillation methods in both trans-
ductive and inductive settings. The performance gain is par-
ticularly notable (3—4%) in practically relevant inductive set-
tings. Furthermore, ablation studies validate the effectiveness
and efficiency of SALE-MLP.

2 Preliminaries

Notation: Consider a graph G = (A, X) with the node set
V = {v1,v9,...,un} and edge set F, where N is total num-
ber of nodes. Let the node features be X € RV *¢ with d as
the size of node features. A is the adjacency matrix, where
A;; = 1if node 7 and j are connected, else, 4;; = 0. Fur-
thermore, Y € RN xC represents the label matrix where C' is
the number of classes. Finally, labeled nodes are denoted as
(VE, X, Y1), and unlabeled nodes as (WY, XV, YY),
Experimentation Setting: We conduct experiments in two
setups: (i) Transductive setting: The entire graph G is ac-
cessible while training using Y'” and the model is evaluated
on the unlabeled nodes XV to predict YV (ii) Inductive set-
ting: The unlabeled nodes VU are partitioned into two dis-
joint sets of nodes VYV = VY U V.U, representing observed
nodes and inductive nodes, respectively. This creates two dis-
joint graphs: Gy based on nodes V¥ U VO%S and G;,,4 based
on nodes V;/. While training Y = Y'© and only G = G o5 is
accessible to the model while evaluation is performed using
the entire graph G. The inductive setting closely resembles
real-world scenarios as the entirety of large graphs is either
unavailable or too compute-intensive to train on.

GNN Distillation: The message-passing mechanism is es-
sential for learning node representations in GNNs by aggre-
gating information from its neighboring nodes. It typically
involves two key steps: message aggregation and represen-
tation update due to which the computational complexity of
GNNs increases drastically. So, GNN distillation methods
aim to train a student model that replicates the performance
of a GNN while reducing computation. The student model
is trained using a combination of adjacency matrix A, node
features X, GNN output logits ¢, and GNN embeddings.
The student is considered message-passing-free if the neigh-
borhood aggregation step is unnecessary, or graph-free if no
structural information is extracted from the graph during in-
ference. The distillation loss, such as KL divergence [Hinton,
2015], minimizes the difference between the student’s output
and the GNN’s output.

3 Related Work

GNNs require substantial time and memory for training and
inference over relational data. Graph knowledge distilla-
tion addresses this challenge and can be categorized into
two types: graph-to-graph distillation and G2M distillation.
While graph-to-graph distillation methods [Chen er al., 2021;
Joshi et al., 2022; Lassance et al., 2020; Ren et al., 2021;
Wu et al., 2022a] successfully train compact student GNNs,
methods like LSP [Yang et al., 2020] and TinyGNN [Yan
et al., 2020] leverage structural insights from teachers. Ad-
ditionally, RDD [Zhang et al.,, 2020] uses the reliability
of nodes and edges to improve the performance of stu-
dent GNNs. Although effective in compression, these stu-
dent GNNSs still inherit the computational overhead of mes-
sage passing, limiting their practical applicability. In con-
trast, G2M methods, based on structural awareness, are sub-
divided into structure-aware (SA-G2M) and non-structure-
aware (NSA-G2M) approaches.

3.1 Non-Structure (NSA-G2M) Distillation

To tackle the problem of complex message-passing, MLP-
based student models distill knowledge from teacher GNNs
and replicate the teacher’s performance while reducing mem-
ory and computational complexity. GLNN [Zhang et al.,
2022a] pioneered G2M distillation by mimicking GNNs us-
ing teacher prediction probabilities as soft labels, along with
ground-truth labels as hard labels. By simply trying to
replicate the GNN output logits, MLPs achieve a signif-
icant performance improvement over MLPs trained solely
using ground-truth labels, demonstrating the drastic useful-
ness of distillation methods. Furthermore, GSDN [Wu et al.,
2022b] enhanced this approach by incorporating mixup aug-
mentation [Han et al., 2022] on input features and enforc-
ing locality-based consistency. However, these methods rely
on logit-based distillation, ignoring neighborhood and graph
structure, which leads to information loss and poor general-
ization on unseen nodes. FF-G2M [Wu et al., 2023a] ad-
dresses this by using spectral-graph theory to preserve high-
frequency information during the distillation process, ensur-
ing that high pairwise differences in teacher logits between
neighboring nodes are maintained.

Additionally, KRD [Wu er al., 2023b] handles this infor-
mation loss by introducing a novel strategy of training student
MLPs with only confident knowledge points using a reliable
sampling strategy. Recently, AdaGMLP [Lu er al., 2024] pro-
posed an ensemble G2M distillation approach that improves
the generalization capabilities of the student MLP to some
extent. They also use feature masking and alignment of Ad-
aBoosted MLPs, which help mitigate incomplete/corrupted
node features and graph structures that are prevalent in real-
world graphs. While these methods benefit from graph-free
MLP inference, not enforcing structural awareness causes
them to lose crucial information, leading to suboptimal per-
formance, especially in inductive or few-shot learning. As
most real-world graph systems are inductive and face time
and memory constraints, it becomes increasingly important
for these G2ZM methods to incorporate structural information.
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Figure 1: SALE-MLP: Representing Latent-Space Projector f(.) for structural information and MLP classifier E(.) for final classifcation.

3.2 Structure-Aware (SA-G2M) Distillation

Structure-aware MLPs carry more information about graphs
and can better generalize on unseen nodes in inductive sce-
narios. Thus, researchers have proposed various approaches
to use structural information into student MLPs. SA-MLP
[Chen et al., 2022] explicitly passes structural information
along with node features. However, it is impractical for large-
scale graphs as it requires access to the complete graph during
inference, making it impractical for large-scale graphs. NOS-
MOG [Tian et al., 2022] utilizes DeepWalk-generated posi-
tional features and also aligns GNN-MLP latent spaces using
representational similarity loss. However, the use of neigh-
borhood approximations limits its effectiveness with unseen
nodes in inductive settings.

[Wu et al., 2023c] used class prototype embeddings to dis-
till structural information, but the extent to which the MLPs
are made structure-aware is limited. Similarly, SSL-GM
[Wang et al., 2024] proposed a self-supervised framework
that aligns embedding spaces without explicit structural infor-
mation. However, the effectiveness of such GNN latent space
alignment remains questionable due to limited expressive-
ness [Xu er al., 2019] and over-smoothing issues [Li e al.,
2018]. Moreover, completely GNN-free methods [Winter et
al., 2024] show substantially reduced performance compared
to G2M strategies, as GNN knowledge is not utilized. This
shows the critical need for G2M distillation that effectively
utilizes graph structural information with strong expressive-
ness and generalization, while maintaining graph-free infer-
ence. Our proposed SALE-MLP addresses these limitations
by aligning node feature representations with graph topology,
optimizing both structural awareness and efficiency for induc-
tive scenarios, while also better approximating GNN output
and ground truth.

4 Proposed Approach

This section presents SALE-MLP, which consists of two pri-
mary components: the Latent-Space Projector (LSP) and the
MLP classifier, as illustrated in Figure 1. These two compo-
nents together map the node features to a latent space, which
is then used to make the final predictions of the student MLP.
Additionally, we demonstrate our method using DeepWalk
[Perozzi et al., 2014]. For more details on the implemen-
tation and additional results (including other unsupervised

structural losses), read the supporting material'.

4.1 Structure-Aware Student MLP

Our approach enhances GNN distillation by aligning the stu-
dent MLP’s representation space with the graph structure.
Specifically, nodes with similar structures or that are closely
connected in the graph should have similar vector representa-
tions. Node representations generated by unsupervised struc-
tural losses [Perozzi et al., 2014; Grover and Leskovec, 2016;
Postivaru et al., 2020; Tang et al., 2015] are well-established
in generating representations that align with the graph topol-
ogy and are supported by efficient implementations for large
graphs. One such loss, DeepWalk, learns attribute-free graph
node embeddings by generating random walks to explore
the neighborhood structure and uses the SkipGram model
[Mikolov et al., 2013] to align the representations of nearby
nodes. Since the student MLP model takes the node features
as input, the random walk-based SkipGram model is instead
applied to the embedding space of the MLP in our method.
Given a random walk node sequence for a node i, S;
{v1,v2,...,vi5,|} of length |S;|, the embedding f(vl) for
each node v; (where 1 < 7 < N) is generated. Representa-
tion f(v;) predicts the context of v; within a window of size
t by modeling probability Pr(v; | v;) as mentioned in Eq. 1.
exp(f(vi) " - f(v)))

Sohis exp(f (o) T f(v)
where v; € S; and f(.) is node-embedding that maps node
attributes of v; to latent-embedding space. To train f(.), the
loss function £p,r, an InfoNCE approximation [Church,
2017] is typically used for efficient implementation. The
equivalent loss is defined in Eq. 2. The constraints in Eq.
3 encourage neighboring nodes to move closer to v; by maxi-
mizing the probability of the random walk S;. The constraints
in Eq. 4 represent a contrastive loss, pushing the embeddings
of the negative nodes in .S; farther away. The set S; contains
k randomly sampled negative nodes for each node j in S;.

V| Z [Lpwrr)(Vi) + Lowrn)(Vi)] ()
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'https://github.com/ganzagun/SALE-MLP
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4.2 Training MLPs by GNNs Distillation

Given a cumbersome pre-trained GNN, the goal of distilla-
tion is to train a lightweight MLP using both ground truth
labels and soft labels (from the teacher). For any labeled
node v € VL, the ground truth label is y, while z, is the
corresponding soft label, as predicted by the teacher GNN.
The node classification objective is captured by cross-entropy
CE(.) loss between the student prediction ¢, and the ground
truth label y,,:

Lop =15 ZCE (4:), i) (5)

GNN distillation is performed using the KL-Divergence
Dxr(.) between the MLP prediction ¢, and the soft labels
Zy, as generated by GNN teacher:

Lsr = |V| Z Dir(o

%

(@i/7),0(2:/T)) ©)

4.3 Overall Loss

The final objective function £ is defined as the weighted
combination of ground truth cross-entropy loss L, soft la-
bel distillation loss Lgr,, and the unsupervised structural loss
(DeepWalk loss L p,,, in this case):

L=Xer+(1—-XNLsr+alpur (7

where « is a trade-off that balances the impact of £Lp,, 1, and
Abalances Lo and Lgp,. By incorporating L ., 1., the distil-
lation process is instead based on structure-aware MLPs. Ad-
ditionally, the joint end-to-end training of both losses aligns
the representation space, ensuring that neighbor embeddings
are close even when labels differ (heterophily), thus preserv-
ing distinguishably. Furthermore, MLP overfitting, particu-
larly with limited training labels, is mitigated by regularizing
the unsupervised structural loss. Hence, it replicates teacher
GNN’s generalization in the student MLP with structure-
aware embeddings via soft labels. Additionally, we perform
pretraining of the latent space encoder, aiding faster conver-
gence, especially for larger graphs. Efficient DeepWalk im-
plementations can also be utilized with separate training. Al-
gorithm 1 summarizes the proposed SALE-MLP.

S Experimental Details

Datasets: The experimentation utilizes six widely-adopted
public benchmark datasets: (Cora, Citeseer, Pubmed) [Sen
et al., 2008], (Amazon-Photo, Amazon-Computer) [Feng et
al., 2022], and the large-scale graph ogbn-arxiv [Hu et al.,
2020]. These datasets are selected based on their prevalent
usage across state-of-the-art G2M methods (GLNN, NOS-
MOG, KRD, AdaGMLP). These span different scales (small:
Cora/Citeseer, medium: Pubmed/Amazon, large: ogbn-arxiv)
and network types (citation networks and co-purchase net-
works). Furthermore, for Cora, Citeseer, and Pubmed, we

Algorithm 1 Proposed SALE-MLP

Input: An attributed network G =
window-size = w
embedding-size = d;
walk-per-node = v;
walk-length = ¢;

Graph node features: Z™;
Num of pretraining steps: g;
Output: Node embeddings f(v) for each v € V and
Classifier E/(.) for node classification;

o. f(.), E(.) + initialize parameters;

10: *Pretraining Latent Space Encoder*

12 fort = 1to gdo

13 Sample K negative samples of v; € V for i € |V)|
14:  Calculate unsupervised loss £p,,, using Eq. 2

1. Perform backpropagation on f(.)

17: end for

18: *MLP Distillation*

20: fort =1to T do

21: 8 ¢ generate a set of random walks on G;

2:  Sample |S;| negative samples of v; € V for i € |V
23 Calculate unsupervised loss £p,, 1, using Eq. 2

24 Calculate final loss £ using Eq. 7

. Perform backpropagation on f(.) and E(.)

27: end for

28 return f(.) anb E(.);

(V,E, X);

B I A U R o e

follow splits from [Kipf and Welling, 2022] and for the Ama-
zon dataset, we use splits from [Zhang et al., 2022a] i.e., us-
ing 20-shot for training, 30-shot for validation, and remaining
for testing. While ogbn-arxiv uses standard splits [Hu ez al.,
2020]. Detailed dataset statistics are provided in the support-
ing material.

Implementation details: We take GCN[Kipf and Welling,
20221, SAGE[Hamilton et al., 2017] and GAT[Veli¢kovi¢ et
al., 2018] as teacher GNN model. The model has dimension
128 and 2 hidden layers for all datasets except ogbn-arxiv
for which 256 dimensions and 3 hidden layers are used. The
choices are consistent with other G2ZM methods. For SALE-
MLP, we perform a grid search for the hyper-parameters be-
low on the validation data:

# Hidden layers = {2,3}
Walk len = {3,5,10} Pre-train Epochs = {1,2,5,10}
A={0.0,0.1, ..., 1.0} a=1{1,15,2,25,3,35,4}
Hidden layer Dimensionality = {64,128,256}

# Walks = {1,2,5}

Baselines: We chose GLNN [Zhang et al., 2022a], NOS-
MOG [Tian et al., 2022], KRD [Zhang et al., 2020] and
AdaGMLP [Lu et al., 2024] for comparison. Their publicly
available codebases are replicated along with reported best
hyperparameters for evaluation. Additionally, as NOSMOG
is not a graph-free method, we also report results for NOS-
MOG by removing the Deepwalk embeddings component for
a fair evaluation of methods with graph-free students. For
AdaGMLP and KRD, we note that the teacher GNN used in
the original work is larger than our teacher GNN.
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|  Setting |Method | Cora | Citeseer | Pubmed | A-photo |A-computer|ogbn-arxiv|
SAGE(Teacher) 79.16 + 1.61 67.79 +2.80 74.70 42233 90.42 +0.68 82.70 +1.37 70.69 +0.39
MLP 59.12 4+ 149(58.29 4+ 1.94(68.42 4 306|77.25 £ 1.90| 67.60 1223 |55.36 1034
GLNN 78.97 +156(69.23 +239|74.70 +225| 91.8 £ 049 | 82.56 1 134 |64.61 £0.15
Transductive NOMSOG(w/o deepwalk) [79.93 4 151(69.62 + 145(74.95 +358192.24 £ 101| 82.91 1121 |68.23 Lo
NOMSOG (not Graph—free) 80.93 +1.65 70.67 +2.25 75.83 + 3.06 92.44 +0.51 83.72 + 1.44 71.10 + 034
KRD 79.08 1+ 1.00]|71.59 4 1.19[79.76 1+ 062]90.99 1 1.16| 82.61 1096 |71.13 £ 021
AdaGMLP 83.20 4 1.17(71.21 +4.17(78.92 +036(92.12 1 22| 81.13 £ 181 |71.68 1051
SALE-MLP (Ours) 84.01 + 0.46|74.01 & 1.94(81.40 1 90194.01 4 101 | 84.29 1285 | 72.56 + 53
SAGE(Teacher) 81.03 +1.71 69.14 +2.99 75.07 +2.89 90.56 +1.47 82.83 +1.51 70.69 +0.58
MLP 59.44 1+ 336(59.31 +456|68.28 +325|77.44 1 150| 67.69 +221 |55.29 1067
GLNN 73.21 +153(68.48 +238(74.52 +295|89.49 4 1.12| 80.27 1211 |59.04 £ 046
Inductive | NOMSOG(w/o deepwalk) |73.74 + 196 68.78 1+ 2.13|74.55 £341(89.55 + 177| 80.294 141 |60.88 &2
NOMSOG (IlOt Graph—free) 81.36 +1.53 70.30 +2.30 75.87 +332 92.61 + 1.09 84.36 + 157 70.09 + 055
KRD 75.56 4+ 158]70.66 +034(78.42 +054|89.74 £ 104| 81.22 1159 |62.32 157
AdaGMLP 74.80 +221[69.30 +427(78.72 +020(|92.51 £1.25| 79.56 + 121 |65.07 £ 024
SALE-MLP (Ours) 83.73 1 0.90(73.58 1+ 1.48(81.90 - 112(92.74 1+ 164| 84.48 1+ 265 | 71.54 L g5

Table 1: Node-Classification accuracy in both Settings (over 10 runs), bold represents the best while underlined the second-best.

6 Results and Analysis

In this section, we evaluate SALE-MLP across several key
aspects: its performance, inference time, impact of various
loss component, robustness and hyperparameter sensitivity

6.1 Classification Performance

SALE-MLP is evaluated in both transductive and inductive
settings, with results for SAGE shown in Table 1. In both the
reported settings, SALE-MLP consistently outperforms exist-
ing methods and even surpasses the teacher GNN across all
datasets, demonstrating several key advantages:
Transductive Setting: While NSA-G2M methods (KRD,
AdaGMLP) benefit from accessing prediction node logits
during training, SALE-MLP still achieves superior perfor-
mance. Notably, SALE-MLP outperforms NOSMOG even
with its DeepWalk embeddings, highlighting the effective-
ness of our structure-aware latent space alignment.
Inductive Setting: SALE-MLP demonstrates substantial im-
provements over existing methods, particularly on the large-
scale ogbn-arxiv dataset. NSA-G2M methods show signif-
icant performance degradation compared with transductive
settings due to their lack of structural awareness which im-
pacts most in inductive settings. While NOSMOG’s perfor-
mance heavily relies on DeepWalk embeddings as the perfor-
mance without DeepWalk drops across the dataset. In con-
trast, SALE-MLP maintains consistent performance across
both settings due to its inherent structure-aware embedding
space, achieved without requiring explicit graph access. Fur-
thermore, statistical significance of the experiments is re-
ported in the supporting material.

6.2 Inference Time

The Figure 2 illustrates the accuracy-inference time trade-off
on PubMed (transductive setting). SALE-MLP achieves the
highest accuracy with only 0.2ms inference time, approach-
ing GLNN’s efficiency (0.096ms) while significantly outper-
forming it in accuracy. The variation in inference times across

| Dateset |w/o L1 |W/o L5, |W/o L1 |SALE-MLP |

82.01 80.37 78.97 83.74
71.13 69.35 69.23 72.38

Cora
Citeseer

Table 2: Accuracy of different SALE-MLP loss components.

methods is attributed to the number of layers, hidden di-
mensions and ensemble of models (for AdaGMLP) associ-
ated with the best-performing model. While the higher in-
ference time of NOSMOG can be attributed to the process of
finding the neighboring nodes and calculating the mean em-
bedding. Notably, SALE-MLP achieves 150x speedup over
SAGE GNN (33.2ms) while delivering superior performance,
demonstrating its practical utility for real-world applications.

821 81.40

@
2

79.76

©
S

78.90

~ ~
@ ©

Accuracy (%)

m GLNN
76 75.80 NOSMOG
KRD

AdaGMLP
SALE-MLP

75 174.70

(R 22

2‘.0 2‘.1 2‘.2 2‘.3 2‘.4 2‘.5 2‘.6 2‘.7 2‘.8
Inference Time (ms)

Figure 2: Trade off between time (x) and accuracy (y-axis).

6.3 Loss-Component Ablation

An ablation study by systematically removing individual loss
components is also conducted, with results reported in Table
2. The analysis reveals several key insights:

Impact of Structure-Aware Learning (Lp,,1): Removing
L p. 1, causes a significant performance degradation, showing
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that structure-aware latent space is crucial for both effective
knowledge transfer and maintaining better classification.
Role of Soft Labels (Ls): Without GNN distillation via
Ls, the model struggles to capture the teacher GNN’s in-
ductive bias and generalization capabilities, highlighting the
importance of teacher guidance.

Ground Truth Supervision (Lg7): The removal of L5 has
minimal impact, as Lgy, provides sufficient supervision.
Notably, SALE-MLP without Lg;, achieves performance
comparable to the teacher GNN, and with distillation provid-
ing complementary information, explains why SALE-MLP
ultimately outperforms the teacher GNN (Table 1).

6.4 Consistency with Graph Topology

To quantify SALE-MLP’s effectiveness in capturing graph
topology, we evaluate the cut-value (CV) between model pre-
dictions and graph structure [Zhang et al., 2022a]. The min-
cut problem partitions A/ nodes into K disjoint subsets while
minimizing edge cuts, formulated as [Dhillon et al., 2004]:
1= (CTACY)

— N Rk 8

Following [Bianchi et al., 20201, replacing C with model pre-
dictions Y yields:

tr(YTAY)

ar———> (€))
(YTDY)

Here, CV is proportional to the consistency between the

topology of the graph and model predictions. And a Higher

CV indicates better capture of graph-structural information.

|Dataset | GNN|MLP|GLNN|NOSMOG |KRD |ADAGMLP |SALE-MLP|
Cora 0.938(0.890| 0.893 | 0.936 [0.856| 0.877 0.938
Citescer  |0.9720.939| 0.949 | 0967 [0912| 0962 0.972
Pubmed  |0.984/0.881| 0.939 | 0959 |0.870| 0.982 0.965
A-Computer|0.9410.463| 0.876 | 0918 |0.893| 0911 0.927
A-Photo  |0.9430.604| 0.891 | 0923 |0.886| 0.922 0.939

Table 3: Performance comparison of Min-cut across methods.

CV values across datasets are reported in Table 3. Induc-
tive bias in GNN is best at understanding graph topology
leading to the best GNN performance. While GLNN ben-
efits from GNN distillation compared to MLP, the structure
awareness introduced in NOSMOG further improves the CV.
Finally, SALE-MLP outperforms all G2M methods further
proving the advantage of having structure-aware latent space
derived directly from the graph topology. Additionally, Ta-
ble 4 shows the impact of removing the loss components.
And as observed removing £g, minimally impacts CV, indi-
cating SALE-MLP effectively captures structural information
through embedding alignment alone.

6.5 Performance on Heterophilic Dataset

Next, we report the performance of SALE-MLP on high-
heterophily datasets Actor [Tang er al., 2009] and Wiscon-
sin (https://tinyurl.com/Wiscosn) in inductive settings. High

| Dateset |w/o LT | W/o L5 |Wlo Lpwr |SALE-MLP |

0.890 0.936 0.893 0.938
0.939 0.967 0.949 0.972

Cora
Citeseer

Table 4: Mincut of different SALE-MLP loss components.

|Dateset |SAGE |GLNN|NOSMOG| MLP |SALE-MLP |
Actor  |26.8%|227% | 23.1% |28.67%| 24.5%
Wisconsin| 50.7% | 45.9% | 67.1% | 53.2% | 70.0%

Table 5: Node classification under heterophillic (inductive) setting.

heterophily poses unique challenges for G2M methods, re-
quiring effective integration of both node features and graph
structure.

As shown in Table 5, SALE-MLP outperforms other dis-
tillation methods in both the datasets, with significant gains
in Wisconsin. MLP performs better in Actor, given suffi-
cient training data, due to over-smoothing in GNNs. How-
ever, leveraging the neighborhood information, GNNs regain
their edge in a few-shot scenario. Further, SALE-MLP out-
performs MLP by providing a sweet spot with information
from both structure and MLP, if trained using heterophilic
specific GNNs. The larger improvement in Wisconsin can be
attributed to the fact that the number of nodes in Wisconsin is
smaller and it is easier for SALE-MLP to capture the relation
between structure and node features. Moreover, while SALE-
MLP does not explicitly address heterophily, its structure-
aware latent embeddings naturally combine node features and
structural information, leading to improved performance in
heterophilic conditions. Additional experiments with varying
heterophily ratios are presented in the supporting material.

6.6 Generalization Ability of SALE-MLP

Evaluating generalizability is another aspect explored for dif-
ferent approaches in Cora and Citeseer datasets. We trained
and plotted the performance of SALE-MLP and other G2M
methods with limited labeled samples per class (k-shots).
This experimental setup is crucial for understanding how well
the model can generalize when only a small amount of la-
beled data is available, simulating real-world scenarios where
labeled data is often scarce.
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Figure 3: Accuracy (Y) vs k-shot (X) plot for L:Cora & R:Citeseer.

Figure 3 shows SALE-MLP’s superior generalization capa-
bilities across different k-shot scenarios. The model exhibits
strong performance even with few labeled examples (lower
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k values). As more labeled examples are introduced, SALE-
MLP shows sharp initial accuracy improvements, indicating
effective learning from minimal supervision. The perfor-
mance gradually saturates at higher k values, suggesting effi-
cient knowledge extraction from the available labeled data.
While KRD showing competitive performance to SALE-
MLP due to its reliable node selection strategy that helps cap-
ture important data patterns. However, throughout the range
of k values, SALE-MLP consistently outperforms all G2M
methods including KRD.

6.7 Different Training Strategies

An ablation study is conducted to understand the most opti-
mal strategy by examining how the model performs under dif-
ferent strategies. We investigate three distinct training strate-
gies for SALE-MLP: (i) end-to-end training without pre-
training f(.), (i) unsupervised pre-training of f(.) (warm-
start) followed by freezing f(.) while training the classifier
E(.), and (iii) pre-training f(.) for a few epochs, followed by
subsequent end-to-end fine-tuning of both f(.) and E(.).

| Dateset |No pretrain | Pretrain+Freeze | Pretrain+Fine-tune| SALE-MLP |

0.890 0.936 0.893 0.938
0.939 0.967 0.949 0.972

Cora
Citeseer

Table 6: Accuracy of SALE-MLP under varied train conditions.

The performance of these approaches on the Cora and Cite-
seer datasets is reported in Table 6. It can be observed that
warm starting f(.) and fine-tuning it end-to-end yields the
best results. This superior performance can be attributed to
two reasons: this strategy better handles the relatively slower
convergence of the unsupervised structural loss (Deepwalk
loss). And training in a structure-aware space effectively pre-
vents MLP from overfitting on node features.

6.8 Input Feature-Space Analysis

To understand the effectiveness of the generated latent space,
we analyze different feature spaces using t-SNE plots. Fig-
ures 4(a) and 5(a) show the node-feature vs. node label plots,
representing the input space used by most G2M methods
(GLNN, KRD, AdaGMLP). The poorly distinguishable class
clusters in this space explain the relatively lower performance
of methods like GLNN that directly utilize node features.
Figures 4(b) and 5(b) illustrate NOSMOG’s enhanced input
space, incorporating DeepWalk embeddings. The improved
cluster separation explains NOSMOG’s superior performance
over GLNN. Finally, Figures 4(c) and 5(c) depict SALE-
MLP’s latent space, which demonstrates the clearest cluster
separation, validating its superior performance through better
structural representation learning.

6.9 Hyperparameter Sensitivity Analysis

We examine the impact of A and « on the performance of
SALE-MLP. Figure 6 shows model sensitivity to A ([0,1] with
step of 0.1). A < 0.6 is favorable with little impact when
varied between [0,0.6]. This translates to the supervision of
the teacher being pivotal, but relying more on direct super-
vision limits the learning of the student (A > 0.6). Figure

(a) Node features (b) NOSMOG (c) SALE-MLP

Figure 4: t-SNE plots of the input feature space for Cora.

(a) Node features (b) NOSMOG (c) SALE-MLP

Figure 5: t-SNE plots of the input feature space for Citeseer.

6 illustrates sensitivity to « ([1,4] with step of 0.5). Perfor-
mance peaks around 2.5, signifying a balance between £, 1,
and other losses, as overall performance drops with lower or
higher values. Here, lower values degrade latent embedding
quality, while higher values reduce influence of teacher.

95 90
—m— Cora —m— Cora
90 Citeseer Citeseer
85
85 /,./-\-\-\-
8 "‘/'\“/\\\\- 80
75 75
70
70
65
60 65
0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4

Figure 6: Accuracy over different hyperparameters, left: A, right: a.

7 Conclusion

This paper addresses the issue of graph-free structural aware-
ness in existing G2M distillation approaches. We propose
SALE-MLP, which aims to align the node features to graph
topology in a latent space using the unsupervised structural
loss. The latent space learns both graph structure and node
features, achieving the best performance compared with var-
ious SOTA methods. With extensive experiments on six
datasets, we demonstrate that SALE outperforms GNN by
3.11%, other SOTA methods by 6.47%, and MLP by 16.75%
on average in the inductive setting. In addition, the time was
reduced by 150x compared to GNN. Also, we analyze con-
sistency and generalization. Ablation studies on loss com-
ponents, training strategies, hyperparameter sensitivity, latent
representation, and heterophily settings establish the effec-
tiveness of SALE-MLP. Finally, experiments with different
teachers and varied structural loss further demonstrate the
broad applicability and adaptability of SALE-MLP.
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