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Abstract
Recently, numerous methods have been proposed
to enhance the robustness of the Graph Convo-
lutional Networks (GCNs) for their vulnerability
against adversarial attacks. Despite their empirical
success, a significant gap remains in understand-
ing GCNs’ adversarial robustness from the theo-
retical perspective. This paper addresses this gap
by analyzing generalization against both node and
structure attacks for multi-layer GCNs through the
framework of uniform stability. Under the smooth-
ness assumption of the loss function, we establish
the first adversarial generalization bound of GCNs
in expectation. Our theoretical analysis contributes
to a deeper understanding of how adversarial per-
turbations and graph architectures influence gener-
alization performance, which provides meaningful
insights for designing robust models. Experimental
results on benchmark datasets confirm the validity
of our theoretical findings, highlighting their prac-
tical significance.

1 Introduction
GCNs have demonstrated superior ability to process graph-
structured data and learn both node and graph representa-
tions [Kipf and Welling, 2017; Zhu et al., 2021]. As one
of the most widely employed tasks of GCNs, node classi-
fication has garnered significant attention due to its exten-
sive real-world applications, such as natural language pro-
cessing [Liu and Wu, 2022; Wang et al., 2024], recommen-
dation systems [Sun et al., 2021; Gao et al., 2023], and com-
puter vision [Zhou et al., 2021; Hu et al., 2023]. However,
GCNs are vulnerable to some small but intentional perturba-
tions on node features or graph structures that can mislead the
classifiers to make erroneous predictions [Zhu et al., 2019;
Bojchevski and Günnemann, 2019].

Several approaches have been proposed to enhance the ro-
bustness of models against adversarial attacks [Sun et al.,
2022]. Among these, adversarial training is formulated as
a min-max problem. The training procedure targets minimiz-
ing the classification error against an adversary who perturbs

∗Corresponding author.

the input data and maximizes the classification error [Huang
et al., 2015]. Numerous studies of adversarial training on
GCNs have shown excellent performance in node classifica-
tion tasks [Xue et al., 2021a; Xu et al., 2020; Deng et al.,
2023]. However, a significant problem was observed in ad-
versarial training, i.e., robust overfitting [Yin et al., 2019;
Rice et al., 2020]. The network performs well on the training
data but has poor adversarial generalization ability on the test
set. This motivates the need for a generalization guarantee
from the theoretical perspective.

Previous studies investigate adversarial generalization us-
ing different statistical analytical techniques, including cov-
ering number [Tu et al., 2019; Mustafa et al., 2022],
Rademacher complexity [Yin et al., 2019; Gao and Wang,
2021], and stability analysis [Farnia and Ozdaglar, 2021;
Xing et al., 2021a]. Unfortunately, the aforementioned works
are confined to adversarial generalization analysis based on
non-graph data. As the adversarial attacks to graph-structured
data could modify both node features and graph structure,
which poses more challenges in adversarial generalization
analysis than [Gao and Wang, 2021; Mustafa et al., 2022;
Xiao et al., 2022]. Specifically, in GCNs, node-based at-
tacks affect the entire feature matrix rather than individual
samples, due to the message-passing mechanism inherent to
GCNs. This interaction between nodes creates an intricate
interplay of perturbations, complicating the analysis of the
stability of GCNs under such attacks. Additionally, structure-
based attacks modify the graph’s edges by altering the adja-
cency matrix (i.e., flipping discrete connection signals 0 or 1),
making standard techniques for adversarial loss inapplicable
to graph-structured data.

To overcome these difficulties, we derive the approximate
smoothness properties for the adversarial loss function in
GCNs and investigate the adversarial generalization of GCNs
through the lens of uniform stability. Our analysis is applica-
ble to both node-based and structure-based attacks. The main
contributions are listed as follows:

• We establish a stability-based adversarial generalization
bound in expectation for general GCNs to provide the-
oretical support for adversarial training. Our theoretical
results demonstrate that the configuration of the graph
model architecture and optimal algorithm significantly
impacts GCNs’ generalization performance.
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Model Reference Under Attack Analysis Tool Stability Bound

Single layer GCN Verma and Zhang (2019) No Uniform stability O
( (λmax

G )2T

n

)
Multi-layer GCNs Zhou and Wang (2021) No Uniform stability O

( (S1+···+SK)T

n

)
Neural networks Farnia and Ozdaglar (2021) Yes Uniform stability O(Tη/n)
Neural networks Xing et al. (2021a) Yes Uniform argument stability O(

√
Tη + Tη

n )

Neural networks Xiao et al. (2022) Yes Uniform stability O(ϵTη + Tη
n )

Multi-layer GCNs Ours Yes Uniform stability O
(
(ϵ+ 1

n )η
T−1

)
Table 1: Summary of stability bound for different models (n-the number of samples; T -the number of iterations; λmax

G -the maximum absolute
eigenvalue of the graph filters; (S1, . . . , SK)-a set of parameters related to model layers K, which consists of the norm of the graph filters
and some Lipschitz constants; η-learning rate of SGD; ϵ-perturbation budget).

• We address the impact of the information interaction be-
tween perturbed nodes on the adversarial generalization
by utilizing the contraction technique of graph convo-
lution, which is based on graph filters. We exploit the
properties of graph filters to avoid operating directly in
the discrete perturbation domain under structure-based
attacks.

• Our experimental results on benchmark datasets provide
evidence that the established theoretical findings facili-
tates improving the robust generalization of GCNs.

2 Related Work
Adversarial attacks for node classification. For node-based
attacks, Takahashi et al. (2019) impose adversarial attacks by
searching small perturbations on a single node, which leads
to misclassification into the node far more than one-hop from
the perturbed node. Ma et al. (2020) investigate black-box
attacks under realistic constraints, where attackers have ac-
cess to only a subset of nodes and can only target a limited
number of nodes. Finkelshtein et al. (2022) propose a single-
node indirect gradient adversarial evasion attack, focusing on
the more realistic scenario where a single attacker node is in-
volved. For structure-based attacks, Xu et al. (2019) propose
a gradient-based attack method that perturbs a small number
of edges, which leads to a noticeable decrease in classifica-
tion performance. Geisler et al. (2021) develop two sparsity-
aware first-order optimization attack methods to attack graph
models at scale. Fan et al. (2023) introduce a novel attack
framework to jointly attack graph models and their explana-
tions via inserting adversarial edges.
Adversarial training on GCNs. For node-based attacks,
Feng et al. (2019) introduce Graph Adversarial Training
(GraphAT), which generates perturbations by maximizing the
divergence between the predictions of two connected nodes.
Xue et al. (2021a) analyze GCNs by examining weight
and feature loss landscapes, and apply alternating adversarial
training (Co-AT) to mitigate the risk of sharp local minima.
Dend et al. (2023) design Batch Virtual Adversarial Training
(BVAT), which promotes output smoothness of GCNs by ap-
plying virtual adversarial perturbations to independent sub-
sets of nodes or all nodes. For structure-based attacks, Xu
et al. (2020) develop Zeroth-Order Greedy Topology Attack

(ZO-GTA), a gradient-free adversarial training method aimed
at obtaining robust models in a more generic manner. Li et al.
(2022) construct adversarial perturbations in the spectral do-
mains and design Spectral Adversarial Training (SAT), which
is applicable to both node-based and structure-based attacks.
Gosch et al. (2024) improve the robustness of GNNs against
structural perturbations by leveraging a learnable graph dif-
fusion model to approximate any graph filter. We summa-
rize the above works in Appendix C. Although the empirical
effectiveness of the above adversarial training methods has
been validated, their theoretical foundations have not been
investigated.
Stability-based generalization analysis. Uniform stability
is a classical approach for measuring the generalization gap
[Bartlett and Mendelson, 2002]. Verma and Zhang (2019)
first apply uniform stability on one-layer GCN to derive a
generalization bound. Their work demonstrates a high re-
lationship between generalization and the maximum abso-
lute eigenvalue of the graph filters. Zhou and Wang (2021)
extend their results to multi-layer GCNs and show a expo-
nential dimensional dependence of the generalization gap on
the number of layers. Additionally, uniform stability has a
wide range of applications in adversarial learning. Farnia
and Ozdaglar (2021) analyze the adversarial generalization
properties of minimax models through the lens of algorith-
mic stability. Similarly, Xing et al. (2021a) develop an adap-
tive algorithm and apply uniform argument stability to solve
the min-max problem. It is important to note that the sta-
bility bounds in these studies are ϵ-independent, where ϵ is
the adversarial perturbation. Xiao et al. (2022) address this
limitation by introducing a modified smoothness assumption,
enabling the derivation of adversarial generalization bounds
that depend on ϵ. We summarize the main results of stud-
ies using uniform stability in Table 1. Though widely used
in neural networks, the stability-based adversarial generaliza-
tion has been unexplored in GCNs.

3 Problem Setting
Notations. We denote a matrix by the boldface uppercase
letters (e.g., X) and a vector by the boldface lowercase let-
ters (e.g., x). For a matrix X, we denote its ∥ · ∥∞-norm by
∥X∥∞ = ∥X∥ = maxi

∑
j |Xij |, where Xij is an element
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in matrix X. For a vector x, we denote its ∥ · ∥2-norm by
∥x∥2 =

√∑
i x

2
i , and its ∥ · ∥∞-norm by ∥x∥∞ = ∥x∥ =

maxi |xi|, where xi is an element in vector x.
A graph is represented as G = {A,X} with N nodes,

where A ∈ RN×N is the adjacency matrix and X =
{xi}Ni=1 ∈ RN×d is the node feature matrix. Each node is
an instance zi = (xi, yi) containing feature xi and label yi
from spaceZ = X×Y . Let n ≤ N be the number of training
samples zi. In this paper, we focus on the node classification
task, which is based on a typical K-layer GCN model. The
update rule with j = {1, 2, . . . ,K} is represented by

Xj = σ(g(A)Xj−1Wj),

where Xj ∈ RN×dj represents the output of the j-th layer
with X0 ∈ RN×d and XK ∈ RN×|Y| denoting the input and
output matrix of the model, respectively. Similarly, Wj ∈
Rdj−1×dj represents the learning parameters of the j-th layer
with d0 = d and dK = |Y|. Moreover, the function σ(·) de-
notes the activation function, and g(A) ∈ RN×N represents
the graph filter, which is a function of the adjacency matrix A,
such as the unnormalized filter g(A) = A+ I, the symmetric
normalized filter g(A) = (D+ I)

−1/2
(A + I)(D+ I)

−1/2

[Kipf and Welling, 2017], and the random walk normalized
filter g(A) = (D+ I)

−1
(A + I) [Zhang et al., 2019]. For

a node xi, we utilize an indicator pxi
∈ RN to obtain the

corresponding output label yi. Thus, the output function of
the node x is defined as

f(W,A,x) = σ(pT
x g(A)XK−1WK),

where W = {W1,W2, . . . ,WK} is the learning param-
eters. For a K-layer GCNs, the learning algorithm is de-
fined as AS = f(W,A,x), where the training set S =
{zi}ni=1 is sampled from an unknown distribution D. De-
note the loss function on sample z = (x, y) by ℓ(AS , z) or
ℓ(f(W,A,x), y), the population risk is defined on distribu-
tion D as RD(AS) = EDℓ(f(W,A,x), y), and the em-
pirical risk is defined on the training set S as RS(AS) =
1
n

∑n
i=1 ℓ(f(W,A,xi), yi).

In this paper, we focus on the ℓ∞ adversarial attack. The
adversary is allowed to attack the graph with some ℓ∞ balls
by perturbing the node feature matrix or adjacency matrix.
We impose the attacks by maximizing the standard loss

ℓ̃(f(W,A,x), y) = max
f̃(·)

ℓ(f̃(W,A,x), y), (1)

where f̃(·) denotes the perturbed graph model by node or
structure attacks. Then, to improve the robustness of GCNs
against adversarial attacks, we perform adversarial training
by minimizing the adversarial loss ℓ̃(f(W,A,x), y) [Sha-
ham et al., 2018].

To better explain the generalization under the framework
of adversarial training, we define the adversarial population
risk function as

R̃D(AS) = ED ℓ̃(f(W,A,x), y).

It represents the worst-case risk of the model under adversar-
ial perturbations. Since the distribution D is unknown, we

estimate the min-max objective by using the adversarial em-
pirical risk function defined as

R̃S(AS) =
1

n

n∑
i=1

ℓ̃(f(W,A,xi), yi).

We are interested in the difference between the population
risk and the empirical risk in adversarial settings as the gen-
eralization error, which is represented by

G(AS) =
∣∣R̃D(AS)− R̃S(AS)

∣∣.
4 Main Result
The main results are presented in Theorem 2 and 3, which
provide the adversarial generalization gap for K-layer GCNs.
We first give the definition of uniform stability. Next, we give
some essential assumptions and critical lemmas. Finally, we
establish the stability bound of GCNs in adversarial settings.

4.1 Uniform Stability
For a dataset S, we consider replacing the ith data point zi
with a new point z′i. The resulting dataset can be represented
as

Si = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn}.

As shown by Bousquet and Elisseeff (2002), the generaliza-
tion gap is closely related to uniform stability. Specifically,
Definition 1 provides an upper bound on the difference in loss
resulting from a small change in the training set, applicable
to all possible sample combinations z.
Definition 1 (Uniform Stability). A randomized learning
algorithm AS trained on dataset S with n samples is β-
uniformly stable with respect to a loss function ℓ, if it satisfies

sup
z∈S

∣∣EA
[
ℓ(AS , z)

]
− EA

[
ℓ(ASi

, z)
]∣∣ ≤ β.

According to Hardt, Recht, and Singer (2016), a random-
ized learning algorithm with the above uniform stability can
yield the following bound on the generalization gap.
Theorem 1 (Generalization in Expectation). A uniform sta-
ble randomized algorithm (AS , β) satisfies the following gen-
eralization bound∣∣ES,A

[
RD(AS)−RS(AS)

]∣∣ ≤ β.

Theorem 1 demonstrates that if a randomized algorithm is
uniformly stable, then its generalization error is small. For the
randomized algorithm, we use SGD on the adversarial loss to
search for the optimal solution for the worst-case scenario. At
each iteration t, for 1 ≤ j ≤ K, the update rule is defined as:

Wj,t+1 = Wj,t − ηt∇Wj
ℓ̃
(
AS

t , zit
)

(2)

where ηt > 0 is the step size in iteration t, and Wj,t are
the parameters generated by the j-th layer GCNs running on
SGD at t-iteration. We take the expectation over the risks in
Theorem 1 based on the internal randomness ofAS . Note that
SGD generates randomness as it selects examples randomly
to compute batch loss gradients. Hence, we focus on this ran-
domness and ignore the randomness introduced by parameter
initialization. We will use ESGD instead of EA in subsequent
analysis.
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4.2 Assumptions
Next, we give some assumptions of the loss function ℓ(·) and
activation function σ(·).
Assumption 1. Assume that the loss function ℓ(W,V) satis-
fies the following Lipschitzian smoothness conditions, where
W represent the weight of GCNs, and V = z or V = A.

(a)
∣∣ℓ(W, z)− ℓ(W′, z)

∣∣ ≤ vw∥W −W′∥.

(b)
∥∥∇ℓ(W, z)−∇ℓ(W′, z)

∥∥ ≤ αw∥W −W′∥.

(c)
∥∥∇ℓ(W, z)−∇ℓ(W, z′)

∥∥ ≤ αx∥z− z′∥.

(d)
∥∥∇ℓ(W,A)−∇ℓ(W,A′)

∥∥ ≤ αg∥g(A)− g(A′)∥.
Assumption 2. Assume that the activation function σ(·) sat-
isfies the following Lipschitzian smoothness conditions.

(a) ∥σ(x)− σ(y)∥ ≤ vσ∥x− y∥.
(b)

∥∥∇σ(x)−∇σ(y)∥∥ ≤ ασ∥x− y∥.
Assumption 3. Assume that there exists a constant Cx such
that ∥x∥2 ≤ Cx holds for all x ∈ X .

Assumption 4. Assume that there exists a constant Cw > 0
such that max1≤j≤K ∥Wj∥ ≤ Cw holds.

Remarks. Assumption 1 is commonly found in the stabil-
ity literature and holds for most gradient-based attacks [Far-
nia and Ozdaglar, 2021; Xing et al., 2021b]. Some com-
mon loss functions satisfy the above conditions, such as the
cross-entropy loss and log loss. And a majority of activa-
tion functions like Sigmoid, Tanh, and ELU satisfy the As-
sumption 2. Assumption 3 can be satisfied by applying nor-
malization to the input features [Verma and Zhang, 2019;
Tang and Liu, 2023]. Assumption 4 reflects the common re-
quirement in generalization analysis of GCNs that parameters
are bounded during the training process [Garg et al., 2020;
Cong et al., 2021].

4.3 Stability Generalization Bounds
We then utilize uniform stability to analyze the generalization
of multi-layer GCNs under two adversarial scenarios: node-
based and structure-based attacks.

Node Perturbations
We first impose adversarial attacks on node features x to find
the most effective adversarial examples x̃. They are generated
from a noise set B∞ϵx = {x̃ : ∥x̃ − x∥ ≤ ϵx}, where ϵx rep-
resents the perturbation budget, typically set to small values
to ensure that the feature distribution of adversarial examples
remains close to clean examples. The adversarial loss in for-
mulation (1) can be rewritten by

ℓ̃(f(W,A,x), y) = max
x̃∈B∞

ϵx

ℓ(f(W,A, x̃), y).

Then, we have the following properties of the adversarial loss
function against the node perturbations.

Lemma 1. Let W represent the training parameters of SGD
running on GCNs, and the adversarial loss function ℓ̃(W, z)
satisfies Assumption 1. For any z ∈ Z , the following proper-
ties hold.

(a) ℓ̃(W, z) is vw-Lipschitz continuous∣∣ℓ̃(W, z)− ℓ̃(W′, z)
∣∣ ≤ vw∥W −W′∥.

(b) ℓ̃(W, z) is αw-Lipschitz 2αxϵx-approximately smooth∥∥∇W ℓ̃(W, z)−∇Wℓ̃(W′, z)
∥∥ ≤ αw∥W −W′∥

+ 2αxϵx.
Remarks. In Lemma 1, the first inequality shows that the
adversarial loss also satisfies the Lipschitz continuous prop-
erties. Nevertheless, the second item demonstrates that the
maximization operation on loss hurts the continuity of its gra-
dient, and the smoothness of the adversarial loss is controlled
by the perturbation constraint ϵx.

Then we state the adversarial generalization bound for K-
layer GCNs, which controls the generalization error against
the node attacks by measuring the stability of the SGD algo-
rithm.
Theorem 2 (Adversarial Generalization Gap of Multi-layer
GCNs). Let AS be the function learned by K-layer GCNs
after training on the dataset S with n samples using the SGD
algorithm for T iterations. With Assumptions 1, 2, 3 and 4
hold, we have the following expected generalization bound.

ESGD
[
G(AS)

]
≤ O

((
ηKCG

)T (
αxϵx +

1

n
KCG

))
,

where η = max{η1, η2, . . . , ηT } and

CG = max
j∈[1,K]

{αwvσ
2(j−1)+

(K+j−1)(K−j)
2 ασ

K−j+1Cx
K

∥g(A)∥
K2+3K−2

2 Cw
2(j−1)+

(K+j+3)(K−j)
2 }.

Remarks. For K-layer GCNs, due to the term CG, the gener-
alization bound would increase exponentially with the num-
ber of layers K, which deteriorates the performance of deep
GCNs. Theorem 2 reveals that CG is affected by some Lip-
schitz coefficients (e.g. vσ and ασ) and norm constraints
(e.g. Cx and Cw). Thus, we can choose ELU activation
and cross-entropy loss to eliminate the effect of those Lips-
chitz constants. And the norm constraint Cx of node x can
be controlled by applying the batch-normalization in GCNs
[Verma and Zhang, 2019]. As ∥g(A)∥ = 2dmax + 1 if
g(A) = A + I is selected, we can choose the normalized
filter with ∥g(A)∥ = (2dmax + 1)/dmin, where dmax and
dmin represent the maximum and minimum degree of the
adjacency matrix, respectively. Besides, one could mitigate
the exponential growth by applying a regularization on the
weight norm ∥W∥ to reduce the value of Cw, especially when
the number of layers increases.
Remarks. In the context of the SGD training procedure, the
choice of learning rate η is crucial. A larger number of it-
erations T may result in a wider gap, potentially signaling
overfitting. More importantly, compared to Zhou and Wang
(2021), our bound takes account of the adversarial robust-
ness, which is reflected in the term αxϵx. The adversarial
coefficient αx hurts the robust generalization even though the
perturbation ϵx is small for their multiplicative relation.

Structural Perturbations
We now consider the structure attacks on GCNs, i.e., per-
form subtle perturbations on the graph structure by adding
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or deleting a small number of edges. Followed by previ-
ous studies [Geisler et al., 2021; Fan et al., 2023], we as-
sume that the adversarial adjacency matrix Ã is generated by
B∞ϵA = {Ã : ∥Ã −A∥ ≤ ϵA}, where ϵA is the perturbation
budget to constrain the changes to A. The adversarial loss in
formulation (1) can be rewritten by

ℓ̃(f(W,A,x), y) = max
Ã∈B∞

ϵA

ℓ(f(W, Ã,x), y).

Different from the node attacks, the relation between the per-
turbed adjacency matrix Ã and adversarial generalization is
difficult to handle. We explore the impact of Ã on the gen-
eralization by operating the graph filter, which is reflected
on ϵg =

∥∥g(A) − g(Ã)
∥∥. Similar to Lemma 1, the struc-

ture attacks also satisfy the Lipschitz properties of adver-
sarial loss that ℓ̃(W, g(A)) is vw-Lipschitz continuous and
αw-Lipschitz 2αgϵg-approximately smooth. Based on these
properties, we can derive the generalization bound of K-layer
GCNs against the structure attacks in the following theorem.
Theorem 3 (Adversarial Generalization Gap of Multi-layer
GCNs). Let AS be the function learned by K-layer GCNs
after training on the dataset S with n samples using the SGD
algorithm for T iterations. With Assumptions 1, 2, 3 and 4
hold,
(a) if g(A) is unnormalized, we have

ESGD
[
G(AS)

]
≤ O

((
ηKCG

)T (
αgϵA +

1

n
KCG

))
,

(b) if g(A) is normalized, we have

ESGD
[
G(AS)

]
≤ O

((
ηKCG

)T ( 2αgϵA
dmin + 1

+
1

n
KCG

))
,

where η is as stated in Theorem 2 and

CG = max
j∈[1,K]

{αwvσ
2(j−1)+

(K+j−1)(K−j)
2 ασ

K−j+1Cx
K

∥g(Ã)∥
K2+3K−2

2 Cw
2(j−1)+

(K+j+3)(K−j)
2 }.

Remarks. Obviously, the adversarial generalization of GCNs
under the structure attack is also susceptible to the model
structure and optimization algorithm. And our bound can
cover the standard training setting when the perturbation bud-
get ϵA = 0. We find that the structural perturbations cause
more damage to the generalization due to the perturbation
budget ϵA. However, ϵA ≪ N is set as a sufficiently small
budget to reduce the unavoidable damage to robust general-
ization, especially when the number of nodes is large, result-
ing in ϵA/N → 0. Furthermore, the relationship between ϵg
and ϵA is relevant to the choice of graph filter. It’s noteworthy
that g(Ã) shares the same norm constraint as g(A). Follow-
ing the suggestion of Theorem 2, we choose the normalized
filter, and can mitigate the impact of ϵg ≤ 2

dmin
ϵA by attack-

ing a denser graph.

5 Experiments
According to the theoretical results, we observe that the ad-
versarial generalization bound is related to the graph filters,

the number of layers, the iterations of SGD, etc. In this sec-
tion, we perform experiments on the node classification task
to evaluate the effect of these factors on adversarial gener-
alization. We provide the designed training objective and
training procedure in Algorithm 1 and 2, respectively. We
consider node attacks there, and the experiments of structure
attacks are presented in Appendix D.
Experimental Setup. We adopt several widely-used bench-
mark datasets, including Cora, Citeseer, Pubmed, DBLP, CS,
and CoraFull [Yang et al., 2016; Bojchevski and Günnemann,
2017; Xue et al., 2021b]. An overview is given in Table 2.
We adopt two-layer GCNs with 16-unit hidden layers and
symmetric normalized filters. The adversarial training is con-
ducted with the ℓ∞-PGD algorithm, which is attacked with
perturbation budget ϵx. We choose the cross-entropy loss and
the SGD algorithm for training, where the learning rate η is
set as 0.1 with a momentum of 0.9. The regularization coeffi-
cient λ is fixed to 0.01. The adversarial generalization gap is
approximately calculated by
|adversarial train accuracy−adversarial test accuracy|,

which is the absolute difference between the train accuracy
and test accuracy of adversarial training. Each experiment
is independently repeated 10 times to get the average value
and the standard deviation. More experimental configurations
and results, including the structure attacks and other attack
algorithms, are provided in Appendix D.

Algorithm 1 Train a robust graph model under node attacks

1: Input: Graph G, dataset S, perturbation budget ϵx, reg-
ularization parameter λ, initialization W0, learning rate
η, number of iterations T .

2: while t < T do
3: S̃ ← ∅.
4: for i = 1, 2, . . . , n do
5: Perturb each node and get

x̃i,t = argmaxx̃i,t∈B∞
ϵx

ℓ(f(W,A, x̃i,t), yi,t).

6: Append {(x̃i,t, yi,t)}ni=1 to S̃t.
7: end for
8: Update Wt through a new objective L(Wt) =

1
n

∑
xi,t∈S̃t

ℓ(f(Wt,A, x̃i,t), yi,t) + λ∥Wt∥.
9: Wt+1 ←Wt − η∇L(Wt).

10: end while
11: Output: WT

Graph filters. According to Theorem 2, our theoretical anal-
ysis suggests that a bigger ∥g(A)∥ leads to a greater gen-
eralization gap. Figure 1 shows that the unnormalized filter
g(A) = A + I with the biggest infinity norm has the largest
generalization gap, compared to the other normalized filters.
The empirical results align with our theoretical findings. And
the comparison between two normalized filters depends on
the specific graph data structure.
Number of layers. As shown in Figure 2, the generaliza-
tion gap generally tends to increase with the increase of K.
According to Theorem 2, K controls a variety of the main
factors influencing the generalization gap. Our experimen-
tal configurations, including applying the normalized graph
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Dataset Node Edges Features Class Training Validation Test

Citeseer 3327 9104 3703 6 20 per class 500 1000
Cora 2708 10556 1433 77 20 per class 500 1000

Pubmed 19717 88648 500 3 20 per class 500 1000
DBLP 17716 105734 1639 4 20 per class 30 per class Rest

CS 18333 163788 6805 15 20 per class 30 per class Rest
CoraFull 19793 126842 8710 70 20 per class 30 per class Rest

Table 2: Details of datasets.

Figure 1: The generalization gap for different graph filters g(A) with increased perturbation budget ϵx.

Figure 2: The generalization gap for different perturbation budget ϵx with increased number of layers K.

filters and regularization operations, could help reduce the in-
evitable increasing trend. The effectiveness of these measures

is also demonstrated in Figure 1 and 4.
Number of iterations. Figure 3 illustrates that the general-
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Figure 3: The generalization gap for different perturbation budget ϵx with increased number of iterations T .

Figure 4: The generalization gap for different regularization parameter λ with increased perturbation budget ϵx.

ization gap enlarges as the iterations proceed from the per-
spective of an overall trend, which is consistent with the re-
sults in Theorem 2. After several iterations, the generalization
gap tends to be stable as the model converges.
Regularization. Theorem 2 demonstrates that controlling the
norm constraint of weights by regularization could help elim-
inate the damage of exponential growth of generalization. As
shown in Figure 4, the regularized model has a better gener-
alization than the model without regularization.

6 Conclusions
In this paper, we propose a theoretical understanding of ad-
versarial robustness for GCNs under node-based attacks and

structure-based attacks. More specifically, we first show that
the adversarial loss satisfies the approximate smoothness,
which is dependent on the perturbation budget. Then we de-
rive the stability-based generalization bounds of multi-layer
GCNs for adversarial training. Our results shed new insights
into the choice of the graph filters and the number of GCNs’
layers. A smaller norm of the graph filters and their product
with input features can benefit the performance of the mod-
els. And a controllable norm constraint of learning weights
by applying the regularization can obtain a better generaliza-
tion. Our experimental results on benchmark datasets support
the theoretical results.
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