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Abstract

Existing 3D anomaly detection methods mainly in-
clude reconstruction-based methods and memory-
based methods. However, reconstruction-based
methods rely on anomaly simulation strategies,
while the memory bank of memory-based meth-
ods cannot cover the features of all points. Dif-
ferent from existing methods, this paper proposes
Template3D-AD, a 3D anomaly detection method
based on template matching. Template3D-AD
matches the test sample with the template based
on center points, and extracts the global features
and local features of the center point respectively.
Considering that the appearance of anomalies is re-
lated to the change of surface shape, this paper pro-
poses a curvature-based local feature representa-
tion method, which increases the feature difference
between abnormal surfaces and normal surfaces.
Then, this paper designs a global-local detection
strategy, which combines global feature differences
and local feature differences for anomaly detection.
Extensive experiments show that Template3D-AD
outperforms the state-of-the-art methods, achiev-
ing 84.4% (1.5% 1) I-AUROC on the Real3D-AD
dataset and 86.5% (11.6% 1) I-AUROC on the
Anomaly-ShapeNet dataset. Code at https://github.
com/CaedmonLY/Template3D-AD.

1 Introduction

Industrial anomaly detection aims to detect whether there
are anomalies in industrial products. Due to the lack of ab-
normal samples, current anomaly detection methods gener-
ally adopt an unsupervised framework. Most of the cur-
rent anomaly detection methods [Zavrtanik et al., 2021a;
Zavrtanik et al., 2021b; Zhang et al., 2024a; Defard et al.,
2021] are based on 2D images. However, in industrial scenar-
ios, image acquisition requires strict lighting conditions, and
the quality of images affects the performance of deep learning
methods [Hu et al., 2022].

Recently, with the release of 3D point cloud datasets such
as Real3D-AD [Liu et al., 2024] and Anomaly-ShapeNet [Li
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Figure 1: Anomaly detection visualization of Template3D-AD on
the Real3D-AD and Anomaly-ShapeNet datasets. Tempalte3D-AD
only requires one template sample for effective anomaly detection.

et al., 2024], researchers have focused on the 3D anomaly
detection task. Current research on 3D anomaly detection
mainly includes reconstruction-based methods and memory-
based methods. Since point cloud training samples are lim-
ited, reconstruction-based methods [Li et al., 2024; Zhou
et al., 2024] use anomaly simulation strategies to gener-
ate abnormal regions and construct a large number of ab-
normal samples. These abnormal samples are used to train
the reconstruction model, which reconstructs abnormal sam-
ples into normal samples. In testing, the difference between
the input sample and the reconstructed sample is used for
anomaly detection. Memory-based methods [Liu et al., 2024;
Horwitz and Hoshen, 2023; Wang et al., 2023; Zhao et al.,
2024] uses a pre-trained point cloud model to extract train-
ing sample features, and some core features are selected from
all training sample features to construct a memory bank. In
testing, the nearest Euclidean distance between the test sam-
ple features and the memory features is used as the anomaly
score.

Reconstruction-based and memory-based methods have
certain limitations. For reconstruction-based methods, the
anomaly simulation strategy affects the performance of the
reconstructed model. Generated anomalies need to be similar
to the real anomalies, and different anomaly simulation strate-
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gies need to be designed for different industrial products. In
addition, in industrial scenarios, the occurrence of anomalies
is uncertain, that is, all possible types of anomalies are un-
known in advance. In industrial applications, it is impossi-
ble to simulate all types of anomalies, and newly emerging
anomalies cannot be effectively detected. For memory-based
methods, the memory bank size is generally set to 10,000
[Liu et al., 2024], while the number of points per sample in
the Real3D-AD dataset ranges from hundreds of thousands to
millions. The features in the memory bank cannot cover the
features of all points, and the test features and memory bank
features with the closest distance may be features of different
regions.

Different from existing methods, this paper proposes a
template matching-based method for 3D anomaly detection,
namely Template3D-AD. Figure 1 visualizes the anomaly de-
tection results of Template3D-AD on the Real3D-AD and
Anomaly-ShapeNet datasets. Template3D-AD defines the
point cloud template matching as the matching of center
points, and extracts global features and local features of the
center points for 3D anomaly detection. Since anomalies are
generally caused by shape changes of local surfaces, intro-
ducing local shape information is beneficial for anomaly de-
tection. This paper uses curvature to represent surface shape
information, and proposes Curvature Aggregation, which ag-
gregates the features of each point in the local surface based
on the curvature. By introducing local shape information,
Curvature Aggregation further increases the feature differ-
ence between abnormal and normal surfaces. Then, this paper
designs a global-local detection strategy, where global detec-
tion and local detection complement each other to achieve
more effective detection.

The main contributions are summarized as follows:

* This paper proposes Template3D-AD, the first template
matching method for the 3D anomaly detection task.

» This paper proposes Curvature Aggregation, introduc-
ing shape information into local feature representation,
which is beneficial for 3D anomaly detection.

» This paper designs a global-local detection strategy,
which combines global feature differences and local fea-
ture differences for 3D anomaly detection.

» Template3D-AD only requires one normal sample, and
achieves state-of-the-art performance on the Real3D-
AD and Anomaly-ShapeNet datasets.

2 Related Work

2D Anomaly Detection. Most of existing anomaly detec-
tion methods are based on 2D images, mainly including
reconstruction-based methods [Zavrtanik et al., 2021a; Zavr-
tanik et al., 2021b; Hou et al., 2021], knowledge distillation-
based methods [Zhang er al., 2024a; Tien et al., 2023;
Bergmann et al., 2020; Rudolph et al., 2023], and memory-
based methods [Defard et al., 2021; Koshil et al., 2024;
Hyun et al., 2024]. Reconstruction-based methods generally
use autoencoders [Ristea er al., 2022; Zhang et al., 2024b;
Zavrtanik et al., 2022] or generative adversarial networks
[Yan et al., 2021; Duan et al., 2023] to reconstruct abnormal

samples into normal samples for anomaly detection. IFgNet
[Chen et al., 2024] divides the reconstruction task into fore-
ground detection and foreground reconstruction tasks, and
uses the foreground reconstruction results for anomaly detec-
tion. Knowledge distillation-based methods use different fea-
ture representations of abnormal regions by the teacher and
the student for anomaly detection. AEKD [Wu et al., 2024]
designed different data flows for the teacher model and the
student model, which enhances the representation differences
of abnormal features. Memory-based methods store the fea-
tures of normal samples and compare the features of test sam-
ples with the stored features for anomaly detection. Patch-
Core [Roth er al., 2022] is the first memory-based method,
and PNI [Bae et al., 2023] adds position and neighborhood
information to the features in the memory bank.

3D Anomaly Detection. Compared with 2D anomaly de-
tection, research on 3D anomaly detection is still limited.
Current 3D detection methods are mainly based on pre-
trained PointMAE [Liu et al., 2024; Li et al., 2024; Wang
et al., 2023; Zhao et al., 2024; Pang et al., 2022] or Fast
Point Feature Histogram (FPFH) [Horwitz and Hoshen, 2023;
Rusu et al., 2009; Cao et al., 2024a], where FPFH is a
statistics-based 3D local surface descriptor. For memory-
based methods, BTF [Horwitz and Hoshen, 2023] uses FPFH
features to construct the memory bank, while M3DM [Wang
et al., 2023] uses the features extracted by pretrained Point-
MAE. Reg3D-AD [Liu et al., 2024] constructs the coordinate
memory bank and PointMAE feature memory bank respec-
tively for joint anomaly detection. For reconstruction-based
methods, IMRNet [Li et al., 2024] masks local points and
uses pretrained PointMAE for self-supervised reconstruction.
R3D-AD [Zhou et al., 2024] implements the application of
diffusion model for 3D anomaly detection, and proposes a 3D
anomaly simulation strategy. Different from existing meth-
ods, this paper proposes a template matching based method,
which only requires one normal sample. In addition, this pa-
per proposes a local feature representation method based on
curvature, which introduces shape information into local fea-
ture representation.

3 Methodology

The framework of the proposed Template3D-AD is shown in
Figure 2. Template3D-AD takes both the test sample point
cloud and the template point cloud as input. In center point
matching, Template3D-AD matches the test sample with the
template by matching center points and center point neigh-
borhoods (point groups). Then, for the matched point groups,
global features and local features are extracted respectively.
In global feature extraction, Curvature Aggregation is pro-
posed, which aggregates the features of all points in each
point group into a local feature representation based on cur-
vature. Finally, global-local detection combines global and
local feature differences for 3D anomaly detection.

3.1 Center Point Matching

A point cloud is a set of a large number of unordered points,
and it is impossible to match all points of the test sample with
the template. This paper defines template matching as center
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Figure 2: Pipeline of Template3D-AD. Template3D-AD contains: (1) Center Point Matching matches the test sample with the template based
center points, where P represents the test sample, P” represents the template, and FPS is the Farthest Point Sampling. (2) Global Feature
Extraction uses Curvature Aggregation to aggregate the features of each point group into a local feature representation f, and then uses the
pretrained model to extract the global features, where e; is the feature of point p, after the convolution operation, cur; is the curvature of
point p;, and M is the global feature extractor of the pretrained model. (3) Local Feature Extraction extracts FPFH features of center points.
(4) Global-local Detection combines global detection and local detection for the final result.

point matching, that is, matching the center points of the test
sample and the template at the same position, where center
points are a small number of points that preserve the shape of
the object as much as possible.

This paper downsamples the test sample P and the tem-
plate PT based on voxel grid, and then uses RANdom Sam-
ple Consensus (RANSAC) [Cao er al., 2024b] and Iterative
Closest Point (ICP) [Rusinkiewicz and Levoy, 2001] to cal-
culate the transformation matrix. This transformation matrix
is used for test sample registration. For the registered P, Far-
thest Point Sampling (FPS) [Qi ef al., 2017] is used to sample
N center points ¢;(i = 1,..., N). For P, the center point
I’ is defined as:

(b) Abnormal surface.

(a) Normal surface.

Figure 3: Shape difference between normal and abnormal surfaces.

position coordinates between local points are quite different,
i.e., there are obvious shape changes. In each point group, the
curvature of each point p; = (24,9, 2;)(i = 1,...5) is ob-
tained from the distribution of neighboring points. For k.,
neighboring points p;1, ..., p;x of p;, the covariance matrix
can be expressed as:

el = argmin||p — ¢il2 (1)

pePT
For each center point, the nearest S points are used as a local
point group. After the center points are matched, the point
groups of P and P” are also matched. The matched point

groups are used to extract global features and local features. Ozz Ozy Ozz
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Before global feature extraction, each point group needs to be | e
represented as a local feature. For each point group, convo- . (e
lutional neural networks are used to preliminarily extract the Toy =} Z (@i = 73) (vis = B7) ®)

cur .
. i =1

features of each point. In the 3D anomaly detection, anoma- N J .
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lies are often related to surface shape changes. As shown in where T; = —— > ey Zij and T = - > 524 yij- Since

Figure 3, there are obvious shape differences between the nor-
mal local surface and the abnormal local surface. Therefore,
introducing shape information into the local feature represen-
tation is beneficial for the 3D anomaly detection task.

This paper uses curvature to represent the local shape in-
formation of 3D objects, and curvature measures the distri-
bution of local points. A large curvature indicates that the

the covariance matrix is symmetric and semi-positive definite,
C M, can be further eigenvalue decomposition:

CM; = V;\; V" “)

where A; is the diagonal matrix containing eigenvalues
(Aiz > A2 > A\j1 > 0), and V; is the corresponding eigen-
vector matrix.
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The eigenvalues of C'M; provide the distribution informa-
tion of local points in different directions, where the largest
eigenvalue \;3 measures the distribution on the tangent, and
the smallest eigenvalue )\;; measures the distribution on the
normal. This paper uses the distribution of k., neighboring
points on the normal to approximate the curvature of p;. The
curvature of p; can be expressed as:

Ail
TN N+ s ©)
where \;1 + Aj2 + A;3 represents the overall distribution.

To introduce shape information into local features, this pa-
per proposes Curvature Aggregation, a curvature-based local
feature representation method. In each point group, the cur-
vature of each point is used as the aggregation weight. The
process of Curvature Aggregation can be expressed as:

S
f= Z conv(p;) X cur; (6)

i=1

where f is the local feature representation of the point
group, and conv(+) is the convolution operation. Then, the
curvature-based local feature representation is used for global
feature extraction.

Existing 3D anomaly detection methods [Liu et al., 2024;
Li et al., 2024; Wang et al., 2023; Zhao et al., 2024] di-
rectly use max pooling to aggregate the features of each point
group. Compared with max pooling, Curvature Aggregation
introduces curvature information in local feature represen-
tation. Based on Curvature Aggregation, there is a greater
feature difference between normal regions and abnormal re-
gions, which is beneficial for 3D anomaly detection. In this
paper, Curvature Aggregation is used to replace the max pool-
ing of the pretrained model.

3.3 Local Feature Extraction

In this paper, global features and local features are jointly
used for anomaly detection. This paper use Fast Point Fea-
ture Histogram (FPFH) [Rusu et al., 2009] to extract local
features. FPFH is a local descriptor of point cloud based on
point coordinates and normal vectors. For points p; and ps
and their normal vectors 7y and ns, the local coordinate sys-
tem is redefined as:

u=n 7

v:uxM (8)
|[p2 — p1ll2

w=uX0v )

where u, v, and w are unit vectors. Then, FPFH defines the
angular variations between n; and ny as:

a=7-ng (10)

@ZU.M a1
|lp2 — p1ll2

6 = arctan (w - N2, u - ng) (12)

For the center point of each point group, this paper calcu-
lates the triplet («, o, 0) between ¢ and the nearest krprp
points, and statistically obtains a Simplified Point Feature

Histogram (SPFH). In addition, to increase the receptive field,
FPFH also takes each neighboring point as the center point
and calculates SPFH. FPFH features of the center point ¢ can
be expressed as:

1 krpPFH 1
FPFH(c) = SPFH(c) + > — - SPFH(p;)
krpra = wi

(13)
where w; is the distance between c and the neighboring point
p;. FPFH features of center points are used as the local fea-
tures for local anomaly detection.

3.4 Global-local Detection

After global feature extraction and local feature extraction,
the global feature FZ' and local feature F of the template,
and Fg and F'p, of the test sample are obtained. Then, global
detection and local detection are performed on the test sam-
ple respectively. For global detection, the Euclidean distance
is used to quantify the feature difference between Fg and
F¢. For the abnormal surface, local shape changes may cause
changes in the center point position. In global detection, the
center point coordinate differences between the template and
the test sample are also considered. The global anomaly score
of the center point ¢; is defined as:

Scorec(ci) = |lef —cilla < |Iff = fill (14
where fI is the global feature of ¢!, and f; is the global

i
feature of ¢;. The global detection score of the test sample is
the maximum value of all center points.

In local detection, the local feature of each point group is
represented as FPFH, which indicates the statistical informa-
tion of the position and normal vector in the local surface.
This paper uses the maximum statistical difference as the lo-
cal anomaly score, and the local anomaly score of ¢; is de-
fined as:

Scorer(c;) = Max(|FPFH(cI') = FPFH(c;)|) (15)

The local detection score of the test sample is the maximum
value of all center points.

In this paper, the final anomaly score of each center point
is determined by both global detection and local detection:

Score(c;) = Scoreg(c;) X Scorer,(¢;) (16)

For the non-center point, the anomaly score is defined as the
mean of the nearest kg.o-e center points.

4 Experiments

4.1 Dataset

The proposed Template3D-AD is experimented on the
Real3D-AD [Liu et al., 2024] and Anomaly-ShapeNet [Li
et al., 2024] datasets. Real3D-AD is a high-resolution point
cloud dataset based on real industrial products, with the num-
ber of points in each sample ranging from hundreds of thou-
sands to millions. Real3D-AD contains 12 categories and a
total of 1254 samples. The training set of each category con-
tains only 4 normal samples. Anomaly-ShapeNet is a syn-
thesized point cloud dataset based on the ShapeNet dataset
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Method ‘ Airplane Car Candy Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees ‘ Mean
BTF (Raw) [Horwitz and Hoshen, 2023] 0.730 0.647 0.539 0.789 0.707 0.691 0.602 0.686 0.596 0.396 0.530 0.703 0.635
BTF (FPFH) [Horwitz and Hoshen, 2023] 0.520 0.560 0.630 0.432 0.545 0.784 0.549 0.648 0.779 0.754 0.575 0.462 0.603
M3DM [Wang et al., 2023] 0.434 0.541 0.552 0.683 0.602 0.433 0.540 0.644 0.495 0.694 0.551 0.450 0.552
PatchCore (FPFH) [Roth et al., 2022] 0.882 0.590 0.541 0.837 0.574 0.546 0.675 0.370 0.505 0.589 0.441 0.565 0.593
PatchCore (FPFH+Raw) [Roth et al., 2022] 0.848 0.777 0.570 0.853 0.784 0.628 0.837 0.359 0.767 0.663 0.471 0.626 0.682
PatchCore (PointMAE) [Roth er al., 2022] 0.726 0.498 0.663 0.827 0.783 0.489 0.630 0.374 0.539 0.501 0.519 0.585 0.594
CPMF [Cao et al., 2024al 0.701 0.551 0.552 0.504 0.523 0.582 0.558 0.589 0.729 0.653 0.700 0.390 0.586
Reg3D-AD [Liu et al., 2024] 0.716 0.697 0.685 0.852 0.900 0.584 0.915 0.417 0.762 0.583 0.506 0.827 0.704
IMRNet [Li et al., 2024] 0.762 0.711 0.755 0.780 0.905 0.517 0.880 0.674 0.604 0.665 0.674 0.774 0.725
R3D-AD [Zhou et al., 2024] 0.772 0.696 0.713 0.714 0.685 0.909 0.692 0.665 0.720 0.840 0.701 0.703 0.734
PointCore [Zhao et al., 2024] 0.660 0.866 0.976 0.841 0.963 0.684 0.993 0.535 0.973 0.882 0.652 0.929 0.829
Template3D-AD 0.718 0.880 0.875 0.786 0.992 0.709 0.980 0.629 0.885 0.921 0.829 0.924 0.844

Table 1: I-AUROC on the Real3D-AD dataset. The bold number represent the best results. Template3D-AD achieves 84.4% mean I-AUROC,

which is 1.5% higher than the current state-of-the-art methods.

Method ‘ ashtray0 bag0 bottleO bottlel bottle3 bowl0 bowll bowl2 bowl3 bowl4 bowl5 bucketO bucket1 cap0
BTF (Raw) [Horwitz and Hoshen, 2023] 0.578 0.410 0.597 0.510 0.568 0.564 0.264 0.525 0.385 0.664 0.417 0.617 0.321 0.668
BTF (FPFH) [Horwitz and Hoshen, 2023] 0.420 0.546 0.344 0.546 0.322 0.509 0.668 0.510 0.490 0.609 0.699 0.401 0.633 0.618
M3DM [Wang e al., 2023] 0.577 0.537 0.574 0.637 0.541 0.634 0.663 0.684 0.617 0.464 0.409 0.309 0.501 0.557
PatchCore (FPFH) [Roth et al., 2022] 0.587 0.571 0.604 0.667 0.572 0.504 0.639 0.615 0.537 0.494 0.558 0.469 0.551 0.580
PatchCore (PointMAE) [Roth er al., 2022] 0.591 0.601 0.513 0.601 0.650 0.523 0.629 0.458 0.579 0.501 0.593 0.593 0.561 0.589
CPMF [Cao et al., 2024a] 0.353 0.643 0.520 0.482 0.405 0.783 0.639 0.625 0.658 0.683 0.685 0.482 0.601 0.601
Reg3D-AD [Liu et al., 2024] 0.597 0.706 0.486 0.695 0.525 0.671 0.525 0.490 0.348 0.663 0.593 0.610 0.752 0.693
IMRNet [Li et al., 2024] 0.671 0.660 0.552 0.700 0.640 0.681 0.702 0.685 0.599 0.676 0.710 0.580 0.771 0.737
R3D-AD [Zhou et al., 2024] 0.833 0.720 0.733 0.737 0.781 0.819 0.778 0.741 0.767 0.744 0.656 0.683 0.756 0.822
Template3D-AD 1.000 0.776 1.000 1.000 0.911 1.000 0.870 0.907 0.807 0.930 0.975 0.997 0.902 0.700
Method ‘ cap3 cap4 cap5 cup0 cupl eraserQ headset0 headset1 helmetO helmet1 helmet2 helmet3 jar0
BTF(Raw) [Horwitz and Hoshen, 2023] 0.527 0.468 0.373 0.403 0.521 0.525 0.378 0.515 0.553 0.349 0.602 0.526 0.420
BTF(FPFH) [Horwitz and Hoshen, 2023] 0.522 0.520 0.586 0.586 0.610 0.719 0.520 0.490 0.571 0.719 0.542 0.444 0.424
M3DM [Wang et al., 2023] 0.423 0.777 0.639 0.539 0.556 0.627 0.577 0.617 0.526 0.427 0.623 0.374 0.441
PatchCore(FPFH) [Roth er al., 2022] 0.453 0.757 0.790 0.600 0.586 0.657 0.583 0.637 0.546 0.484 0.425 0.404 0.472
PatchCore(PointMAE) [Roth et al., 2022] 0.476 0.727 0.538 0.610 0.556 0.677 0.591 0.627 0.556 0.552 0.447 0.424 0.483
CPMF [Cao et al., 2024a] 0.551 0.553 0.697 0.497 0.499 0.689 0.643 0.458 0.555 0.589 0.462 0.520 0.610
Reg3D-AD [Liu et al., 2024] 0.725 0.643 0.467 0.510 0.538 0.343 0.537 0.610 0.600 0.381 0.614 0.367 0.592
IMRNet [Li et al., 2024] 0.775 0.652 0.652 0.643 0.757 0.548 0.720 0.676 0.597 0.600 0.641 0.573 0.780
R3D-AD [Zhou et al., 2024] 0.730 0.681 0.670 0.776 0.757 0.890 0.738 0.795 0.757 0.720 0.633 0.707 0.838
Template3D-AD 0.779 0.658 0.828 0.643 0.710 0.781 0.936 0.557 0.786 0.886 0.857 0.858 1.000
Method ‘ microphone0 shelf0 tap0 tapl vaseQ vasel vase2 vase3 vase4d vase5 vase7 vase8 vase9 Mean
BTF(Raw) [Horwitz and Hoshen, 20231 0.563 0.164 0.525 0.573 0.531 0.549 0.410 0.717 0.425 0.585 0.448 0.424 0.564 0.493
BTF(FPFH) [Horwitz and Hoshen, 2023] 0.671 0.609 0.560 0.546 0.342 0.219 0.546 0.699 0.510 0.409 0.518 0.668 0.268 0.528
M3DM [Wang et al., 2023] 0.357 0.564 0.754 0.739 0.423 0.427 0.737 0.439 0.476 0.317 0.657 0.663 0.663 0.552
PatchCore(FPFH) [Roth e al., 2022] 0.388 0.494 0.753 0.766 0.455 0.423 0.721 0.449 0.506 0.417 0.693 0.662 0.660 0.568
PatchCore(PointMAE) [Roth ez al., 2022] 0.488 0.523 0.458 0.538 0.447 0.552 0.741 0.460 0.516 0.579 0.650 0.663 0.629 0.562
CPMF [Cao et al., 2024a] 0.509 0.685 0.359 0.697 0.451 0.345 0.582 0.582 0.514 0.618 0.397 0.529 0.609 0.559
Reg3D-AD [Liu et al., 2024] 0.414 0.688 0.676 0.641 0.533 0.702 0.605 0.650 0.500 0.520 0.462 0.620 0.594 0.572
IMRNet [Li et al., 2024] 0.755 0.603 0.676 0.696 0.533 0.757 0.614 0.700 0.524 0.676 0.635 0.630 0.594 0.661
R3D-AD [Zhou et al., 2024] 0.762 0.696 0.736 0.900 0.788 0.729 0.752 0.742 0.630 0.757 0.771 0.721 0.718 0.749
Template3D-AD 1.000 0.736 0.708 0.844 0.940 0.829 1.000 0.856 0.817 1.000 1.000 0.961 0.864 0.865

Table 2: I-AUROC on the Anomaly-ShapeNet dataset. The bold number represent the best results. Template3D-AD achieves 86.5% mean
[-AUROC, which is 11.6% higher than the current state-of-the-art methods.

[Chang et al., 2015]. The number of points in each sample
ranges from 8,000 to 30,000. Anomaly-ShapeNet contains
1,600 samples of 40 categories, and the training set of each
category also contains 4 normal samples.

4.2 Evaluation Metrics

Area Under the Receiver Operator Curve (AUROC) is used to
evaluate the anomaly detection performance of Template3D-
AD. Image-level AUROC (I-AUROC) is used to evaluate
anomaly detection performance at the image level, while
Point-level AUROC (P-AUROC) is at the point level. The
value of AUROC ranges from O to 1.0, and the higher AU-
ROC means better detection performance.

4.3 Implementation Details

In center point matching, the template point cloud and the
test sample point cloud are downsampled based on the voxel

grid, where the voxel unit size of the Real3D-AD dataset is
set to 0.25 and that of the Anomaly-ShapeNet dataset is set to
0.05. Based on PFS, N = 4096 center points are sampled
for each sample, and S 128 nearest points are used as
a local point group. In global feature extraction, pretrained
PointMAE [Pang er al., 2022] is used as the feature extractor,
which is pretrained on the ShapeNet dataset [Chang et al.,
2015], and the output of the {3, 7, 11} layers are used as
the global feature. In Curvature Aggregation, the curvature
of each point is calculated based on k., = 30 neighboring
points. In local feature extraction, the FPFH feature of each
center point is the statistics of kppry = 100 neighboring
points. In global-local detection, the anomaly score of the
non-center point is the mean of the kg.,-. = 5 nearest center
points. For each category, the first sample of the training set
is used as the template.
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4.4 Experiment Results

Anomaly Detection on Real3D-AD. In Table 1, the
anomaly detection performance of the proposed Template3D-
AD is compared with the current state-of-the-art 3D anomaly
detection methods on the Real3D-AD dataset. Template3D-
AD achieves the highest I-AUROC on 4 out of 12 cate-
gories, as well as the highest mean I-AUROC. Template3D-
AD uses both PointMAE features and FPFH features, which
are often used in 3D anomaly detection, including M3DM,
Reg3D-AD, IMRNet, PointCore, etc. Compared to the state-
of-the-art PointMAE or FPFH based method (PointCore),
Template3D-AD improves the mean I-AUROC by 1.5%.
Template3D-AD further improves the performance of Point-
MAE and FPFH in the 3D anomaly detection task. Compared
with other methods (diffusion-based R3D-AD), Template3D-
AD improves the mean I-AUROC by 11.0%. The comparison
results show that Template3D-AD achieves the best perfor-
mance on the Real3D-AD dataset.

Anomaly Detection on Anomaly-ShapeNet.
Template3D-AD is further compared with the state-of-the-art
3D anomaly detection methods on the Anomaly-ShapeNet
dataset, as shown in Table 2. Compared with the Real3D-AD
dataset, the Anomaly-ShapeNet dataset contains more
categories of 3D objects and defect types. Template3D-AD
achieves the highest -AUROC on 32 out of 40 cate-
gories, as well as the highest mean I-AUROC. In addition,
Template3D-AD achieves 100% I-AUROC on multiple
categories, including Ashtray0, Bottle0, Bowl0, Vase2,
etc. Compared with the Real3D-AD dataset, Template3D-
AD has a greater improvement on the Anomaly-ShapeNet
dataset. Compared to the state-of-the-art PointMAE or FPFH
based method (IMRNet), Template3D-AD improves the
mean I-AUROC by 19.5%. Compared with other methods
(R3D-AD), Template3D-AD improves the mean I~-AUROC
by 11.6%. Template3D-AD achieves state-of-the-art perfor-
mance on the Anomaly-ShapeNet dataset, further illustrating
the effectiveness of Template3D-AD in the 3D anomaly
detection task.

4.5 Ablation Study

This paper conducts ablation studies on the Real3D-AD
dataset, which has more test samples in each category. This
paper analyzes the impact of the number of center points,
Curvature Aggregation, and global-local detection on the per-
formance of Template3D-AD.

Number of Global Local Global-local
Center Points I-AU P-AU I-AU P-AU I-AU P-AU
512 0.803  0.896 0.695  0.871 0.816  0.935
1024 0.808  0.893 0.731 0.889 0.833  0.938
2048 0.814  0.880 0772 0.890 0.840  0.933
4096 0.818 0.866 0.785  0.879 0.844  0.925

Table 3: Ablation study for the number of center points. I-AU is
mean [-AUROC, and P-AU is mean P-AUROC.

Number of Center Points. Table 3 shows the global de-
tection, local detection, and global-local detection perfor-
mance of Template3D-AD based on different numbers of cen-
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(a) Global I-AUROC (%).
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(b) Global-local I-AUROC (%).

Figure 4: Ablation study for Curvature Aggregation and max pool-
ing.
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Figure 5: Curvature difference statistics between test sample center
points and template center points on Real3D-AD dataset. The blue
is the curvature difference between normal center points of test sam-
ples and the template, while the yellow is the curvature difference
between abnormal center points of test samples and the template.

ter points. Using only 512 center points, Template3D-AD can
still achieve 81.6% I-AUROC and 93.5% P-AUROC. As the
number of center points increases, the [-AUROC of global
detection, local detection, and global-local detection are all
improved. Increasing the number of center points can sample
more abnormal center points, which is beneficial for anomaly
detection. Compared with global detection and local detec-
tion, global-local detection achieves higher I-AUROC and P-
AUROC, which illustrates the effectiveness of global-local
detection. Specifically, global detection achieves the high-
est P-AUROC at 512 points, while local detection achieves
the highest P-AUROC at 2048 points. On the Real3D-
AD dataset, the training samples contain the complete point
cloud, while the testing samples only contain one side point
cloud. As the number of center points increases, more edge
points of test samples are sampled, which slightly affects the
P-AUROC.

Curvature Aggregation. Figure 4 shows the global detec-
tion and global-local detection performance of Template3D-
AD based on max pooling or Curvature Aggregation. For
different numbers of center points, Curvature Aggregation
achieves higher I-AUROC in both global detection and
global-local detection, and has a more obvious improvement
in global detection. Curvature Aggregation based on 512 cen-
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Figure 6: Visualization of global detection, local detection, and
global-local detection.

ter points achieves the same global I-AUROC as max pool-
ing based on 2048 center points. To further illustrate the
necessity of introducing curvature in local feature represen-
tation, Figure 5 shows the curvature difference between the
test sample center points and the template center points. For
each category, there is a significant curvature difference be-
tween abnormal center points of the test sample and corre-
sponding template center points, which shows that introduc-
ing curvature in the local feature representation is beneficial
for anomaly detection. There is still a small curvature differ-
ence between the normal center point of the test sample and
the template, which is caused by the fact that the test sample
and the template are not perfectly matched.

Global-local Detection. To further show the effectiveness
of global-local detection, Figure 6 visualizes the global, lo-
cal, and global-local detection results, where red represents
high anomaly scores and blue represents low anomaly scores.
Compared with global detection, local detection pays more
attention to local shape details. For the Tof fees sample,
global detection has over-detection, while local detection can
supplement global detection, which makes global-local de-
tection have no over-detection. For the Shell sample, global
detection detects anomalies while local detection does not,
and global-local detection can still detect anomalies. Visual-
ization results show that global-local detection can simulta-
neously utilize the advantages of global detection and local
detection to achieve more effective detection.

4.6 Comparison of P-AUROC

Method ‘ I-AUROC P-AUROC
BTF(Raw) [Horwitz and Hoshen, 2023] 0.635 0.722
BTF(FPFH) [Horwitz and Hoshen, 2023] 0.603 0.566
M3DM [Wang er al., 2023] 0.552 0.637
PatchCore(FPFH) [Roth et al., 2022] 0.593 0.592
PatchCore(FPFH+Raw) [Roth ez al., 2022] 0.682 0.692
PatchCore(PointMAE) [Roth et al., 2022] 0.594 0.634
Reg3D-AD [Liu et al., 2024] 0.704 0.700
R3D-AD [Zhou et al., 2024] 0.734 0.592
PointCore [Zhao et al., 2024] 0.829 0.731
Template3D-AD 0.844 0.925

Table 4: Mean I-AUROC and P-AUROC on the Real3D-AD dataset.
Template3D-AD achieves 92.5% mean P-AUROC, which is 19.4%
higher than the current state-of-the-art methods.

For P-AUROC, this paper compares Template3D-AD with
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Figure 7: Inference speed on the Real3D-AD dataset. All models are
experimented on the NVIDIA RTX 3090 platform, and the inference
speed is the average speed of all samples on the Real3D-AD dataset.

the state-of-the-art methods on the Real3D-AD dataset, as
shown in Table 4. Compared with I-AUROC, Template3D-
AD has greater advantages in P-AUROC. Template3D-AD
is the only method that achieves more than 90% P-AUROC,
and is 19.4% higher than the second highest. The comparison
results in Table 4 show that Template3D-AD can not only
effectively detect anomalies, but also achieve effective seg-
mentation of anomalous regions.

4.7 Inference Speed

As shown in Figure 7, the inference speed of Template3D-
AD is compared with existing methods. Although PatchCore
(FPFH) achieves the highest inference speed, I-AUROC is
less than 60.0%, which makes it difficult to be applied in in-
dustry. The high speed of PatchCore (FPFH) is due to the
fact that only FPFH features are used to construct the memory
bank. Compared with PatchCore (FPFH+Raw), Template3D-
AD has a clear advantage in I-AUROC at similar inference
speed, while compared with Reg3D-AD, Template3D-AD
has advantages in both inference speed and I-AUROC. The
comparison results show that Template3D-AD can achieve
effective anomaly detection while ensuring the inference
speed.

5 Conclusion

This paper proposes Template3D-AD, a 3D anomaly detec-
tion method based on template matching. Template3D-AD is
the first template matching method for the 3D anomaly de-
tection task, and only requires one normal sample to achieve
effective anomaly detection. In this paper, point cloud tem-
plate matching is defined as the matching of center points,
and the global features and local features of the center points
are used for global-local detection. Furthermore, considering
the shape difference between normal and abnormal surfaces,
Curvature Aggregation is proposed. Introducing curvature
information into local feature representation improves the
abnormal feature extraction ability of the pretrained model.
Template3D-AD outperforms the state-of-the-art methods on
the Real3D-AD and Anomaly-ShapeNet datasets, and pro-
vides a new solution for the 3D anomaly detection task.
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