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Preventing Latent Diffusion Model-Based Image Mimicry via
Angle Shifting and Ensemble Learning
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Abstract
The remarkable progress of Latent Diffusion Mod-
els (LDMs) in image generation has raised con-
cerns about the potential for unauthorized image
mimicry. To address these concerns, studies on
adversarial attacks against LDMs have gained in-
creasing attention in recent years. However, exist-
ing methods face bottlenecks when attacking the
denoising module. In this work, we reveal that
the robustness of the denoising module stems from
two key factors: the cancellation effect between
adversarial perturbations and estimated noise, and
unstable gradients caused by randomly sampled
timesteps and Gaussian noise. Based on these in-
sights, we introduce a cosine similarity adversar-
ial loss to prevent the generation of perturbations
that are easily impaired and develop a more sta-
ble optimization strategy by ensembling gradients
and fixing the noise in the latent space. Addition-
ally, we propose an alternating iterative framework
to reduce memory usage by mathematically divid-
ing the optimization process into two spaces: la-
tent space and pixel space. Compared to previous
strategies, our proposed framework reduces video
memory demands without sacrificing attack effec-
tiveness. Extensive experiments demonstrate that
the alternating iterative framework and the stable
optimization strategy on cosine similarity loss are
more efficient and more effective. Code is avail-
able at https://github.com/MinghaoLi01/cosattack.

1 Introduction
Latent Diffusion Models (LDMs) exhibit exceptional capabil-
ities [Song et al., 2021; Ho et al., 2020; Sohl-Dickstein et al.,
2015; Rombach et al., 2022a], achieving state-of-the-art per-
formance in various image synthesis tasks [Meng et al., 2022;
Saharia et al., 2023]. The remarkable progress of LDMs
opens up new possibilities in content creation and art design.
However, alongside these groundbreaking achievements, the
power of LDMs also presents significant ethical and security
challenges. Their capabilities can be maliciously exploited to

∗Corresponding author.

perturbation cancellation vector effective vector

− =

Figure 1: The visualization of cancellation effect. The cancellation
vector represents the projection of the estimated noise in the direc-
tion of the adversarial perturbation.

generate forged human faces or fake artworks. These con-
cerns highlight the urgent need for safeguards to prevent the
potential misuse of LDMs.

Currently, protections against unauthorized image mimicry
are primarily based on adversarial attack methods. Most
existing methods [Liang et al., 2023; Xue et al., 2023;
Liang and Wu, 2023] add imperceptible perturbations to in-
put images by maximizing ℓ2 losses (e.g. the original train-
ing loss), thus introducing errors into the denoising mod-
ule of LDMs. The perturbations cause LDMs to predict the
ground-truth noise with bias, thereby preventing the gener-
ation of high-quality images. However, several issues re-
main unresolved. Firstly, although the adversarial robust-
ness inherent in the denoising module is pointed out [Xue
et al., 2023], the underlying reasons for this robustness re-
main insufficiently explored, leading to the absence of more
effective attacks on the denoising module. Secondly, to pro-
tect high-resolution images on devices with limited video
memory resources, current approaches [Xue et al., 2023;
Liang and Wu, 2023] sacrifice protection performance more
or less by altering the adversarial loss or the protected image.

To address these gaps, we investigate the factors contribut-
ing to the robustness of the denoising module and identify two
key reasons. Firstly, the cancellation effect between adversar-
ial perturbations and estimated noise diminishes the magni-
tude of perturbations. We refer to the projection of the esti-
mated noise onto the adversarial perturbations as the cancel-
lation vector, and the remaining part of the adversarial per-
turbations as the effective vector. The adversarial perturba-
tions are severely disrupted by the denoising module during
the reverse process as shown in Figure 1. Secondly, multiple
attack objectives at multi-step Markov chains and oscillating
gradient directions under random Gaussian noises undermine
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Figure 2: Gradients under different timesteps are complementary.
At small timesteps, the gradient carries more about the noise, while
at large timesteps, it contains more image details.

𝜖1 𝜖2 𝜖3 𝜖4 𝜖5 𝜖6 𝜖7 𝜖8 𝜖9 𝜖10

Figure 3: Gradients under random noises when t = 700. The irreg-
ular gradients oscillate the optimization direction.

the stability of optimization in latent space. We discover that
the gradients under different timesteps are complementary as
shown in Figure 2, and the gradients under randomly sampled
noise are irregular as shown in Figure 3.

Based on these discoveries, we demonstrate that the am-
plified cancellation effect results from maximizing the scale-
sensitive ℓ2 loss, which increases the magnitude of estimated
noise when optimizing adversarial perturbations. We conduct
an angle-shifting attack by maximizing cosine similarity loss,
which introduces bias to the noise estimator without increas-
ing its magnitude. Furthermore, we propose a stable opti-
mization strategy to attack the multi-step Markov chains ef-
fectively. Regarding adversarial attacks at different timesteps
as a special ensemble attack [Liu et al., 2017], we develop
a grouped gradient ensemble strategy to efficiently leverage
the complementary gradients at different timesteps. To elim-
inate the disruption to gradient stability caused by randomly
sampled Gaussian noise, we fix the noise in latent space for a
certain input image. In addition, we propose an alternating it-
erative framework. By mathematically decomposing the gra-
dient computations into two steps, we load only the gradients
of either the denoising module or the encoder at a time to re-
duce the VRAM usage. This framework is applicable to other
adversarial attacks without compromising their effectiveness.

In summary, our contributions can be divided into the fol-
lowing points.

• Revisiting existing adversarial attacks on LDMs, we
propose a plug-and-play alternating iterative framework
to decrease VRAM demands without sacrificing attack
effectiveness.

• We reveal the cancellation effect between the adversarial
perturbations and the estimated noise. To avoid the side
effect which is caused by the scale sensitivity of ℓ2 loss,
we conduct an angle-shifting attack by maximizing the
cosine loss.

• Regarding attacks against the denoising module at dif-
ferent timesteps as an ensemble attack, we propose a
gradient ensemble strategy and fix the noise to stabilize
the adversarial optimization process.

• Extensive experiments conducted on the facial dataset
CelebA-HQ and the artworks dataset WikiArt demon-

strate that our approach outperforms existing protection
methods across various scenarios.

2 Related Work
PhotoGuard [Salman et al., 2023] proposes attacking the en-
coder or denoising process of LDMs to raise the cost of mali-
cious AI-Powered image editing. However, attacking the de-
noising process is impractical due to its significant VRAM re-
quirements. AdvDM [Liang et al., 2023] successfully attacks
the denoising module by employing Monte Carlo sampling
across timesteps and maximizing the ℓ2 training loss, mark-
ing the first effective adversarial attack against the denoising
module of LDMs. Mist [Liang and Wu, 2023] builds upon
PhotoGuard and AdvDM to implement a hybrid targeted at-
tack. To further minimize video memory usage while protect-
ing high-resolution images, Mist generates low-resolution ad-
versarial patches, which are then assembled into a full image.
SDS [Xue et al., 2023] reduces computational complexity
and VRAM requirements by discarding the Jacobian term in
the loss function. Additionally, SDS demonstrates that min-
imizing the adversarial loss yields more natural image pro-
tection. Most existing methods rely on ℓ2-norm loss and di-
rect PGD optimization in pixel space. MFA [Yu et al., 2024]
proposes attacking the denoising module by mean fluctuation
under a certain timestep, but calculating the vulnerability of
timesteps relies on specific adversarial loss and numerous ex-
periments. In this paper, we introduce an alternating iterative
framework that significantly reduces video memory require-
ments without compromising attack performance, thereby en-
hancing the practicality of these methods. By revisiting the
objective function and optimization strategies of current ap-
proaches, we propose an angle-shifting attack alongside a
more stable optimization strategy.

3 Preliminary
One of the reasons why LDMs can achieve great success in
image generation is that they combine Variational Auto En-
coder (VAE) [Kingma and Welling, 2014] and diffusion mod-
els [Ho et al., 2020] to improve the efficiency of generation.
Firstly, images sampled from the real distribution are com-
pressed through the VAE E(·) encoder as:

z0 = E(x0). (1)

Then, the forward process and the reverse process (i.e. de-
noising process) are carried out on the latent space Z . The
forward diffusion process of LDMs is designed to progres-
sively introduce noise into the latent representation z0. The
process unfolds over a fixed number of timesteps T . At each
timestep t (1 ≤ t ≤ T ), the latent variable zt is computed by
adding Gaussian noise to the previous latent variable zt−1.
Mathematically, the forward process is formulated as:

zt =
√
αtzt−1 +

√
1− αtϵt, (2)

where ϵt ∼ N (0, I) is a standard Gaussian noise sampled
independently at each timestep t. Continuously expand zt−1

in Eq.(2) until reaching z0, and sum up the remaining ϵt. This
way, a faster forward sampling Eq.(3) can be obtained.

zt =
√
ᾱtz0 +

√
1− ᾱtϵt, (3)
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VJP

𝑧0

𝑧𝑡𝑖
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Denoising
Moduleℰ

Step one: compute gradient in latent space 𝓩Step two: compute VJP in pixel space 𝓧

𝑴 gradients× 𝑴
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𝜖𝜃
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𝑂
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angle shifting

backward flow
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Figure 4: The pipeline of our methods. First, the gradient in latent space is computed using cosine loss and stabilized through gradient
ensemble and fixed Gaussian noise. Then, the latent gradient is used to guide the optimization of adversarial perturbations in the pixel space
by computing the VJP. At each step, only the gradients of the denoising module or encoder are loaded.

where ᾱt =
∏t

s=1 αs. When t → T ,ᾱt → 0,zT almost be-
comes Gaussian noise.

The reverse process is tasked with recovering the original
latent representation z0 from the noisy latent variable zT . The
transition probability is defined as pθ(zt−1|zt), which is pa-
rameterized by a neural network θ. The network is designed
to predict the mean µθ(zt, t) and variance Σθ(zt, t) of the dis-
tribution from which zt−1 should be sampled given zt. The
predicted mean µθ(zt, t) is computed as

µθ(zt, t) =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, t)

)
, (4)

where ϵθ(zt, t) estimates the noise that is added at step t dur-
ing the forward process. The neural network is trained to min-
imize the error in this noise estimation. This is accomplished
by optimizing the following ℓ2 loss function finally:

Ltrain = Et,ϵtEzt∥ϵθ(zt, t)− ϵt∥2. (5)

4 Methods
To reduce VRAM consumption without sacrificing attack ef-
fectiveness, we propose an alternating iterative framework in
Sec. 4.1. Building on this framework, we further explore
more effective adversarial loss functions in Sec. 4.2 and pro-
pose stable optimization strategies in Sec. 4.3. The pipeline
of our methods is illustrated in Figure 4.

4.1 Alternating Iterative Framework
In general, existing adversarial attacks on the denoising mod-
ule consume substantial VRAM, severely limiting their de-
ployment on devices with constrained resources. The exist-
ing strategies sacrifice attack performance to overcome this
challenge. In this section, we propose an alternating itera-
tive framework that not only enables execution on resource-
limited devices without sacrificing attack effectiveness but

also provides deeper insights into the mechanics of current
methods.

Let Ladv denote the adversarial loss against the denoising
module. The optimization process of previous approaches
can be formulated as:

xi+1 = Π∞(xi + α · sign(∂Ladv

∂xi
)). (6)

where Π∞ represents the projection operator and xi repre-
sents the adversarial example at the i-th iteration. By cal-
culating the gradient of Ladv with respect to the adversarial
image x′, a PGD-based optimization step is performed in the
pixel space X to complete one step optimization.

The reason why previous methods consume more VRAM
is that they simultaneously load the gradients of both the en-
coder and the denoiser. Inspired by SDS [Xue et al., 2023],
we view the adversarial loss Ladv on the denoising process
as a function of the image x in pixel space and the variable z
in latent space, where z is derived from x through the VAE
encoder E as shown in Eq.(1). According to the chain rule,
we can expand Ladv , as:

∂Ladv

∂xi
=

∂Ladv

∂E(xi)

∂E(xi)

∂xi
. (7)

Note that Eq.(7) is a Vector Jacobian Product (VJP). The first
term ∂Ladv

∂zi signifies the gradients in latent space. The second
term is the Jacobian matrix that maps the latent gradients to
pixel space.

To reduce VRAM demands without altering input images
or adversarial loss, we divided the optimization process into
two alternating iterative steps as Eq.(8)-(9). Initially, we en-
deavored to determine an optimal value for zi by solving
Eq.(8). Subsequently, this optimal zi∗ serves as guidance for
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the computation of the VJP as described in Eq.(9).

zi∗ = zi +
∂Ladv

∂zi
, (8)

xi+1 = Π∞(xi + αsign((zi∗ − zi)
∂zi

∂xi
)). (9)

When computing Eq. (8) or Eq. (9) respectively, only the pa-
rameters of the denoiser or encoder are loaded into VRAM,
while direct computation of Eq. (6) requires loading both the
denoiser and encoder parameters simultaneously. Further-
more, performing one round of computation for Eq.(8) and
(9) yields identical results to Eq.(6). Consequently, adversar-
ial attacks based on Eq.(6) can be executed on devices with
lower VRAM without sacrificing effectiveness by decompos-
ing the adversarial attack into two alternating iterative steps.

4.2 Angle-Shifting Attack
Most current methods build upon maximizing the ℓ2 loss such
as training loss as Eq.(10) to disrupt the denoising process of
LDMs to protect the images.

Ladv = ∥ϵθ(
√
αtz0 +

√
1− αtϵt)− ϵt∥2. (10)

However, these methods overlook the fact that adversarial
perturbations δ can be disrupted by the denoiser ϵθ. Based on
the framework proposed by Sec. 4.1, we consider perturba-
tions directly on the latent variable z. We revisit the reverse
process on adversarial examples by perturbing the Eq.(4) as
Eq.(11).

µθ(z
′
t, t) =

1
√
αt

(
z′t −

1− αt√
1− ᾱt

ϵθ(z
′
t, t)

)
=

1
√
αt

(
zt +

√
ᾱtδ −

1− αt√
1− ᾱt

ϵθ(z
′
t, t)

)
,

(11)

where z′t =
√
ᾱt(z0+δ)+

√
1− ᾱtϵt represents the adversar-

ial latent variable z0 + δ at timestep t. We find that the adver-
sarial perturbation δ in Eq. (11) is weakened by the denoiser
ϵθ(z

′
t, t). To explore the relationship between δ and ϵθ(z

′
t, t)

simply, we ignore the time-dependent hyper-parameter coef-
ficients

√
ᾱt and 1−αt√

1−ᾱt
and decompose ϵθ(z

′
t, t) orthogo-

nally into two parts: ϵpθ parallel to δ and ϵoθ orthogonal to δ
as shown in Figure 5. We find that the directions of −ϵpθ and
δ are opposite, and −ϵpθ significantly undermines the effect
of the adversarial perturbation by weakening its magnitude.
We quantify the cancellation effect between the adversarial
perturbations and estimated noise via the magnitude of can-
cellation vector ϵpθ . As shown in Figure 7, when optimizing
the adversarial perturbations, the magnitude of cancellation
vector ϵpθ increases simultaneously.

The reason lies in the scale sensitivity of the ℓ2 adversarial
loss, which means it is highly sensitive to the magnitude of
the vectors. When optimizing ℓ2 losses such as Eq.(10, the
magnitude of ϵθ is inevitably increased, which further ampli-
fies the norm of the cancellation vector via projection. Based
on the analysis above, we conduct an angle-shifting attack by
maximizing the cosine similarity loss to disregard the impact
of −ϵpθ as:

Lcos = Et,ϵtEzt(1− cos(ϵθ(zt, t), ϵt)). (12)

𝑧0 + 𝛿

−𝜖𝜃

−𝜖𝜃
𝑝

δ − 𝜖𝜃
𝑝𝑧0

Figure 5: Cancellation effect

sample & sort 𝐾 timesteps

𝑀 ×𝑁 reshape  grouping

Figure 6: Grouping timesteps
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Figure 7: The magnitude of vectors during optimizing ℓ2 loss when
t = 100. The effective vector even decreases during optimization.

4.3 Stable Optimization Strategy
Previous works usually execute attacks by sampling a sin-
gle timestep t from a uniform distribution at each optimiza-
tion step. The shortcoming of this approach lies in the fact
that one-step optimization in the pixel space X can only con-
centrate on the adversarial loss corresponding to a particular
sampled t. We revisit adversarial optimization under different
timesteps from the ensemble attack perspective and design a
more efficient grouped gradient ensemble optimization strat-
egy. Moreover, we observe that the random noise can lead
to irregular oscillations in the gradient direction. We propose
that applying a fixed Gaussian noise is conducive to the stable
optimization of adversarial perturbations.

Gradient Ensemble in Latent Space
We perform attacks on the same image at different timesteps
and visualize the gradients in Figure 2. It can be observed
that the gradients at lower timesteps tend to disturb the noise
ϵt while the gradients at higher timesteps tend to disturb z0.
To make a better use of the complementary information un-
der different timesteps, we regard adversarial attacks against
different timesteps t as those against different models and ex-
pect that optimization in the pixel domain X at each step can
leverage the latent gradients under different t simultaneously
and effectively.

Based on the alternating iterative framework, we propose a
grouped gradient ensemble strategy in latent space. As illus-
trated in Eq.(13)-(14), the gradients under M timesteps ti are
computed for current z. Variance normalization is employed
as Eq.(13) to eliminate the dimensional differences of the gra-
dients when t varies. Subsequently, the average of these gra-
dients is calculated to obtain an ensemble gradient in the la-
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Edit Strength 0.1 0.2 0.3

Metrics LPIPS↑ SSIM↓ PSNR↓ FID↑ LPIPS↑ SSIM↓ PSNR↓ FID↑ LPIPS↑ SSIM↓ PSNR↓ FID↑
AdvDM 0.292 0.644 30.08 62.65 0.356 0.578 29.62 67.65 0.416 0.521 29.33 84.71

Mist 0.208 0.687 30.11 46.92 0.240 0.646 29.72 50.61 0.274 0.609 29.44 53.03
SDS 0.173 0.713 30.33 38.15 0.203 0.674 29.89 40.17 0.237 0.638 29.58 42.46

PhotoGuard 0.208 0.686 30.10 46.61 0.242 0.645 29.72 50.60 0.275 0.607 29.43 54.24
ours 0.316 0.625 29.96 66.59 0.380 0.559 29.54 79.04 0.439 0.502 29.27 99.46

Table 1: Quantitative results of different protection methods on CelebA-HQ

Edit Strength 0.1 0.2 0.3

Metrics LPIPS↑ SSIM↓ PSNR↓ FID↑ LPIPS↑ SSIM↓ PSNR↓ FID↑ LPIPS↑ SSIM↓ PSNR↓ FID↑
AdvDM 0.277 0.540 29.43 88.92 0.341 0.470 29.13 96.30 0.400 0.411 28.91 111.63

Mist 0.205 0.555 29.52 67.33 0.254 0.503 29.24 77.05 0.307 0.457 29.05 85.66
SDS 0.189 0.571 29.64 63.93 0.238 0.521 29.36 72.88 0.292 0.475 29.12 82.78

PhotoGuard 0.205 0.556 29.52 68.59 0.255 0.503 29.25 77.29 0.308 0.458 29.05 85.09
ours 0.292 0.524 29.35 93.47 0.353 0.457 29.07 104.83 0.413 0.398 28.87 120.72

Table 2: Quantitative results of different protection methods on WikiArt

tent space Z . This ensemble gradient is then utilized to guide
the optimization in X . Thus, the adversarial perturbations in
X at each optimization step can be regarded as an ensemble
attack on the denoising estimators under M timesteps.

gij =
∂Ladv(z

i
tj )

∂zi
, (13)

gie =
1

M

M∑
j=1

gij
σi
j

. (14)

This process is iterated for N iterations. We name this op-
timization strategy as the N × M grouped optimization ap-
proach. Specially, the previous optimization methods can be
seen as K × 1 strategies. To ensure an equitable compari-
son, we set N ×M = K. Moreover, since M is considerably
smaller than T , the sampling of M timesteps will introduce
substantial randomness. To relieve the randomness, we ini-
tially sample and sort K timesteps, and then reshape them
into an M × N matrix, which is then transposed to acquire
the N ×M timestep grouping as shown in Figure 6. Finally,
the ensemble attack effectively leverages complementary in-
formation across M timesteps in latent space Z through one-
step optimization in the pixel space X , resulting in enhanced
overall performance. It can be observed from the ablation ex-
periment in Sec. 5.3 that the proposed optimization strategy
effectively enhances the attack performance.

Fixing the Gaussian Noise
When training LDMs, distinct Gaussian noises ϵt are sampled
at each t. This noise sampling strategy is widely adopted by
previous adversarial attacks to perform the forward sampling
of xt as Eq.(2). However, we identify that this approach can
induce gradient oscillations, further resulting in unstable op-
timization directions.

The practice of sampling diverse Gaussian noise during
training LDMs is essential for augmenting the diversity of

generated images. But in the context of adversarial exam-
ple generation, the inherent randomness of Gaussian noise
sampling introduces substantial instability into the optimiza-
tion of adversarial perturbations. As illustrated in Figure 3,
the gradient exhibits significant fluctuations under different
Gaussian noise samples, even when the timestep remains con-
stant. These irregular gradients counteract each other, result-
ing in unstable optimization directions.

5 Experiments
5.1 Setup
Datasets
We evaluate our methods on two datasets. Considering that
infringement issues mainly occur on human faces and art-
works, we use a subset of the CelebA-HQ [Karras et al.,
2018] and a subset of WikiArt [Nichol, 2016] respectively.
We randomly select 500 face images from CelebA-HQ. The
WikiArt dataset contains artworks from 27 different styles.
We randomly selected 20 images from each style of artworks.

Baseline and Metrics
We compare our methods with four protection methods: Ad-
vDM [Liang et al., 2023], PhotoGuard [Salman et al., 2023],
Mist [Liang and Wu, 2023] and SDS [Xue et al., 2023]. To as-
sess the quality of the reconstructed images, we utilize PSNR,
SSIM [Wang et al., 2004], LPIPS [Zhang et al., 2018] and
FID [Heusel et al., 2017] to evaluate the quality of the recon-
structed images. Lower quality of the reconstructed images
indicates better protection performance.

Experimental Settings
Following the existing research, we use the ℓ∞-norm to con-
strain the generated adversarial examples, with the constraint
range as 8/255 and the step size α = 1/255. To facilitate
the exploration of the impact of the grouping strategy, we set
the number of iterations K = 100 for all the methods. For
grouping strategy, we set N ×M = 20× 5.
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Figure 8: Qualitative results of different protection methods. Lower image quality indicates better protection effectiveness.

5.2 Protection Performance

We evaluate the performance of our methods on the SDEdit
[Meng et al., 2022] task. The input images are resized to
512 × 512. SDEdit conducted image reconstruction based
on the backbone of SD-v1-4 [CompVis et al., 2022] and
DDIM100 [Song et al., 2021] sampling. The edit strength
of forward sampling is set to 0.1, 0.2, and 0.3 respectively.

Table 1 and Table 2 respectively display the quantitative
results of our methods on CelebA-HQ and WikiArt. The best
results are marked in bold, and the second-best results are
underlined. It can be observed that when protecting high-
resolution images, the protection performance of untargeted
attacks (AdvDM,Ours) is superior to that of targeted attacks
using textual loss (Mist, PhotoGuard, SDS). Our methods
demonstrate SOTA protection performance under different
edit strengths. Figure 8 shows the qualitative results of var-
ious protection methods when the edit strength is 0.5. The
attack methods using texture loss against the encoder re-
construct clear and smooth images with disrupted textures,
whereas untargeted attacks cause the reconstructed images to
contain a significant amount of high-frequency noise, as these
attacks are designed to interfere with the denoising module.
Compared with AdvDM which maximizes the ℓ2-norm train-
ing loss to optimize adversarial perturbations, the adversarial
perturbations generated by our methods lead to a more solid

detrimental effect on the denoiser ϵθ. See more experimental
results on other tasks in the supplementary materials.

5.3 Ablation Study
Ablation Study on Different Modules
To verify the effectiveness of each module, we conduct ab-
lation experiments on the SDEdit task and the CelebA-HQ
dataset. Specifically, we examined the impact of the cosine
similarity loss (cos) introduced in Sec. 4.2, the fixed noise
(FN) and the Gradient Ensemble (GE) proposed in Sec. 4.3
on the attack performance. We chose AdvDM with ℓ2 train-
ing loss as the baseline, which is also the second-best method
under this experimental setup. Table. 3 presents the results
of the ablation experiments. The results indicate that each
of the modules we proposed significantly improves the attack
performance. To evaluate the effect of the alternating iterative
framework on the attack performance, we designed additional
ablation experiments. In addition, we make a further explo-
ration and analysis on the impact of different grouping strate-
gies on the attack effectiveness. The experimental results in
the supplementary materials further validate the improvement
of protection performance by GE.

Ablation Study on Alternating Iterative Framework
To verify the improvement in VRAM resource usage effi-
ciency and the impact on attack performance of the alternat-
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Edit Strength 0.1 0.2 0.3

Metrics LPIPS↑ SSIM↓ PSNR↓ FID↑ LPIPS↑ SSIM↓ PSNR↓ FID↑ LPIPS↑ SSIM↓ PSNR↓ FID↑
no protect 0.080 0.789 31.37 15.48 0.109 0.747 30.72 19.06 0.138 0.710 30.25 22.95
AdvDM 0.292 0.644 30.08 62.65 0.356 0.578 29.62 67.65 0.416 0.521 29.33 84.71

+FN 0.303 0.628 30.03 63.46 0.367 0.563 29.60 74.01 0.429 0.505 29.31 94.36
+cos 0.300 0.639 30.03 62.94 0.366 0.571 29.59 70.04 0.427 0.513 29.30 86.98

+FN+cos 0.307 0.628 30.01 62.66 0.371 0.563 29.58 73.77 0.432 0.505 29.30 91.79
+FN+cos+GE 0.316 0.625 29.96 66.59 0.380 0.559 29.54 79.04 0.439 0.502 29.27 99.46

Table 3: Ablation Study of different modules on CelebA-HQ under different edit strengths
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Figure 9: Figure (a) illustrates the trajectory of ϵ during the optimization of different losses. Compared to the ℓ2 loss, optimizing cosine loss
does not increase the norm of ϵ. Figure (b) shows the curve of effective vector norms during optimization, where the cosine loss demonstrates
a more effective increase in the norm of the effective vector. Figure (c) depicts the norms of various vectors. The cosine loss achieves the
growth of the effective vector by suppressing ϵ.

ing iterative framework proposed in Sec. 4.1, we conduct
experiments on NVIDIA GeForce GTX 1080Ti with 12G
VRAM. In this scenario, AdvDM is unable to perform ad-
versarial attacks on 512×512 images. We use three different
methods to address this issue:

1. Image partitioning (IP): One solution is to tile the image
and perform adversarial attacks on patches separately
and then piece together the adversarial patches.

2. SDS: SDS reduces the VRAM occupancy of optimiza-
tion by modifying the loss function.

3. Alternating iterative framework (AIF): The alternating
iterative attack framework we proposed in Sec. 4.1. We
apply the framework on AdvDM to ensure that the per-
formance improvement comes from AIF but not other
modules.

Table 4 shows the quantitative results of the three solutions
when edit strength is 0.3. Alternating iterative framework
reduces the VRAM demand while maintaining attack effect
since it is mathematically equivalent to the attack process of
AdvDM.

Metrics LPIPS SSIM PSNR FID

IP 0.188 0.666 29.92 29.65
SDS 0.200 0.671 29.89 33.66
AIF 0.402 0.526 29.40 74.04

Table 4: Ablation Study on Alternating Iterative Framework

Validation of Cosine Loss
Figure 9 shows how the cosine similarity loss mitigates the
side effect. The timestep is fixed at t = 100 to provide stable
visualization. Figure 9a visualizes the trajectory of ϵθ dur-
ing optimizations, where the ground-truth ϵt is mapped to the
coordinate (−1, 0). Optimizing the cosine loss does not lead
to the growth of ϵθ compared to ℓ2 loss. Figure 9b shows
the curve of the magnitude of effective vector δ − ϵpθ . Maxi-
mizing the ℓ2 loss even shortens the effective vector. Figure
9c presents the magnitudes of vectors after 100 steps of opti-
mizations. The growth of ϵθ is suppressed and the magnitude
of the effective vector is increased by maximizing the cosine
loss. It can be clearly observed that optimizing the cosine
similarity loss reduces the side effects of ϵpθ by suppressing
ϵθ, thus ensuring the growth of effective vectors.

6 Conclusion
In this paper, we propose an alternating iterative attack frame-
work that reduces VRAM demands without sacrificing per-
formance. Based on the framework, we provide a mathemat-
ical analysis of the cancellation effect between perturbations
and the denoiser. To mitigate this side effect and enhance
attack effectiveness, we introduce a cosine similarity loss to
address the limitations of the conventional ℓ2 loss. Further-
more, by interpreting attacks on LDMs at multiple timesteps
as an ensemble attack, we propose a grouped gradient en-
semble strategy to better exploit complementary information
across timesteps. In addition, we improve optimization sta-
bility by fixing the Gaussian noise during the attack process.
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