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Abstract

Semi-supervised facial expression recognition (SS-
FER) effectively assigns pseudo-labels to confident
unlabeled samples when only limited emotional an-
notations are available. Existing SSFER methods
are typically built upon an assumption of the class-
balanced distribution. However, they are far from
real-world applications due to biased pseudo-labels
caused by class imbalance. To alleviate this issue,
we propose Regularized Mixture of Predictions
(ReMoP), a simple yet effective method to gener-
ate high-quality pseudo-labels for imbalanced sam-
ples. Specifically, we first integrate feature simi-
larity into the linear prediction to learn a mixture
of predictions. Furthermore, we introduce a class
regularization term that constrains the feature ge-
ometry to mitigate imbalance bias. Being practi-
cally simple, our method can be integrated with ex-
isting semi-supervised learning and SSFER meth-
ods to tackle the challenge associated with class-
imbalanced SSFER effectively. Extensive exper-
iments on four facial expression datasets demon-
strate the effectiveness of the proposed method
across various imbalanced conditions. The source
code is made publicly available at https://github.
com/hangyu94/ReMoP.

1 Introduction
Facial expressions, a fundamental form of non-verbal com-
munication, are crucial for human-to-human and human-
computer interactions [Li and Deng, 2022]. Recently, some
semi-supervised facial expression recognition (SSFER) algo-
rithms [Florea et al., 2020; Li et al., 2022; Roy and Etemad,
2024] have been proposed to improve model performance by
assigning pseudo-labels to a large number of confident unla-
beled samples. A common assumption is that the class dis-
tribution of the constructed semi-supervised facial expression
datasets is balanced, meaning the number of facial expres-
sion samples in each class is nearly equal. However, this as-
sumption may be unsatisfactory in realistic scenarios, as the

∗Corresponding author
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Figure 1: (a) Illustration of generating pseudo-labels for unlabeled
samples using a linear classifier and a feature classifier. (b) Com-
parison of F1 score of predictions between the linear pseudo-label,
the feature-based pseudo-label, and their combination. We conduct
experiments on RAF-DB under the setting of (N1, γ) = (2000, 50).

class distributions in most facial expression datasets are im-
balanced [Li et al., 2021; Zhang et al., 2023].

It is well known that the model trained on class-imbalanced
labeled samples is biased towards the majority classes
[Menon et al., 2021], for example, Happiness and Neutral
in FER. This issue can be further exacerbated for existing
semi-supervised learning (SSL) methods, since the pseudo-
labels assigned to confident unlabeled samples may also be
biased, leading to an even more severely imbalanced training
set. However, traditional class-imbalanced learning methods,
usually designed for labeled samples, cannot be easily com-
bined with SSL methods [Lee et al., 2021]. Therefore, to bet-
ter facilitate real-world scenarios, we aim to design an SSFER
method that generates high-quality pseudo-labels for imbal-
anced samples, which has not yet been thoroughly explored.

Recently, some SSL methods [Lee et al., 2021; Guo and
Li, 2022; Ma et al., 2024] combat the biased pseudo-labels
caused by class imbalance at the level of linear predic-
tion, but they often overlook the impact of feature similar-
ity. This oversight becomes more exacerbated in FER, where
the main challenge is significant intra-class variations and
inter-class similarities at the feature level [Li et al., 2019;
Ruan et al., 2021]. In this context, feature similarity and lin-
ear prediction are crucial for generating high-quality pseudo-
labels. To this end, we first examine the effects of linear pre-
diction and feature similarity on pseudo-label quality. There
are three sources that guide the model to pseudo-label unla-
beled samples: one from a linear classifier, one from a fea-
ture classifier (e.g., a collection of class centers [Wen et al.,
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2016]), and one from the combination of both classifiers. As
shown in Figure 1(b), we observe that the mixed manner con-
sistently enhances the quality of pseudo-labels with higher
F1 scores than others. This observation provides excellent
insights into learning unlabeled facial expression samples by
considering feature and linear prediction levels.

In this paper, we propose a simple yet effective method for
class-imbalanced SSFER with a regularized mixture of pre-
dictions, which performs a reliable way to generate pseudo-
labels for imbalanced samples. Specifically, we first use a
feature classifier to learn a feature prediction, reflecting the
feature similarity between a facial expression feature and the
class centers [Wen et al., 2016]. Meanwhile, a linear classi-
fier projects the feature to a linear prediction. We then merge
the linear and feature ones into a mixture of predictions to
generate a high-quality pseudo-label for an unlabeled sam-
ple. However, merely combining these two predictions can-
not fully mitigate the bias from the class imbalance issue. To
overcome this challenge, inspired by neural collapse [Papyan
et al., 2020], we introduce a class regularization term into
the feature classifier that constrains the geometry of the fea-
ture distribution. This ensures the discriminative power of
facial expression features with an explicit inter-class bound-
ary. Furthermore, our method is effective in classifying fa-
cial expressions during the inference stage. Overall, the main
contributions of this work can be summarized as follows:

• To the best of our knowledge, this is the first practical
solution for class-imbalanced semi-supervised facial ex-
pression recognition. As a plug-and-play solution, it ex-
hibits strong transferability across various SSL and SS-
FER methods like FixMatch and Ada-CM.

• We design a mixture of predictions to generate high-
quality pseudo-labels and enhance inference perfor-
mance. In addition, we introduce a class regularization
term to improve the discriminative power of features.

• Extensive experiments on four challenging datasets
demonstrate the superiority of our method under vari-
ous imbalanced settings, compared to the state-of-the-art
class-imbalanced SSL algorithms.

2 Related Work
Facial Expression Recognition. An underlying objective of
Facial Expression Recognition (FER) is to extract discrimi-
native facial expression features along with a linear classifier
for predicted class distributions. In deep learning, numerous
FER methods have been proposed under this paradigm [Li et
al., 2024]. Typically, Li et al. [2019] proposed classifying
facial expressions with attention mechanism from partially-
occluded faces. Wang et al. [2020] proposed a suppress-
ing method to overcome the uncertainty issue in FER. Xue
et al. [2021] applied the Vision Transformers to explore the
relation-aware facial expression features. Wu et al. [2023]
leveraged facial landmarks to reduce the impact of noisy su-
pervision. Until recently, the issue of class imbalance has also
been widely explored in FER. For example, Li et al. [2021]
designed an adaptive regular loss to re-weight the importance
of different facial expression categories. Zeng et al. [2022]

leveraged large-scale unlabeled images to mitigate the data
bias from class-imbalanced facial expression samples. Zhang
et al. [2023] proposed to extract extra information related to
the minority category from all training samples.

While most of these methods have achieved superior per-
formance in a fully-supervised manner, they heavily consume
a large number of labeled samples for the model’s training.
Unlike them, several methods have leveraged unlabeled sam-
ples to explore FER performance in a semi-supervised man-
ner [Jiang and Deng, 2023]. Particularly, Florea et al. [2020]
proposed to predict artificial labels of unlabeled samples by
center embeddings. Li et al. [2022] designed an adaptive
confidence margin to fully learn unlabeled samples. Du et al.
[2023] further considered the label ambiguity issue among la-
beled samples and enhanced the learning on unlabeled sam-
ples. However, all these methods are designed under the bal-
anced class distribution. To the best of our knowledge, we
are the first to achieve SSFER with class-imbalanced facial
expression samples.
Class-Imbalanced Semi-Supervised Learning. Recent
semi-supervised learning (SSL) has a long history of re-
search. A typical pipeline in SSL generates pseudo-labels
for confident unlabeled samples using the model’s outputs,
which are used for supervised learning. Take the recent
FixMatch [Sohn et al., 2020] as an example. Specifically,
it generated pseudo-labels for unlabeled samples with high-
confidence predictions above a pre-defined threshold, then
leveraged their weak and strong augmentations to achieve
consistency regularization. While these methods have seen
success in the balanced class scenarios, they fail to improve
the biased model’s performance when encountering class-
imbalanced training samples.

To alleviate the above practical problem, class-imbalanced
semi-supervised learning (CISSL) methods have garnered in-
creasing attention in recent years [Oh et al., 2022; Wei and
Gan, 2023; Lee and Kim, 2024]. For example, Kim et al.
[2020] proposed softly refining the biased pseudo-labels by
solving a convex optimization problem. Wei et al. [2021] se-
lected more pseudo-labeled samples from minority categories
to retrain the baseline SSL model. Lee et al. [2021] intro-
duced an auxiliary balanced classifier in FixMatch to mitigate
the class imbalance. Unlike the fixed confidence threshold-
ing, Guo et al. [2022] selected pseudo-labeled samples based
on the adaptive thresholds for different categories. Yu et al.
[2023] introduced the concept of energy scores from out-of-
distribution detection to generate pseudo-labels for unlabeled
samples, which can address the drawbacks of previous con-
fidence scores. Very recently, Ma et al. [2024] proposed to
model various class distributions by multiple experts trained
with different logit adjustments. These methods mainly focus
on the predictions from linear classifiers but ignore the im-
portance of feature similarity. In contrast, we discover the
solution of a regularized mixture of predictions for pseudo-
labeling class-imbalanced unlabeled samples.

3 Preliminary
The Neural Collapse (NC) [Papyan et al., 2020] reveals an in-
triguing phenomenon that during the terminal phase of train-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ℒ 𝑟𝑟
𝑟𝑟𝑟𝑟

(a) Overall Pipeline
W

A
 

La
be

le
d

D
at

a

𝛼𝛼(
𝐱𝐱 𝑖𝑖

) ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
(supervised term)

Linear

En
co

de
r

�𝑦𝑦𝑗𝑗𝑒𝑒

ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
(unsupervised term)SA

 
U

nl
ab

el
ed

D
at

a

𝒜𝒜
(𝐱𝐱

𝑗𝑗𝑢𝑢
)

En
co

de
r

Linear

Labeled Feature Class CenterUnlabeled Feature

(b) Center Update

update

Feature Classifier

𝛼𝛼(
𝐱𝐱 𝑗𝑗𝑢𝑢

)

W
A

 
U

nl
ab

el
ed

D
at

a

En
co

de
r

Mixture

𝑝𝑝𝑚𝑚 𝑦𝑦 𝛼𝛼(𝐱𝐱𝑗𝑗𝑢𝑢))
𝜏𝜏

Figure 2: Illustration of the proposed ReMoP method. (a) The gray square part represents the overall pipeline with labeled and unlabeled
samples. (b) The yellow square part is a class regularization branch to make class centers collapse to a simplex ETF structure during training.
For clarity, we present the weight-shared encoders with three colors to distinguish different inputs.

ing a deep classification model on the balanced dataset, the
learned features of the same class will converge to their class
centers. Meanwhile, these class centers will exhibit a sim-
plex equiangular tight frame (ETF). The ETF structure can
maximize the inter-class difference.
Definition 1 (Simplex Equiangular Tight Frame) For a K-
class classification problem, a simplex ETF is a collection of
vectors mk ∈ Rd, k = 1, 2, ...,K if:

M =

√
K

K − 1
U

(
IK − 1

K
1K1⊤

K

)
, (1)

where M = [m1, ...,mK ] ∈ Rd×K , d is the dimension of
the vector, U ∈ Rd×K is an orthogonal matrix satisfying
U⊤U = IK , IK is an identity matrix, and 1K ∈ RK is a
vector of all ones.

Then, the vectors in a simplex ETF construct an optimal
geometry for image classification, which have an equal l2
norm and the same pair-wise angle, i.e.,

m⊤
k mt =

K

K − 1
δk,t −

1

K − 1
, ∀k, t ∈ {1, 2, ...,K}, (2)

where δk,t equals to 1 when k = t and 0 otherwise. The pair-
wise angle − 1

K−1 is the maximal equiangular separation of
K vectors in the feature space Rd [Yang et al., 2022].

Based on the above definition, two important geometry
properties derived from the neural collapse phenomenon can
be formally summarized as: (NC1) Variability collapse.
Intra-class variability of the last-layer features collapses to
zero during the terminal phase of training, i.e., ||xi − hk|| =
0, where xi is i-th feature from class k, and hk is the center of
class k; (NC2) Convergence to a simplex ETF. The normal-
ized class centers, i.e., h̃k = (hk−hG)/||hk−hG||, converge
to a simplex ETF satisfying Eq. (2), where hG = Avgk{hk}
is the global mean of all centers.

4 Method
4.1 Problem Formulation
For a K-class imbalanced semi-supervised FER task, we have
both a batch of labeled samples X = {(xi, yi)}Ni=1 and unla-
beled samples U = {xu

j }
µN
j=1, where µ is a hyper-parameter

to determine the relative ratio of X and U , and xi, xu
j ∈ Rd

are facial expression features for labeled and unlabeled sam-
ples, respectively. For the i-th labeled feature xi, it is as-
sociated with a ground-truth label yi ∈ {1, 2, ...,K}. Let
Nk denote the number of labeled samples in class k, we
assume that the classes are sorted in descending order, i.e.
N1 ≥ N2 ≥ ... ≥ NK . The degree of class imbalance is
defined as the imbalance ratio γ = N1

NK
. Similarly, the same

assumption for unlabeled samples exists in the CISSL setting.
Considering that the training samples from existing facial ex-
pression datasets are inherently class-imbalanced [Zhang et
al., 2023], we therefore preserve the natural effect of class
imbalance on unlabeled samples.

A basic goal of class-imbalanced semi-supervised FER is
to train a linear classifier Fl parameterized by θl using X and
U . Specifically, let pl(y | x) = Fl(x; θl) be the linear predic-
tion produced by the linear classifier for input x, there is an
objective similar to FixMatch [Sohn et al., 2020], consisting
of a supervised term and an unsupervised term:

Lbase =
N∑
i=1

H (yi, pl (y | α (xi)))︸ ︷︷ ︸
supervised

+

µN∑
j=1

1(max(yj) ≥ τ)H(ŷj , pl(y | A(xu
j )))︸ ︷︷ ︸

unsupervised

,

(3)
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where H is the cross-entropy loss, 1(·) is the indicator func-
tion, and τ is a threshold to decide whether or not to retain the
pseudo-label. α(·) and A(·) denote the weakly-augmented
operation and strongly-augmented operation, respectively. To
obtain the pseudo-label ŷj = argmax

k
(yj), it is general to

compute the model’s prediction for the weakly-augmented
version of the unlabeled sample: yj = pl(y | α(xu

j ))
1. In

this regard, our work aims to enhance pseudo-label quality at
the feature level.

4.2 The Proposed Method
In class-imbalanced semi-supervised facial expression recog-
nition, the core challenge is how to generate high-quality
pseudo-labels for imbalanced facial expression samples. To
address this issue, we propose a novel method, named
Regularized Mixture of Predictions (ReMoP). In the follow-
ing section, we will provide an overview of the proposed
method and elaborate on key technologies.

Overview. Figure 2 depicts the framework of our proposed
ReMoP method. Specifically, in each forward pass, a labeled
sample and an unlabeled sample are input into the same en-
coder for their features using weakly-augmented (WA) and
strongly-augmented (SA) operations. Then, we follow the
standard SSL learner to project the WA labeled feature and
the SA unlabeled feature to the linear predictions using a
linear classifier. To generate high-quality pseudo-labels for
unlabeled samples, we project the WA unlabeled feature to
a mixture of predictions pm(y | α(xu

j )), which combines a
feature prediction from the feature classifier and a linear pre-
diction from the linear classifier. Meanwhile, we select all
labeled features and some unlabeled features with confidence
scores higher than the threshold τ , to update the feature clas-
sifier. Finally, a class regularization term Lreg is introduced
to constrain the geometry of the feature distribution.

Learning a mixture of predictions. In this work, we com-
bine the linear prediction and the feature prediction (i.e., fea-
ture similarity). Instead of linear pseudo-labels in the exist-
ing SSL learner, we use a mixture of predictions to gener-
ate high-quality pseudo-labels for unlabeled samples. Specif-
ically, given a linear classifier Fl, we first learn a linear pre-
diction pl(y | α(xu

j )) for a WA unlabeled feature α(xu
j ). To

execute the mixture of predictions, we initialize a feature clas-
sifier H ∈ Rd×K by

H = [h1, ...,hK ], (4)
where hk ∈ Rd×1 denotes the center for the k-th class. Let
ps(y | α(xu

j )) be the feature prediction produced by the fea-
ture classifier, we normalize the feature and the k-th center
hk for their similarity score as

pks(y | α(xu
j )) =

α(xu
j ) · hk

||α(xu
j )||||hk||

. (5)

Then, we combine the above two predictions and obtain a
mixture of predictions as

pm(y | α(xu
j )) = βpl + (1− β)ps, (6)

1In SSL, it is popular to generate a pseudo-label using the pre-
diction on the weakly-augmented unlabeled sample, which is used
to match the prediction on the strongly-augmented version.

Algorithm 1 ReMoP’s main learning algorithm.

Input: A batch of labeled data X = {(xi, yi)}Ni=1 and unlabeled
data U = {xu

j }µNj=1, number of epochs Emax, number of train-
ing iterations tmax, and the initial parameters θl and H.

Output: Updated parameters θl and H.
1: // Training
2: for e = 1, 2, ..., Emax do
3: for t = 1, 2, ..., tmax do
4: // Exploring labeled and unlabeled samples
5: Learn the linear prediction pl(y | α(xi)) for labeled sam-

ple xi using Fl.
6: Learn the mixture of predictions pm(y | α(xu

j )) for unla-
beled sample xu

j by Eq. (6).
7: Generate the pseudo-label ŷe

j by Eq. (7).
8: Update model parameters by Eq. (3).
9: // Learning a feature classifier

10: Update class centers using labeled features and confident
unlabeled features by Lc.

11: Constrain the geometry of centers by Eq. (8).
12: end for
13: end for
14: // Testing
15: Deploy classifiers Fl and H for the mixture of predictions.

where β is a hyper-parameter to balance two predictions. Fi-
nally, we use the mixture of predictions to obtain an enhanced
pseudo-label:

ŷej = argmax
k

(pm(y | α(xu
j ))), (7)

which is used to replace the linear pseudo-label for the unsu-
pervised term in Eq. (3).

Class regularization term. As previously mentioned,
the learning behavior of a classification model on balanced
datasets is revealed by a neural collapse phenomenon [Pa-
pyan et al., 2020]. To be specific, when the model achieves
zero training error rate, the learned features will collapse to
their class centers, forming an interesting geometric structure
(i.e., a simplex ETF) after being globally centered.

However, the model cannot exhibit the ideal structure on
imbalanced datasets, resulting in the features of minority
classes becoming indistinguishable [Fang et al., 2021]. To
this end, we claim that the cosine similarity of any pairs
of globally-centered vectors from H should be close to
−1/(K − 1) in the imbalanced setting. In this way, we
can maximally separate inter-class features. Specifically, we
first update class centers [Wen et al., 2016] using labeled
samples and confident unlabeled samples via the center loss
Lc = 1

2

∑
||x − hy||22, where hy denotes the y-th center re-

lated to the feature x. Then, we introduce a regularization
term Lreg into the mixture of predictions to further mitigate
the data bias from the class imbalance:

Lreg =
K∑

k,t=1

1(k ̸= t)

(
h̃⊤
k h̃t −

(
− 1

K − 1

))2

. (8)

In summary, our method is optimized in an end-to-end pro-
cess. It is flexible to be integrated into any standard SSL and
SSFER frameworks. Finally, we have the following loss func-
tion for training:

Ltotal = Lbase + λ1Lc + λ2Lreg, (9)
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where λ1 and λ2 are hyper-parameters to balance three terms’
intensity. Note that Lbase takes the enhanced pseudo-labels in
Eq. (7) as inputs.

Moreover, unlike the linear prediction from a linear classi-
fier used in existing FER pipelines, we merge it to the feature
similarity for a mixture of predictions during the testing stage.
Specifically, for a testing feature xt, we deploy two classi-
fiers Fl and H for the mixture of predictions pm(y | xt).
The whole progress of the proposed method is summarized
in Algorithm 1.

5 Experiments
5.1 Datasets
We conduct experiments on four public facial expression
datasets, including RAF-DB [Li and Deng, 2019], FERPlus
[Barsoum et al., 2016], CK+ [Lucey et al., 2010], and Affect-
Net [Mollahosseini et al., 2017]. RAF-DB is a large-scale
facial expression dataset with 29,672 real-world facial im-
ages, which are labeled by about 40 annotators into a single-
label subset and a two-tab subset. In our experiments, we
use the single-label subset with 12,271 training images and
3,068 testing images, including seven basic facial expression
categories (i.e., surprise, fear, disgust, happiness, sadness,
anger, and neutral). FERPlus provides the new eight-class
labels (i.e., seven basic categories and contempt) created by
10 crowd-sourced annotators. It consists of 28,709 training
images, 3,589 validation images, and 3,589 testing images.
CK+ consists of 593 video sequences from 123 subjects. For
a fair comparison, we follow [Li et al., 2022] to select each
sequence’s first frame and the last frame as the neutral face
and the targeted facial expression, containing 636 facial im-
ages with seven basic categories. Different from the first three
datasets, AffectNet is by far the largest in-the-wild facial ex-
pression dataset, containing more than 1M facial images but a
large number of noisy labels. In our experiments, we choose
about 287,651 manually annotated images with seven basic
categories and the contempt category as inter-dataset unla-
beled samples to evaluate the CISSL performance.

Following the setting in CISSL [Guo and Li, 2022], we
use the imbalance ratio γ with the given N1 to construct the
class-imbalanced training set. Specifically, we set the num-
ber of labeled samples in class k as Nk = N1 · γ− k−1

K−1 for
1 < k ≤ K. In this work, we design various combinations
of γ and N1. Considering the imbalanced testing class distri-
bution in RAF-DB, FERPlus, and CK+, we report the overall
accuracy and the mean accuracy across all categories by de-
fault. Unless otherwise specified, we conduct experiments
three times using different random seeds to obtain the mean
and the standard deviation.

5.2 Implementation Details
We implement all experiments using the PyTorch toolbox
with one NVIDIA A100 GPU. For the basic encoder, we use
the ResNet-18 [He et al., 2016] pre-trained on the MS-Celeb-
1M face recognition dataset [Guo et al., 2016] for learning fa-
cial expression features. Besides, we use MTCNN [Zhang et
al., 2016] to align and resize facial images to 224×224 pixels.

Method
Strategy RAF-DB FERPlus CK+

H Lreg
N1 = 500 N1 = 1000 N1 = 500
γ = 150 γ = 150 γ = 150

Vanilla
- - 73.50/ 49.10 76.75/ 49.51 77.36/ 55.42
✓ - 74.22/ 50.84 77.74/ 52.87 78.30/ 57.05
✓ ✓ 75.13/ 52.16 78.08/ 53.24 79.09/ 57.67

FixMatch
- - 77.71/ 55.48 82.21/ 54.62 80.03/ 59.06
✓ - 79.86/ 58.52 82.65/ 57.16 84.43/ 63.51
✓ ✓ 81.29/ 60.93 83.67/ 58.77 85.69/ 66.69

Table 1: Ablation study of different modules in our method on RAF-
DB, FERPlus, and CK+ (in %, overall/ mean accuracy). We conduct
experiments over the random seed as 1. Vanilla denotes that the
model is trained using limited labeled samples. This also applies to
the following tables. Note that the performance on the CK+ dataset
is reported by training on RAF-DB and evaluating on CK+.

During training, we follow [Li et al., 2022] to use Random-
Crop and RandomHorizontalFlip as the weak augmentation
strategy, and add RandAugment [Cubuk et al., 2020] as the
strong augmentation strategy for a fair comparison. By de-
fault, we use the Adam optimizer. For RAF-DB and CK+,
we train the model with a learning rate of 1e − 4, training
epoch 100, and batch size 16. For FERPlus, due to a large
number of training samples, we train the model with a learn-
ing rate of 1e − 4, training epoch 80, and batch size 32. The
number of training iterations tmax is set to 1,000 in all exper-
iments. The relative ratio µ is set to 1 except for AffectNet as
5. The hyper-parameter β in Eq. (6) is set to 0.5. Following
FixMatch [Sohn et al., 2020], the default threshold τ is 0.95.
In Eq. (9), the hyper-parameters λ1 and λ2 are set to 1e − 4
and 0.1, respectively.

5.3 Ablation Study
Effect of two modules in ReMoP. We examine the effec-
tiveness of ReMoP in Table 1. Several observations can be
summarized as follows: 1) Compared with the Vanilla-based
baseline using a linear classifier (row 1), introducing a feature
classifier for the mixture of predictions (row 2) consistently
improves inference performance; 2) A significant improve-
ment between rows 2 and 3 is achieved after introducing Lreg

into H. Since the class regularization term is used to con-
strain the feature classifier for the geometry of feature distri-
bution, it is reasonable to enhance the discriminative power
of facial expression features; 3) The similar improvements
(rows 4 to 6) are present in the learning of unlabeled samples
as well. These results also verify that the proposed method ef-
fectively learns unlabeled facial expression samples at feature
and linear prediction levels.
Effect of the mixture of predictions for testing samples. To
eliminate the concern that the mixture of predictions is more
effective in determining facial expression categories than the
linear prediction during the testing stage, we conduct an ab-
lation study to evaluate their difference. As shown in Fig-
ure 3, the mixture strategy consistently improves performance
in each case. This contributes an important insight for FER
to explore the impact of discriminative features.
Effect of varying hyper-parameter β. In Figure 4, we
conduct an ablation study on RAF-DB to analyze the effect
of different value β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The hyper-
parameter β reflects the intensity of two predictions in the
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Method
RAF-DB CK+

N1 = 2000 N1 = 500 N1 = 2000 N1 = 500
γ = 50 γ = 50 γ = 150 γ = 150

FixMatch [Sohn et al., 2020] 85.31±0.21/ 72.19±0.54 80.99±0.33/ 64.46±1.05 83.18±1.34/ 67.76±0.67 79.93±2.05/ 57.92±4.86

w/ ReMoP 86.85±0.07/ 76.92±0.08 83.15±0.60/ 71.12±0.02 85.06±0.68/ 69.10±0.90 84.70±0.77/ 65.90±0.65

Ada-CM [Li et al., 2022] 85.75±0.29/ 73.12±0.39 81.39±0.36/ 65.80±1.49 83.80±1.10/ 68.05±1.29 80.24±1.49/ 60.26±1.54

w/ ReMoP 86.15±0.36/ 76.01±0.69 81.63±0.47/ 68.80±0.27 84.05±0.23/ 69.99±0.11 83.73±1.81/ 67.12±0.77

Table 2: Ablation study in terms of overall/ mean accuracy using different SSL and SSFER learners on RAF-DB and CK+ (in %, mean ±
standard deviation).
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Figure 3: The effect of the mixture of predictions during the testing
stage in terms of mean accuracy on (a) RAF-DB and CK+ under
the setting of (N1, γ) = (2000, 150), (b) FERPlus. We conduct
experiments over the random seed as 1.
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Figure 4: The effect of hyper-parameter β on RAF-DB in terms of
(a) overall and (b) mean accuracy under the setting of (N1, γ) =
(2000, 150).

mixture of predictions. From the results, we can observe that
when β is too large or too small, the performance decreases as
the excessive importance of linear prediction or feature sim-
ilarity hampers the quality of pseudo-labels. We fix β = 0.5
for all the experiments according to the experimental results.
Effect of ReMoP on feature learning. As mentioned above,
the proposed ReMoP constrains the geometry of the feature
distribution. To verify this, we visualize the t-SNE distribu-
tion [Van der Maaten and Hinton, 2008] for facial expression
features learned by FixMatch and FixMatch-based ReMoP.
As shown in Figure 5, ReMoP helps construct a discrimina-
tive feature space, which can boost FER performance.
Effect of ReMoP using different SSL learners. In this
work, we claim that the proposed method as a plug-and-
play solution can be integrated into existing SSL and SSFER
methods. To evaluate this, we conduct experiments using a

(b) w/ ReMoP(a) w/o ReMoP

Anger Disgust Fear Happiness Neutral Sadness Surprise

Figure 5: 2D t-SNE visualization of facial expression features from
the CK+ dataset.

typical SSL method (FixMatch) and an SSFER method (Ada-
CM). As shown in Table 2, using ReMoP further improves
the performance on overall and mean accuracy in each case,
demonstrating the ability of the proposed method to address
the class-imbalanced issue in SSFER. In the following, we
use FixMatch [Sohn et al., 2020] as the baseline SSL learner.

5.4 Comparison with State-of-the-Art Methods
In this section, based on the widely-used FixMatch method
[Sohn et al., 2020], we compare the proposed method with
some popular CISSL methods, including ABC [Lee et al.,
2021], Adsh [Guo and Li, 2022], InPL [Yu et al., 2023], and
CPE [Ma et al., 2024].
Intra-dataset evaluation. In this part, we assume that la-
beled and unlabeled samples come from the same dataset, that
is, they are randomly divided from original training set.

As shown in Table 3, we compare the proposed ReMoP
with state-of-the-art CISSL methods on RAF-DB under four
different class distributions. From these results, we can see
that 1) the proposed method can consistently improve the
vanilla method, validating the effectiveness of ReMoP to
leverage unlabeled samples for discriminative learning; 2) the
proposed method achieves satisfactory performance, outper-
forming existing methods by a large margin in most cases.
For example, given the setting of (N1, γ) = (2000, 150), the
proposed ReMoP significantly outperforms the competitive
Adsh [Guo and Li, 2022] by 1.80% and 3.34% on overall and
average accuracy, respectively.

In addition, Table 4 compares the performance on CK+
and FERPlus under two different class distributions, respec-
tively. We can see that the proposed ReMoP steadily and
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Method
RAF-DB

N1 = 2000 N1 = 2000 N1 = 500 N1 = 500
γ = 50 γ = 150 γ = 50 γ = 150

Vanilla 84.04±0.56/ 70.13±0.73 80.97±0.30/ 61.41±1.05 77.55±0.40/ 58.28±1.15 73.08±0.39/ 48.52±1.54

FixMatch [Sohn et al., 2020] 85.31±0.21/ 72.19±0.54 82.39±0.52/ 65.15±1.19 80.99±0.33/ 64.46±1.05 77.33±0.27/ 53.88±1.13

w/ ABC [Lee et al., 2021] 85.93±0.33/ 73.85±0.11 83.25±0.52/ 68.40±0.94 82.63±0.03/ 68.07±0.76 78.90±0.53/ 58.78±1.34

w/ Adsh [Guo and Li, 2022] 86.15±0.54/ 74.19±1.30 83.24±0.59/ 67.94±1.33 82.55±0.16/ 68.22±1.16 80.12±0.31/ 62.52±0.85

w/ InPL [Yu et al., 2023] 85.86±0.16/ 73.44±0.21 82.94±0.27/ 67.31±0.49 82.19±0.15/ 67.41±0.94 78.74±0.23/ 58.28±1.63

w/ CPE [Ma et al., 2024] 85.40±0.24/ 78.21±0.23 83.80±0.65/ 73.02±0.23 80.66±0.43/ 70.61±0.01 78.25±0.35/ 62.90±1.86

w/ ReMoP (Ours) 86.85±0.07/ 76.92±0.08 85.04±0.18/ 71.28±0.69 83.15±0.60/ 71.12±0.02 81.42±0.36/ 64.89±2.84

Table 3: Performance comparison in terms of overall/ mean accuracy with the state-of-the-art CISSL methods on RAF-DB (in %, mean ±
standard deviation). The best results are shown in bold. This also applies to the following tables.

Method
CK+ FERPlus

N1 = 2000 N1 = 500 N1 = 4000 N1 = 1000
γ = 150 γ = 150 γ = 150 γ = 150

Vanilla 82.44±0.32/ 63.53±1.42 76.94±1.44/ 54.34±0.78 82.79±0.32/ 60.14±0.73 77.13±0.33/ 49.44±0.79

FixMatch [Sohn et al., 2020] 83.18±1.34/ 67.76±0.67 79.93±2.05/ 57.92±4.86 84.70±0.30/ 63.62±1.05 82.02±0.14/ 54.26±0.67

w/ ABC [Lee et al., 2021] 83.96±0.66/ 68.69±0.88 80.08±2.55/ 59.45±3.79 84.99±0.22/ 63.33±0.22 82.47±0.43/ 56.16±0.11

w/ Adsh [Guo and Li, 2022] 83.65±1.23/ 66.37±2.27 83.17±1.52/ 65.18±1.24 84.89±0.01/ 63.31±0.87 81.95±0.22/ 56.47±0.65

w/ InPL [Yu et al., 2023] 83.55±0.73/ 66.67±0.52 81.92±2.02/ 61.62±3.53 84.41±0.32/ 63.00±0.92 81.58±0.09/ 55.21±0.69

w/ CPE [Ma et al., 2024] 82.63±0.39/ 68.27±0.86 80.27±2.59/ 64.20±0.43 83.19±0.63/ 64.25±0.60 79.86±0.23/ 56.88±0.48

w/ ReMoP (Ours) 85.06±0.68/ 69.10±0.90 84.70±0.77/ 65.90±0.65 85.81±0.17/ 65.01±0.96 83.03±0.46/ 57.14±1.20

Table 4: Performance comparison in terms of overall/ mean accuracy with the state-of-the-art CISSL methods on CK+ and FERPlus (in %,
mean ± standard deviation).

Method RAF-DB FERPlus
Baseline∗ 87.42 86.06
RUL∗ [2021] 88.98 88.30
MEK∗ [2023] 89.77 -
Pseudo-Labeling [2013] 87.39 85.13
Mean-Teacher [2017] 88.41 86.15
PT [2023] 88.69 86.60
Ada-CM [2022] 89.28 87.80
FixMatch [2020] 87.74 86.45
w/ ABC [2021] 87.78 87.38
w/ Adsh [2022] 88.98 88.01
w/ InPL [2023] 89.54 88.23
w/ CPE [2024] 88.14 87.98
w/ ReMoP (Ours) 90.29 89.06

Table 5: Performance comparison in terms of overall accuracy on
RAF-DB and FERPlus using AffectNet as inter-dataset unlabeled
samples. We conduct experiments over one random seed. ∗The
model is trained using original training samples without extra un-
labeled samples.

significantly outperforms the state-of-the-art CISSL methods.
For example, ReMoP outperforms CPE [Ma et al., 2024] by
2.62% and 3.17% overall accuracy on FERPlus under two
different settings, respectively. These results demonstrate the
superiority of the proposed method in learning with class-
imbalanced samples.
Inter-dataset evaluation. In this part, we assume that la-
beled and unlabeled samples come from different datasets.

In Table 5, we conduct experiments on RAF-DB and FER-
Plus. Following the setting [Jiang and Deng, 2023], we treat
the training images along with their labels from RAF-DB or
FERPlus as labeled samples, and the training images from
AffectNet as unlabeled samples. From the table, we can see
that the proposed ReMoP significantly outperforms the ex-
isting methods by a large margin. Specifically, on the RAF-
DB dataset, our method achieves 2.15% overall accuracy im-
provements compared to the competitive CPE [Ma et al.,
2024] and outperforms PT [Jiang and Deng, 2023] by 1.6%
overall accuracy. Furthermore, we compare the proposed Re-
MoP with some fully-supervised methods. For example, our
method outperforms MEK [Zhang et al., 2023] by 0.52%
overall accuracy on RAF-DB.

6 Conclusion
In this work, we address the practical class-imbalanced semi-
supervised facial expression recognition task, focusing on the
quality of pseudo-labels for imbalanced samples in a reli-
able manner. To this end, we propose the Regularized Mix-
ture of Predictions (ReMoP) method, which integrates fea-
ture similarity with linear prediction to create a mixture of
predictions. Additionally, we introduce a class regulariza-
tion term that effectively handles class-imbalanced feature
distribution. Through extensive experiments on four facial
expression datasets, we demonstrate the efficacy of ReMoP
across various challenging imbalanced setups. Our work may
further contribute to understanding the importance of feature
similarity in classifying facial expressions.
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