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Abstract

Emotion recognition from EEG signals is crucial
for understanding complex brain dynamics. Ex-
isting methods typically rely on static frequency
bands and graph convolutional networks (GCNs)
to model brain connectivity. However, EEG sig-
nals are inherently non-stationary and exhibit sub-
stantial individual variability, making static-band
approaches inadequate for capturing their dynamic
properties. Moreover, spatial-temporal dependen-
cies in EEG often lead to feature degradation during
node aggregation, ultimately limiting recognition
performance. To address these challenges, we pro-
pose the Spatial-Temporal Electroencephalograph
Collaboration framework (Stella). Our approach
introduces an Adaptive Bands Selection module
(ABS) that dynamically extracts low- and high-
frequency components, generating dual-path fea-
tures comprising phase brain networks for con-
nectivity modeling and time-series representa-
tions for local dynamics. To further mitigate
feature degradation, the Fourier Graph Operator
(FGO) operates in the spectral domain, while the
Spatial-Temporal Encoder (STE) enhances repre-
sentation stability and density. Extensive exper-
iments on benchmark EEG datasets demonstrate
that Stella achieves state-of-the-art performance in
emotion recognition, offering valuable insights for
graph-based modeling of non-stationary neural sig-
nals. The code is available at https://github.com/
sun2017bupt/EEGBrainNetwork.

1 Introduction

Decoding emotional states from brain activity is a funda-
mental challenge at the intersection of neuroscience and ar-
tificial intelligence [Pessoa and Adolphs, 2010; Huang et
al., 2017; Kragel and LaBar, 2016]. Non-invasive neu-
roimaging techniques such as EEG, fMRI, and MEG have
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Figure 1: EEG signals and brain networks. (a) Non-stationary EEG
signals can be represented as time-series brain networks. The Global
Field Potential (GFP) summarizes fluctuating brain activity. (b)
Standard GCNs suffer from feature degradation, while the Fourier
Graph Operator (FGO) preserves frequency-domain features, pro-
ducing stable and dense feature maps.

enabled fine-grained analysis of brain dynamics associated
with emotional and cognitive processes [Meer et al., 2020;
He and Zhang, 2024; Flournoy ef al., 2024]. Among these,
EEG stands out due to its high temporal resolution, which
is crucial for capturing the rapid neural fluctuations under-
lying affective states. Nevertheless, accurately recognizing
emotions from EEG signals remains a formidable task, as
it requires advanced models capable of capturing complex
spatial-temporal interactions within brain networks.

Current EEG-based emotion recognition methods typi-
cally employ Region-of-Interest (ROI) strategies, which par-
tition the brain into predefined regions and frequency bands.
While widely used, such approaches often fail to capture the
dynamic and collaborative nature of emotional neural pro-
cesses [Pessoa, 2017; Pessoa, 2018; Zheng et al., 2023]. Al-
though state-of-the-art time-series models have shown strong
capability in capturing local temporal dynamics [Ju et al.,
2024; Si et al., 2024], they are inherently limited in modeling
inter-regional synchronization—an essential feature for de-
coding emotion-related brain activity. This limitation aligns
with our core motivation: going beyond sequential modeling
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to explicitly account for spatial-temporal dependencies across
brain regions. As a result, existing approaches still struggle
to fully leverage the structure of brain networks, substantially
restricting their performance in emotion decoding.

Brain network-based methods have shown strong poten-
tial in cognitive prediction and neurological diagnosis [Alar-
cao and Fonseca, 2017; Zhu et al., 2021; Shi et al., 2023].
However, applying them to EEG-based emotion recogni-
tion presents two key challenges. First, constructing effec-
tive brain networks requires capturing the dynamic, non-
stationary nature of EEG signals. Most existing methods
rely on static frequency bands, which constrain electrode in-
teractions to fixed ranges [Miao er al., 2023] and overlook
individual spatial-temporal variability (Fig.1-(a)). Adaptive
frequency selection, guided by physiological priors, offers
a promising alternative[Liu er al., 2024al. Second, critical
spatial-temporal dependencies often degrade during node ag-
gregation, especially when temporal asynchronies between
brain regions—uvital for emotional processing—are not well
preserved (Fig.1-(b)). Addressing these challenges calls for
advanced techniques that can jointly model spatial-temporal
interactions[Liu et al., 2024b].

To address these challenges, we propose the Spatial-
Temporal Electroencephalograph Collaboration (Stella)
framework. Specifically, Stella introduces Adaptive Bands
Selection (ABS) to dynamically partition EEG signals into
optimal frequency bands, effectively constructing Phase
Brain Networks (PBNs) to capture inter-region synchroniza-
tion. Additionally, we design a dual-path architecture in-
tegrating a Fourier Graph Operator (FGO) to mitigate fea-
ture degradation, and a Spatial-Temporal Encoder (STE) to
strengthen spatial-temporal representations. Comprehensive
experiments on benchmark datasets (DEAP and FACED)
demonstrate that Stella achieves state-of-the-art performance.
Our key contributions are:

e Adaptive Bands Selection (ABS): A data-driven ap-
proach that dynamically divides EEG signals into base
and harmonic frequency bands, enabling robust Phase
Brain Network (PBN) construction through phase syn-
chronization.

¢ Stella Framework: A dual-path architecture integrat-
ing the Fourier Graph Operator (FGO) to reduce feature
degradation and the Spatial-Temporal Encoder (STE) to
strengthen spatial-temporal representations.

e Comprehensive Evaluation: Extensive experiments on
public EEG datasets show that Stella achieves state-of-
the-art emotion recognition, supported by detailed abla-
tion and sensitivity analyses.

2 Related Work

In this section, we review key research areas relevant to our
approach, including frequency band division, graph learning
from brain networks, and spatial-temporal learning from EEG
signals. These methods have been widely explored to en-
hance the analysis of EEG signals, with each contributing to
the understanding of brain activity and emotion recognition.
Frequency band division. Existing methods are mainly
categorized into filter-based methods driven by physiological

priors and data-driven filter methods. Filter-based methods
driven by physiological priors rely on well-defined physio-
logical frequency bands, such as Delta (0.5-4Hz), Theta (4-
8Hz), Alpha (8-13Hz), Beta (13-30Hz), and Gamma (above
30Hz) [Jenke et al., 2014]. Common implementations in-
clude bandpass filters [Li et al., 2023], wavelet transforms
[Akin, 2002], and Fourier transforms [Lin ez al., 20101, which
effectively extract the corresponding features through prede-
fined frequency bands. Although static frequency band divi-
sions align with physiological paradigms, they may not fully
account for individual differences, limiting the model’s adapt-
ability. On the other hand, data-driven methods, while capa-
ble of handling non-stationary signals and capturing dynamic
variations, do not rely on physiological plausibility, which
can affect their interpretability and alignment with known
brain functions.

Graph learning from EEG brain networks. Graph Con-
volutional Network (GCN) extend traditional Convolutional
Neural Network (CNN) by leveraging spectral graph theory,
enabling the direct processing of non-Euclidean data, such
as graphs [Kipf and Welling, 2016]. Despite the impres-
sive successes of GCN in emotion recognition, the static na-
ture of their adjacency matrices limits their ability to adapt
dynamically. Dynamic Graph Convolutional Neural Net-
works (DGCN) [Song et al., 2018] is a GCN-based method
that models multichannel EEG features using a dynamic ad-
jacency matrix, enabling the dynamic learning of intrinsic
relationships between EEG channels for enhanced emotion
recognition. [Wang er al., 2018] integrate the strengths of
dynamic adjacency matrix and Broad Learning Systems to
design a novel architecture. [Zhang er al., 2021] impose spar-
sity constraints on graph to enhance emotion recognition. [Gu
et al., 2023] use a Generative Adversarial Network to gener-
ate latent representations of EEG signals while combining a
GCN and a Long Short-Term Memory (LSTM) network to
recognize emotions from EEG signals. [Li et al., 2023] com-
bine single-channel Differential Entropy (DE) features with
cross-channel functional connectivity features to simultane-
ously extract temporal variations and spatial topology infor-
mation from EEG data. However, existing approaches tend
to ignore the feature degradation problem and underestimate
the effect of channel heterogeneity in feature engineering, re-
ducing the efficiency of graph learning.

Spatial-Temporal Learning from EEG Signals. Many
EEG-based emotion recognition methods adopt hybrid archi-
tectures (e.g., GCN + LSTM, CNN + RNN) to model spatial-
temporal patterns [Li et al., 2016]. Yang et al. [Yang et al.,
2018] and Ma et al. [Ma et al., 2019] integrate CNNs and
RNNSs for joint feature learning, with Ma further introducing
residual shortcuts. Tao et al. [Tao et al., 2020] enhance spatial
focus via channel attention, while Yin et al. [Yin et al., 2021]
and Liu et al. [Liu et al., 2024a] fuse GCNs with RNNs to
better capture spatial-temporal dependencies. However, these
composite designs often apply temporal modeling post hoc
to graph-based features, limiting direct temporal reasoning
at the raw signal level. Recent work such as DeepCN [Yi
et al., 2024] emphasizes joint modeling of intra- and inter-
series couplings, offering deeper spatial-temporal insights.
Moreover, research beyond EEG, including OptIForest [Xi-
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Algorithm 1 Adaptive Bands Selection

Input: Original EEG signal z[n)
Output: Selected bands features D

1: Initialize: window function w = Hamming, window

length L, number of windows &, harmonic order h

2: Apply STFT to EEG signal z[n] to obtain X'( )

3: for each channel 7 do

4:  for each window [ € L do

FbL < arg max; | (f)|

end for
b3 LS00 UL Ry (fb2)"
b, , Op; <— mean and std of fb]
h; > Op, < mean and std of fh]
Compute frequency boundaries using g and o
Fbiow,is [Origh,is fRiow,is [Rhigh,s
11: if fhlow,i < fb}”‘ghﬂ' then

YR

1

12: Adjust boundaries: fhiow,; < fbrign,: if necessary
13:  end if
14: end for

15: return D for the selected bands across all channels

ang er al., 2023] and federated isolation forests [Xiang et al.,
2024], highlights the importance of capturing multi-source,
distributed, and cross-domain dependencies in time series
data. These perspectives inspire more integrated and system-
level approaches to EEG-based spatial-temporal modeling.

3 The Stella Framework
3.1 Opverall Architecture

As illustrated in Fig. 2, we introduce the Stella framework
to effectively model spatial-temporal features in EEG sig-
nals. The proposed method comprises two key components:
Adaptive Bands Selection (ABS) and a dual-path architecture
integrating the Fourier Graph Operator (FGO) and Spatial-
Temporal Encoder (STE). Specifically, ABS adaptively di-
vides EEG signals into optimal Base and Harmonic frequency
bands, addressing the limitation of static band definitions.
The Base Band is utilized by FGO to construct robust Phase
Brain Networks (PBNs), capturing stable inter-regional con-
nectivity, while the Harmonic Band is processed by STE to
extract detailed spatial-temporal dynamics, effectively miti-
gating feature degradation.

3.2 Adaptive Bands Selection

Frequency Filter Method. While traditional approaches of-
ten rely on static frequency bands such as the + band for
emotion recognition, emerging evidence indicates that dy-
namic, individualized frequency bands are critical for accu-
rately capturing neural dynamics, highlighting the limitations
of a fixed-band strategy.

The Adaptive Bands Selection (ABS) module leverages
signal decomposition theory to adaptively identify frequency
bands across EEG channels and individuals. Using the Short-
Time Fourier Transform (STFT), the raw EEG signal is de-
composed into the frequency domain. For each electrode, we
extract the dominant frequency (base frequency) from each

windowed segment and identify its harmonics as integer mul-
tiples. This decomposition enables personalized frequency
band selection that captures individual-specific spectral fea-
tures. The formal process is defined in Eq. 1.

X (f) = Zx[n] Wn —m]e %™,

n

bl = argmas|l(f)

| M
1 L
s = /
= I

where x[n] denotes the raw EEG signal, W (-) is a window
function centered at time m, and f € {0,..., N — 1} is the
frequency bin. X!(f) is the STFT of electrode i at window
I, and fb. denotes its dominant frequency. The final base
frequency fb; is obtained by averaging across all L windows.

As detailed in Alg. 1, due to inter-channel variability in
EEG signals, base and harmonic frequencies are computed
on a per-channel basis. For each channel 7, the average base

frequency is calculated as pp, = %Z‘;l fb;, with stan-
dard deviation o,, = %\/Zle(fbf — 1p,)%. The base
band boundaries are defined as fbjou,; = |pp;, — 0v;| and

fbrigh.i = |, + op,|- Similarly, the harmonic frequency is
computed as fh$ = (fb3)", with harmonic band boundaries
fhiowi = |pn;, — on;| and fhpigni = |pn, + on,|. This
adaptive, channel-specific filtering ensures personalized and
robust frequency band extraction.

Phase Brain Networks. Given the non-periodic nature
of EEG signals, we construct brain networks using a sliding
window strategy. To capture the topological relationships be-
tween brain regions, we compute the Phase Locking Value
(PLV), which quantifies the functional connectivity between
electrode pairs. Phase synchronization has been widely rec-
ognized in neuroscience as a robust indicator of functional
brain connectivity, particularly in the context of cognitive and
emotional coordination.

The phase synchronization matrix (PSM) G serves as the
adjacency matrix of a weighted undirected graph, where
stronger phase synchronization corresponds to higher edge
weights. In accordance with common practice in EEG-based
analysis, we use Differential Entropy (DE) features as a com-
pact and effective representation of EEG signals in each fre-
quency band. DE quantifies the information content of a
continuous-valued signal and has been widely adopted as a
standard pre-processing step in EEG emotion recognition due
to its superior discriminability [Zheng and Lu, 2015]. Let
D,(X) and Dy(X) denote the DE features extracted from
channels p and g, respectively. Within time window s, the
instantaneous phase of each DE time series is computed via
the Hilbert transform, denoted as ¢, (s, D,) and ¢4(s, Dy).
The phase synchronization between these two electrodes in
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Figure 2: Overview of Stella framework. EEG signals are processed with Adaptive Bands Selection (ABS) to filter Base Band and Harmonic
Band. The Fourier Graph Operator (FGO) uses the Base Band to capture graph representations, while the Spatial-Temporal Encoder (STE)

processes the Harmonic Band to extract spatial-temporal features.
classifier for emotion recognition.
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Figure 3: The overall process of constructing the phase synchroniza-
tion matrix between channels as brain networks using EEG signals.

window s is then computed as:

A¢;q<57D) y QSP(S’D) - ¢q(S’D)
=/ (e/Pr=Pa))
PLV: (f) ( ZeﬂM’s a(s D)>‘

The outputs of both components are combined and passed through a

Here, Z/(X) denotes the phase of X, e/% represents a com-
plex exponential with phase 6, and $(X) denotes the imag-
inary part of X. To prevent numerical instability, we apply
logarithmic normalization on the PLV with a small constant
«, as expressed in Eq.3.

NormalizedPLV,,, = log(PLV,,(f) + «)/log(0.5). (3)

The base frequency, as the dominant and more stable com-
ponent of EEG signals, is less affected by noise and is thus
used to construct the phase synchronization matrix G to re-
flect functional connectivity between brain regions. Har-
monic components, being more noise-sensitive, are excluded
from this construction. Analysis on the DEAP dataset shows
that the extracted base frequency band ranges from [7, 16]
Hz, covering traditional 6, «, and /5 bands—while harmon-
ics span [41, 58] Hz, corresponding to y activity. These bands
are associated with distinct cognitive and emotional states: 6
with relaxation and light sleep, « with calm wakefulness, (3
with active thinking, and «y with high-level cognition and sen-
sory processing. The ABS module naturally aligns with this
five-band theory, providing a principled basis for adaptive fre-
quency band selection in EEG analysis.

3.3 Model Design

As illustrated in Fig. 2, we design a dual-path deep learn-
ing model that integrates Fourier Graph Operator (FGO) with
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a Spatial-Temporal encoder (STE) to produce the stable and
dense representations.

Fourier Graph Operator. In the temporal graph model,
we use the constructed temporal phase brain networks
{G0,G1,G2,...,Gn} as input and approximate the Laplacian
matrix using Chebyshev polynomials for graph convolution.
The recursive definition of Chebyshev polynomials T} (x) is
defined as Eq. 4. We adopt Chebyshev-approximated spec-
tral GCNSs rather than GATSs for both theoretical and practi-
cal reasons. First, our PLV-based brain graphs are inherently
defined in the frequency domain, making spectral methods
like GCNs more aligned with the underlying graph construc-
tion. In contrast, GAT's operate in the spatial domain and rely
on learned attention weights across node pairs, which can be
less interpretable and harder to constrain physiologically in
brain network analysis. Second, Chebyshev polynomial ap-
proximation allows efficient localized filtering, avoids eigen-
decomposition, and enhances scalability.

Ti(z) = 20Tp—1(x) — Tr—2(x). )

The Chebyshev polynomial approximation of the graph
Laplacian matrix is given by Eq.5.

K
gg(f/) ~ Z Gka(ﬁ), (5)

k=0

where 0 represents the coefficients of the Chebyshev polyno-
mials, and K denotes the order of the polynomial. In this
paper, a Sth-order Chebyshev polynomial is used to approxi-
mate the Laplacian matrix. The graph convolution operation
is expressed as Eq.6.

K
X = go(L)X ~ ) 0xTi(L)X. (6)
k=0

After graph convolution, the resulting temporal features,
X 1, XQ, ey Xt, suffer from feature degradation, a typical is-
sue with standard graph convolution due to the heterogeneity
of EEG signals. To address this, we apply Short-Time Fourier
Transform (STFT) to process these signals in the complex
frequency domain, mitigating the degradation problem. The
STFT operation is given by Eq.7.

STFT(X,:)(T, f)= f: Xn cw(n—1T) .e—jfn7 @)

n=-—oo

where X, is the time series signal at time n, w(-) is the win-
dow function, 7 is the central time point in this window and
f is the frequency variable.

To perform frequency domain analysis, we apply a STFT
to transition the temporal features to the frequency domain,
yielding real and imaginary components. The complex con-
volution is then applied to these components, with the in-
put signal * = Zyeqi + JTimag and the convolution ker-
nel h = hpeai + jhimag. The convolution operation is
Y = (Zreai+JTimag) *(Mreai+Jjhimag ), Where real and imag-
inary parts are convolved independently using real-valued
convolutions, with kernels Aycq; and hjpqq. Then, a batch

norm is applied followed by a linear projection W to produce
the graph representation, as shown in Eq.8.

Output graph = BatchNorm(y)W )

Spatial-Temporal Encoder. The STE processes the EEG
signals to capture both spatial and temporal dependencies.
Channel-wise Multi-Head Attention is applied to model spa-
tial relationships in the harmonic EEG signals. Each chan-
nel is treated independently to focus on the inter-channel re-
lationships, allowing the model to capture connectivity be-
tween brain regions. To further enhance spatial feature ex-
traction, convolution is applied to these channel-wise repre-
sentations, capturing multi-scale spatial relationships across
the EEG channels. The operations are as follows: for the
input matrix H € RB*PXC where B is the batch size, C
is the number of channels, and D is the feature dimension,
and W is the linear projection, then we compute the attention
scores for each channel using Q; = X Wé, K; = XWi,,

Vi=X W{, The attention scores for each channel are then
computed as Eq.9.

(KT
e; = softmax (Q()> 9
Vg
and the output for each attention head is head; = e;V;. The
outputs of all heads are concatenated and passed through a
linear transformation as Eq.10.

Output,y, = Concat(heady, ..., head,,)W,. (10)

As expressed in Eq.11, the attention output is then processed
by a convolution operation to further capture the spatial fea-
tures, providing the output of the spatial encoding.

Outputy = Conv(Outputyyy)- (11

The temporal dependencies are captured mainly using a 3-
layer RNN, which models the sequential nature of the EEG
signal over time. The RNN is implemented using an off-the-
shelf implementation in PyTorch, and details are omitted for
brevity. The output of temporal encoding is given by Eq.12.

Output, = GELU(Woyipui (RNN(X Wirojeet)))- (12)

Finally, the spatial and temporal features are concatenated,
and a linear layer is applied to fuse them into a single repre-
sentation, as shown in Eq.13.

Outputy = Concat(OQutputs, Outputy) Wrusion (13)

Above all, by combining outputs of FGO and STE mod-
ules, we obtain features enriched with brain networks and
spatial-temporal information from the EEG signals. As
shown in Eq.14, fusing these features results in a stable, dense
representation that significantly enhances emotion recogni-
tion efficiency.

Outputiysion = Concat(Qutputgraph, Outputy) (14)
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Dataset DEAP FACED
Metrics Valence Arousal Valence Arousal
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

ECLGCN  90.45%+3.09% 90.01%+3.13% 90.60%+2.63% 90.01%+3.33% 88.94%+4.19% 88.01%+18.18% 87.91%+4.74% 87.87%+16.61%
PCRNN 90.80%+3.08% 89.89%+2.92% 91.03%+2.99% 90.03%+3.07% 89.87%+5.67%  88.64%+18.59%  88.92%+4.24%  87.02%+17.67%
MM-ResLSTM 92.30%+1.55% 91.01%+4.23% 92.87%+2.11% 90.95%+3.28% 87.88%+6.25%  85.59%+27.32%  88.23%+6.65%  88.05%+24.12%
ACRNN 93.72%4+3.21% 92.64%+3.33% 93.38%+3.73% 92.57%+3.64% 89.92%+5.31%  88.54%+24.21% 88.20%+4.31%  87.92%+22.39%
BiDCNN  94.38%+2.61% 93.25%+3.32% 94.72%+2.57% 93.83%+3.13% 91.25%+4.44%  90.02%+16.23%  90.98%+5.21%  90.01%=+17.75%
ST-GCLSTM  95.52%+0.96% 93.08%+3.43% 95.04%+0.95% 90.94%+2.53% 94.52%+3.35% 92.05%+15.42%  92.32%+4.78%  92.21%=+10.16%
STFCGAT  95.70%+3.36% 94.53%+4.22% 94.24%+3.95% 93.94%+4.57% 93.82%+2.15% 91.65%+19.82% 92.97%+3.98%  92.74%+19.16%
BF-GCN  96.33%+2.23% 95.69%+3.01% 97.69%+2.56% 97.01%42.74% 91.62%+3.26% 92.12%+21.43%  92.75%+3.99%  92.86%+20.83%
DGGN* 96.98%+2.23% 96.72%+3.01% 97.19%+2.56% 97.01%+2.74% 95.12%+3.26%  92.12%+21.43% 93.87%+3.99% 92.86%+20.83%

Stella (Ours) 97.44%+1.74%197.31%+1.96 % T98.11% +1.07 % 98.02% +1.08 % T 96.98 % +2.70% T 1 93.54% +17.40% ' 195.83% +2.92% T 194.01% +12.49% T
Acc 1/ Std | 0.46% /0.49% 0.59% /1.05% 0.91% /1.49% 1.10% /1.66% 1.85% /0.56% 1.42% /4.03% 1.96% /1.07% 1.15% /8.34%

Table 1: Overall performance of Stella and baselines. T indicates the statistical significance (f: p-value < 0.05; t1: p-value < 0.01). And

* is the baseline model we selected for the main comparison. Arrow 1 / | means higher/lower is better.

DEAP FACED
Valence Arousal Valence Arousal
- 92.16% + 9.04% 89.03% =+ 14.09% 69.54% =+ 22.12% 66.34% + 23.71%

v 97.44%+1.74% 98.11% + 1.07% 96.98% + 2.70% 95.83% =+ 2.92%

Table 2: Ablation Study in FGO. (F means STFT, - means removing
STFT from GCN, v' means using STFT after GCN.)

3.4 Loss Function

EEG data is inherently noisy and often limited in quantity,
making it prone to overfitting under standard cross-entropy
loss, which relies on hard labels. To improve generaliza-
tion, we adopt a label smoothing strategy that incorporates
a smoothing factor e € [0, 1], transforming hard labels into
soft ones. The overall loss consists of two components: the
standard cross-entropy loss £, capturing model’s confidence
in the correct class, and a smoothing term L5, promoting uni-
formity across all classes. The total loss is defined as:

1 n
ﬁz—*g i log 3,
1 ni:1y ogyY

1 n C
“n Zzlogﬁi,ja

i=1 j=1

L(@y) =1 —€e)Ly+

5)

Y
[
Il

£
C

where n is batch size, C' is number of classes (e.g., C = 2
for valence and arousal classification), g; ; is the predicted
probability for class 7, and y; is the true label of sample :.

£27

4 [Experiments

4.1 Datasets
This section presents extensive experiments on two widely
used EEG emotion recognition datasets:

* DEAP [Koelstra et al., 2011]: EEG (40 channels,
128Hz) from 32 participants watching 40 music videos,
with ratings on arousal, valence, dominance, liking, and
familiarity, plus facial and physiological data.

e FACED [Chen et al, 2023]: EEG (32 channels,
1000Hz) from 123 participants watching 28 emotion-

eliciting videos, covering nine emotion categories, with
ratings on arousal, valence, familiarity, and liking.

4.2 Baselines

We compare the performance of Stella against the following
EEG-based emotion recognition baselines:

¢ Graph models: ECLGCN [Yin er al., 20211, ST-
GCLSTM [Feng et al., 2022], STFCGAT [Li et al.,
2023], DGGN [Gu er al., 2023], and BF-GCN [Li,
2024], which use Graph-based models to capture spatial-
temporal EEG features.

* Spatial-temporal models: PCRNN [Yang ef al., 2018],
ACRNN [Tao et al., 2020], MM-ResLSTM [Ma et al.,
2019], and BiDCNN [Huang et al., 2021], which lever-
age RNN or CNN architectures, with attention, multi-
modal integration, or hemispheric modeling.

4.3 Main Experimental Results

We compare Stella against strong baselines on the DEAP and
FACED datasets for valence and arousal classification. As
shown in Table 1, Stella consistently outperforms the best
baseline, DGGN, improving valence accuracy by 0.46% and
arousal accuracy by 0.91% on DEAP, and by 1.85% and
1.96% on FACED. It also achieves notable gains in F1 scores
and reduces standard deviations across metrics. These im-
provements are statistically significant (p < 0.05 on DEAP,
p < 0.01 on FACED), demonstrating both superior per-
formance and stability. While some baselines show lower
variance, their average accuracy is markedly lower, under-
scoring Stella’s robustness. Furthermore, the smaller per-
formance gap between DEAP and FACED indicates strong
generalization across datasets, effectively handling FACED’s
higher heterogeneity.

4.4 Ablation Study

We conducted an ablation study to evaluate the contri-
butions of the Fourier Graph Operator (FGO) and the
Spatial-Temporal Encoder (STE). As shown in Table 3,
removing FGO leads to substantial performance degrada-
tion—on DEAP, valence and arousal accuracy drop from
97.44%/98.11% to 85.75%/93.56%; on FACED, from
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DEAP FACED
FGO STE Valence Arousal Valence Arousal
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
- v 7539%+991% 0.7453+0.1057 81.07%+8.02% 0.8093+0.0811 83.36%=£13.64% 0.7979+0.2002 84.53%+13.94% 0.8272+0.1754
v - 85.75%+5.78% 0.8546+0.0616 93.56%+4.11% 0.9350+£0.0417 94.65%+4.95% 0.9124+0.1746 92.90%+4.85% 0.9118+0.1267
v V' 97.44%+1.74% 0.9731+0.0196 98.11%+1.07% 0.9812+0.0107 96.98%+2.70% 0.9354+0.1740 95.83%+2.92% 0.9401+0.1249
Table 3: Ablation Study for FGO and STE using the same metrics as in Table.1.
DEAP FACED
Freq. Bands Valence Arousal Valence Arousal
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

ABS 97.44%+1.74% 0.9731+0.0196 98.11%+1.07% 0.9812+0.0107 96.98%+2.70% 0.9354+0.1740 95.83%+2.92% 0.9401+0.1249

2 @R

95.29%+1.36% 0.93864+0.0241 96.17%=+1.27% 0.94184+0.0349 93.48%+1.71% 0.92454+0.0195 93.97%+2.19% 0.8791+0.1596
91.46%=+2.01% 0.8806+0.0661 90.69%=+3.01% 0.86184+0.0635 93.35%+£1.69% 0.923+£0.0190 93.91%+2.05% 0.8745+0.1716
91.98%+1.82% 0.89064+0.0502 90.78%+3.0% 0.87474+0.0460 93.47%+1.73% 0.923740.0208 94.01%+2.52% 0.8841+0.1546
93.11%+1.48% 0.9163+0.0291 91.44%42.89% 0.8804+0.0518 93.26%+1.78% 0.9224+0.0199 94.04%+2.06% 0.8878+0.1496
92.51%+2.22% 0.89544+0.0576 92.56%+2.21% 0.894640.0429 93.86%+1.80% 0.929240.0207 94.07%+2.30% 0.8769+0.1693

Table 4: ABS Bands VS. Classical Bands Using The Same Metrics as in Table.1.
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Figure 4: Model accuracy for DEAP and FACED variation curves
under different history lengths and learning rates.

96.98%/95.83% to 94.65%/92.90%. This confirms the
importance of modeling inter-regional brain synchroniza-
tion. Removing STE also reduces performance, though
less severely (e.g., DEAP valence down to 75.39%, FACED
arousal to 84.53%). Notably, FGO alone performs better
than STE alone across all metrics, suggesting that low-level
brain coordination is more critical than local temporal encod-
ing. However, the best performance is achieved only when
both modules are combined, demonstrating their complemen-
tarity and the necessity of joint spatial-temporal modeling for
accurate emotion decoding.

4.5 Parameter Sensitivity Analysis

To assess the framework’s robustness, we analyze its sen-
sitivity to key hyperparameters, such as the historical time
period T (DE feature sequence length) and learning rate lr.
Experiments on FACED (1" = 11,13,15,17,19) and DEAP
(T = 30,32, 34, 36, 38) with lr = le-5, 3e-5, be-5 demon-
strate stable performance across settings (Fig. 4), confirming
its robustness. Additionally, as illustrated in Fig. 5, we com-
pare the standard and smoothed cross-entropy loss, with the
latter showing faster convergence, higher accuracy, and im-
proved training stability.

4.6 Bands Selection Analysis

To assess the effectiveness of ABS, we compare it with the
classic 5-band approach by using a single frequency band
(e.g., Go) to construct the phase brain network for FGO,
while the remaining bands’ DE features are input to STE,

1.00

0.95 Smoothed_Arousal DEAP
—— Smoothed_Arousal FACED

0.90 —— Smoothed_Valence_ DEAP
—=— Smoothed_Valence_ FACED

0.85 —— Cross_Arousal_DEAP

0.80 —— Cross_Arousal_ FACED
—— Croos_Valence DEAP

075 —=— Cross_Valence_FACED

0 100 200 300 400 500

Figure 5: The accuracy curve under smoothed and non-smoothed
cross entropy loss function with same environment and model con-
figuration.

with all other settings identical to Stella. As shown in
Table 4, STE consistently outperforms the 5-band method
across all metrics—for instance, improving DEAP valence
and arousal accuracy by 2.14% and 1.93%, and FACED by
3.50% and 1.85% over the ¢ band. These results demonstrate
that accounting for channel differences provides superior per-
formance, supporting the value of adaptive frequency selec-
tion in emotion recognition.

5 Conclusion

We present Stella, a framework that combines ABS to differ-
entiate base and harmonic band signals for phase brain net-
works construction, FGO to address the feature degradation
problem in graph convolution, and STE to enhance spatial-
temporal information with stable and dense EEG signal rep-
resentations. Stella effectively builds brain networks, extracts
deep spatial-temporal features, and stabilizes the learning
process, achieving state-of-the-art emotion recognition per-
formance. It also offers valuable insights for applying graph
learning to non-stationary signals like EEG, from feature con-
struction to model design. Beyond emotion recognition, the
proposed framework is scalable and potentially applicable to
other EEG-based tasks such as cognitive load prediction and
neurological disorder detection.
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