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Abstract

We study coalition formation in the framework of
hedonic games. These games model the problem
of partitioning a set of agents having a preference
order over the coalitions they can be part of. A par-
tition is called popular if it does not lose a majority
vote among the agents against any other partition.
Unfortunately, hedonic games need not admit pop-
ular partitions. We go further and settle the com-
plexity of the existence problem concerning popu-
larity in additively separable and fractional hedonic
games by showing that it is X5-complete in both
cases. We are thus the first work that proves a com-
pleteness result of popularity for the second level
of the polynomial hierarchy.

1 Introduction

We consider the task of partitioning a set of agents, say hu-
mans or machines, into disjoint coalitions. Agents have pref-
erences regarding the coalition they are part of and a reason-
able partition should reflect these preferences. This task is
commonly studied in the framework of coalition formation
and is an intriguing object of study at the intersection of eco-
nomics and computer science. The typical economic setting
is the formation of teams, such as working groups or political
parties, but applications also consider reaching international
agreements, establishing research collaboration, or forming
customs unions [Ray, 2007]. Partitioning problems are also
studied in other fields, such as clustering in machine learning
and community detection in social science [Cohen-Addad et
al., 2022; Newman, 2004].

The output of a coalition formation scenario is usually
measured by means of solution concepts, that capture the
ideas of stability and optimality. While stability conceptu-
alizes the prospect of agents staying in their own coalition
rather than performing deviations to join other coalitions, op-
timality aims at global guarantees, for instance, with respect
to notions of welfare. We consider the notion of popular-
ity, a solution concept due to Gérdenfors [1975] that incor-
porates both ideas [Brandt and Bullinger, 2022].! Informally

'In his original work, Girdenfors [1975] calls popular outcomes
“majority assignments.”
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Figure 1: Complexity hierarchy of popularity in coalitional scenar-
i0s. Gray boxes refer to our main results.

speaking, an outcome is popular if no other outcome wins a
vote against this outcome. In social choice theory, this cor-
responds to the well-established notion of weak Condorcet
winners [Condorcet, 1785], but popularity can be defined in
any context where agents have preferences over outcomes.
Popularity hence captures the idea of a status quo that cannot
be defeated in a head-to-head election. For instance, students
engaged in a popular research collaboration would not be able
to propose a different outcome preferred by a majority.

Giirdenfors [1975] was the first to consider popularity in
a coalitional setting. He considered bipartite matching in-
stances and showed that stable matchings—in the sense of
Gale and Shapley [1962]—are popular if the agents’ pref-
erences are strict. Interestingly, relaxing either assumption
(bipartiteness or strict preferences) may lead to instances in
which popular outcomes do not exist, and the corresponding
decision problems become NP-complete [Bir6 er al., 2010;
Faenza ef al., 2019; Gupta et al., 2021]. Notably, mem-
bership in NP is not trivial for this problem because one
has to certify that a matching does not lose a vote against
any other matching, of which there are exponentially many.
This task can, however, be performed by transforming the
verification of popular matchings to a maximum weight
matching problem [Bir6 et al., 2010] or a linear program
that can simultaneously handle weak and incomplete prefer-
ences as well as nonbipartite instances [Kavitha et al., 2011;
Brandt and Bullinger, 2022].

When allowing coalitions to be of size greater than 2,

we reach the typical domain of coalition formation. We
consider the prominent classes of additively separable and



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

fractional hedonic games [Bogomolnaia and Jackson, 2002;
Aziz et al., 2019]. Specifically, we study the following deci-
sion problems.

ASHG-EXISTS-POPULAR (FHG-EXISTS-POPULAR)
Input: Additively separable hedonic game (frac-
tional hedonic game)

Question: Does the given game admit a popular par-
tition?

For these, we prove two sweeping hardness results. These
complete the characterization of the complexity hierarchy of
popularity in coalitional scenarios, as detailed in Figure 1.

Theorem 1. ASHG-EXISTS-POPULAR is ¥5-complete.

Theorem 2. FHG-EXISTS-POPULAR is X5-complete, even if
valuations are nonnegative.

Our results highlight the significant computational hard-
ness presented by popularity in coalition formation. While
NP-hard problems can often be addressed in practice using
SAT or ILP solvers, X5 -completeness indicates a higher level
of complexity that surpasses these typical approaches.

Notably, the definition of popularity, i.e., the existence of
an outcome such that for all other outcomes, a vote is not
lost, suggests membership in the complexity class 5. Still,
we are the first to prove a corresponding completeness re-
sult. By contrast, previous work only establishes hardness for
the first level of the polynomial hierarchy [Aziz et al., 2013;
Brandt and Bullinger, 2022; Cseh and Peters, 2022] or con-
siders the simpler to analyze verification problem [Kerkmann
et al., 2020].

Note that the nonnegativity assumption in Theorem 2 is a
strong additional restriction, which is not possible for The-
orem 1. Indeed, additively separable hedonic games define
agents’ utilities for coalitions based on the sum of valuations
of its members. Hence, forming the grand coalition contain-
ing all agents is optimal for all agents if valuations are non-
negative. By contrast, the sum of valuations is divided by the
size of the coalition in fractional hedonic games, which leads
to nontrivial preferences, even for nonnegative valuations.

2 Related Work

Coalition formation in the framework of hedonic games was
first considered by Dréze and Greenberg [1980] and further
conceptualized by Bogomolnaia and Jackson [2002], Baner-
jee et al. [2001], and Cechldrovd and Romero-Medina [2001].
The book chapters by Aziz and Savani [2016] and Bullinger
et al. [2024] provide an introduction to hedonic games.

In a general model of hedonic games, agents have to
rank an exponentially large set of possible coalitions. Since
this causes computational issues, a wide range of succinct
preference representations has been proposed in the litera-
ture. Often, this is based on restricting attention to impor-
tant meta-information about a coalition such as its size [Bo-
gomolnaia and Jackson, 2002] or its best or worst member
[Cechldrovd and Romero-Medina, 2001]. Another way is to
aggregate cardinal valuation functions of single agents to a
utility for a coalition. We consider models that follow this

latter approach, namely additively separable hedonic games
(ASHGs) and fractional hedonic games (FHGs) [Bogomol-
naia and Jackson, 2002; Aziz et al., 2019].

Similar to the landscape of game classes, there exists a
variety of solution concepts for hedonic games. We focus
our discussion on the large body of research on ASHGs
and FHGs. Much of this literature concerns stability, i.e.,
the absence of beneficial deviations to join other or form
new coalitions. A common theme is that stability is usu-
ally only satisfiable for restricted domains of games, and
various computational hardness results have been observed.
Interestingly, there is a difference in complexity dependent
on whether single agents or groups of agents perform a
deviation. Whether a single agent can perform a devia-
tion can usually be checked in polynomial time and we
obtain NP-completeness results [Sung and Dimitrov, 2010;
Aziz et al., 2013; Brandl et al., 2015; Brandt et al., 2023;
Brandt er al., 2024]. By contrast, whether a group deviation
exists is itself NP-complete to check and hence the existence
of group stability, e.g., whether there exist partitions in the
core, becomes Y5-complete [Woeginger, 2013; Peters, 2017,
Aziz et al., 2019]. Prior to our complexity results on popular-
ity, these were the only problems known to be %5-complete
for hedonic games.

It is possible to achieve more positive results regarding
the existence of stable outcomes by considering restricted
domains [Bogomolnaia and Jackson, 2002; Dimitrov et al.,
2006], weakened solution concepts [Fanelli et al., 2021], sta-
bility under randomized deviations [Fioravanti er al., 2023],
or in random games [Bullinger and Kraiczy, 2024]. For in-
stance, symmetric utilities lead to the existence of single-
deviation stability in ASHGs [Bogomolnaia and Jackson,
2002], but the same is not true in FHGs [Brandt et al., 20231,
and even in ASHGs, computation is still PLS-hard [Gairing
and Savani, 2019].

Popularity, our main solution concept, has received less at-
tention. Most related to our work is the paper by Brandt and
Bullinger [2022] who prove NP-hardness and coNP-hardness
of the existence problem for ASHGs and FHGs. In addition,
they show coNP-completeness of the verification of popu-
lar partitions, a problem that was also considered by Aziz et
al. [2013] for ASHGs.? Our results improve upon these re-
sults by showing X5 -completeness of the existence problem,
which settles the precise complexity of popularity in ASHGs
and FHGs.

Popularity has also been considered in further classes of
hedonic games. Brandt and Bullinger [2022] and Cseh and
Peters [2022] study it for games with coalitions bounded in
size by three, and Kerkmann et al. [2020] consider a pref-
erence model based on the distinction of friends, enemies,
and neutrals. Moreover, Kerkmann and Rothe [2020] con-
sider popularity for a nonhedonic class of coalition forma-
tion games aimed at modeling altruism. All of these papers
show coNP-completeness of the verification problem. How-
ever, while Brandt and Bullinger [2022] and Cseh and Pe-

2Aziz et al. [2013] also consider the existence problem of popu-
larity for ASHGs, but their proof was pointed out to be incomplete
by Brandt and Bullinger [2022].
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ters [2022] at least show NP-hardness, the complexity of the
existence problem remains unresolved in all of these models.

3 Preliminaries

In this section, we provide the preliminaries for our work. We
start with defining hedonic games, then define important so-
lution concepts, and finally discuss the computational aspects
of these solution concepts.

3.1 Succinct Classes of Cardinal Hedonic Games

Let N be a set of agents. A coalition is a nonempty subset
of N. A coalition of size one is called a singleton coalition.
Denote by V; = {S C N:i € S} the set of all coalitions
agent ¢ belongs to. A coalition structure, or a partition, is
a partition 7 of IV into coalitions. For an agent ¢ € N, we
denote by 7 (%) the coalition ¢ belongs to in 7.

A hedonic game is a pair (N, ), where 2= (7Z;);en iS @
preference profile specifying the preferences of each agent %
as a complete and transitive preference order =; over N;. In
hedonic games, agents are only concerned with the members
of their own coalition which is also reflected in their prefer-
ence order. Therefore, we can naturally define an associated
preference order over partitions by 7w =, 7’ if and only if
7(i) 7zZ; 7' (i). For coalitions S, S" € N;, we say that agent ¢
weakly prefers S over S"if S —; S’. Moreover, we say that
i prefers S over S” if S =; S’. We use the same terminology
for preferences over partitions.

In this paper, we assume agents rank coalitions (and by
extension, partitions) by underlying utility functions v =
(u;: Ni = R);en. These induce a hedonic game (N, )
where, for every agent 7 € N and two coalitions S, S’ € N,
we define S 7Z; S’ if and only if u;(S) > u;(S’). Hence,
i prefers S over S’ if and only if u;(S) > u;(S’). We say
that u;(.S) is ¢’s utility for coalition S and extend this to util-
ities for partitions by setting w;(w) = wu;(m(i)). A hedonic
game together with its utility-based representation is called a
cardinal hedonic game and is specified by the pair (N, u).

Hedonic games as introduced so far need every agent to
specify a preference order or cardinal values for an exponen-
tially large set of coalitions. By contrast, we focus on suc-
cinctly representable sub-classes of cardinal hedonic games,
where the utilities are induced by the aggregation of val-
ues that each agent assigns to other members of her coali-
tion. These games are specified by a pair (N, v), where
v = (v;: N — R);en is a vector of valuation functions.
The quantity v;(j) denotes the value agent ¢ assigns to agent

VA

Following Bogomolnaia and Jackson [2002], an additively
separable hedonic game (ASHG) given by the pair (N, v) is
the cardinal hedonic game (N, u) where

u;i(S) = Z v;(j)-
JjeS\{i}

Hence, the utility u;(S) of agent ¢ for coalition S € N is
defined as the sum of the values agent ¢ assigns to the other
members of her coalition.

Following Aziz et al. [2019], a fractional hedonic game
(FHG) given by the pair (NN, v) is the cardinal hedonic game

(N, u) where

Zjes\{i} vi(4)
|1

Hence, the utility u;(S) of agent ¢ for coalition S € N is
defined as the sum of the values agent ¢ assigns to the other
members of her coalition divided by the coalition size. This
quantity can be interpreted as the average value that ¢ assigns
to the members of her coalition if we include a value of O for
herself.

3.2 Popular Partitions

We now move towards defining popularity, our main solution
concept, for a given hedonic game (N, ). Let w and 7’ be
two partitions of N. We denote the set of agents who prefer
mover ' by N(m, '), i.e., N(m,n') ={i € N: 7w =; «'}.
For any subset of agents M C N, we define the popularity
margin on M with respect to the ordered pair (7, 7') to be
dp (') = |N(m,«') N M| — |N(7',7m) N M|. Note that
in this definition, agents who are indifferent between the two
partitions do not contribute to any of the two terms. When
M is a singleton containing a single agent a, we use the
abbreviated notation ¢, (7, 7’) = ¢yqy(m, 7). The defini-
tion of popularity margins is useful as sometimes it is con-
venient to consider restricted subsets of agents separately.
Further, considering the entire set of agents, we define the
popularity margin of the ordered pair (7, 7') as ¢(m,7') =
¢n (m, 7). Note that the popularity margin is antisymmetric,
ie., ¢(m, ') = —¢(n', 7). We say that 7 is more popular
than 7’ if ¢(w, ') > 0. Moreover, 7 is called popular if
there exists no partition 7’ that is more popular than , i.e.,
for any partition 7’ it holds that ¢(, ') > 0.

Another useful concept in the context of popularity is
Pareto optimality. We say that 7’ is a Pareto improvement
from 7 if all agents weakly prefer 7’ over m, and at least one
agent strictly prefers 7’ over 7. If there exists no Pareto im-
provement from 7, we say 7 is Pareto-optimal. Clearly, pop-
ular partitions are Pareto-optimal. Indeed, every Pareto im-
provement is a more popular partition. By contrast, Pareto-
optimal partitions need not be popular. In addition, a useful
observation is that it suffices to restrict attention to Pareto-
optimal partitions when considering popularity [Brandt and
Bullinger, 2022].

Proposition 1 (Brandt and Bullinger [2022], Proposition 4).
A partition 7 is popular if and only if for all Pareto-optimal
partitions ' it holds that ¢(w,7') > 0.

As a consequence, whenever we postulate a more popular
partition than a given partition, we may assume without loss
of generality that this partition is Pareto-optimal.

3.3 Complexity Theory

We assume familiarity of the reader with basic notions of
complexity theory such as polynomial-time reductions or the
classes P (deterministic polynomial time) and NP (nondeter-
ministic polynomial time). Here, we focus on the complex-
ity class X% in the second level of the polynomial hierarchy,
which captures the problems considered in this paper. We re-
fer to the textbooks by Papadimitriou [1994] and Arora and
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Barak [2009] for an introduction to complexity and a deeper
coverage of 38,

The class 34 contains all problems () for which there ex-
ists a polynomial-time Turing machine M and a polynomial
q such that = is a Yes-instance of () if and only if there ex-
ists ay € {0,1}9U%D) such that for all z € {0,1}9(=D it
holds that M (x,y,z) = TRUE. Informally speaking, this
captures problems in which the solutions y of an instance
x are challenged by any possible adversary z. The class is
thus described by the concatenation of an existential and a
universal quantifier. It therefore contains NP, which is de-
fined by just an existential quantifier (because we can ignore
the universal quantifier), and coNP, which is defined by just
a universal quantifier (because we can ignore the existential
quantifier). As with other complexity classes, a problem () is
said to be X5-hard if for every problem in 35, there exists a
polynomial-time reduction from this problem to ). A prob-
lem is said to be X5-complete if it is ¥5-hard and contained
in X5.

Ag a first example, we define the problem 2-QUANTIFIED
3-DNF-SAT, which is a canonical SAT problem for 5. It is
the source problem of our reductions in Theorems 1 and 2.

2-QUANTIFIED 3-DNF-SAT

Input: Two sets X = {z1,...,2,} and Y =
{y1,...,yn} of Boolean variables and a Boolean for-
mula ¢(X, Y) over YUY in disjunctive normal form,
where each of the conjunctive clauses consists of ex-
actly three distinct literals.

Question: Does there exist a truth assignment 7y to
Z1,...,Ty, such that for all truth assignments 7y, to
Y1, .-, Yn it holds that ¢ (7x, 7y) = TRUE?

J

2-QUANTIFIED 3-DNE-SAT is exactly in the spirit of %5.
Yes-instances are described by the existence of a certificate
(the truth assignment to 1, ..., Z,) such that the output of
the formula is TRUE regardless of the truth assignment to
Y1, ...,Yn- Even more, 2-QUANTIFIED 3-DNF-SAT was
shown to be Z5-complete by Stockmeyer [1977].

As a second example, we argue that ASHG-EXISTS-
POPULAR and FHG-EXISTS-POPULAR are contained in X3,
as remarked by Brandt and Bullinger [2022]: One can con-
sider a polynomial-time Turing machine with three inputs that
are a hedonic game (say, an ASHG or FHG) and two parti-
tions 7 and 7’ and it outputs TRUE if and only if ¢(7, 7") > 0
in the given hedonic game. This Turing machine attests mem-
bership in ¥4 of the existence problem of popularity. In our
proofs, we will therefore only consider hardness.

4 Popularity in ASHGs

In this section, we discuss the proof of Theorem 1. We
start by describing our reduction from 2-QUANTIFIED 3-
DNF-SAT. Then, in the subsequent two sections, we give
an overview of the proof that satisfiability of the source in-
stance implies the existence of a popular partition and vice
versa. We focus on the key arguments and an illustration
while the detailed proof is available in the full version of our
paper [Bullinger and Gilboa, 2024].

\ ) , V4
1 2
1 2
b ~wb,
Figure 2: A No-instance of ASHG-EXISTS-POPULAR. Omitted
edges imply value —oo.

4.1 Setup of the Reduction

We now describe the construction of the reduction. First,
we introduce the following No-instance of ASHG-EXISTS-
POPULAR, on which the reduction relies; it resembles the
No-instance described by ? [?]JExample 4]ABS11c. Suppose
we have five agents, consisting of three fop agents ¢, to, and
t3, and two bottom agents b and by. Foreach i € {1,2,3}, ¢;
assigns value 1 to b; and value 2 to b. Moreover, by assigns
value 1 to each top agent and by assigns value 2 to each top
agent. All other values are set to —oo (representing some suf-
ficiently large negative value, e.g., —7 suffices here) between
the agents. This instance is depicted in Figure 2.

One may verify that there exists no popular partition in
this instance: It is easy to see that it is more popular
to dissolve any coalition of size at least three into single-
tons. Hence, the interesting case is a partition of the type
{{t1,b1}, {t2,b2},{ts}}, which, however, is less popular
than {{t, b2}, {t3, b1}, {t2}}.

In our reduction, we construct a game which has a similar
structure to this No-instance (with some additional agents).
However, each top agent ¢; is replaced by a set of multiple
agents who, intuitively, together function in a similar way as
the single agent ¢;. Hence, familiarity with the above No-
instance is helpful to understand the reduction as well: when a
satisfying assignment to the 2-QUANTIFIED 3-DNF-SAT in-
stance does not exist, the reduced game simulates a behaviour
similar to that of this No-instance.

We proceed by describing our reduction. Suppose that we
are given an arbitrary instance (X, ), %) of 2-QUANTIFIED
3-DNF-SAT. Denote by C the set of clauses in ¢ and let m =
|C|; without loss of generality, we may assume that m > 2.
We construct the following ASHG consisting of 12n+4m+1
agents, depicted in Figure 3.

* For every variable x € X

— We create two X -agents a,, and a—,, where the for-
mer represents the variable and the latter its nega-
tion. We will use o to denote any literal over
X, meaning a, can correspond to a variable or
its negation; accordingly, a—, will simply corre-
spond to the negated literal, e.g., if « = —z, then
- = az. If a, and a_, originate in the same
variable, they are called complementary agents.

— We create a corresponding X;-agent and a corre-
sponding X ;-agent, denoted x; and xy, respec-
tively. The subscripts of these agents indicate
“true” and ‘“false” and these agents are used to
deduct the satisfying truth assignments from pop-
ular partitions (and vice versa).
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Figure 3: The reduction for the proof of Theorem 1. Omitted edges
imply value —oco. When two values v1 /v2 appear, vy refers to cor-
responding agents, and vz to noncorresponding. Left-side agents are
marked in blue. b; and b> are single agents, while the rest represent
sets of agents.

* For every variable y € :

— We create two Y'-agents a, and a-,,, where the for-
mer represents the variable and the latter its nega-
tion. We will use 3 to denote any literal over ),
meaning ag can correspond to a variable or its
negation; a-g will refer to the agent correspond-
ing to the negated literal. If ag and a— g originate in
the same variable, they are called complementary
agents.

— We create a Y’-agent a; corresponding to a,, and a
Y’'- -agent a’,, corresponding to a—,, (we emphasize
that, in contrast to the X -agents, which have cor-
responding agents as a pair, a, and a-, each have
separate Y’'-agents).

* For every clause ¢ € C, we create a C-agent a.. For a
literal « over X (or 8 over ))) occurring in ¢, we refer
to the X-agent a,, (or Y-agent ag) as corresponding to
clause c.

» We create m — 1 agents, called C’-agents.

* We create 2n 4+ m agents, called 7 agents and another
2n + m agents, called 75 agents.

e We create a single agent denoted b1, and a single agent
denoted bs.

For each agent type, the set of all agents from that type is
denoted by the name of the type (e.g., 77 is the set of all 77 -
agents). We use the terms real agents to refer to the X-, Y-,
and C-agents, and structure agents to refer to all other agents.
In addition, we speak of left-side agents to refer to by, by, and
the 77- and T-agents, and right-side agents to refer to the
other agents (this terminology is based on the visualization in
Figure 3). We denote by L and R the sets of all left-side and
right-side agents, respectively.

We refer to Figure 3 for an overview of the valuation func-
tions and to the full version of our paper for a detailed de-
scription. Valuations missing from the figure (as well as some
of the depicted ones) correspond to a large negative constant

which we indicate by a value of —oo. For the reduction to
work, one can, for instance, set oo = 6(12n + 4m + 1). This
completes the description of the reduction.

When the input 2-QUANTIFIED 3-DNF-SAT instance is a
No-instance, the reduced ASHG mimics the No-instance in
Figure 2, where b; and b, are still single agents, but ¢; and o
are replaced by the sets 7 and 75, and the real agents corre-
spond to the agent ¢3. The real agents also encode the source
instance of 2-QUANTIFIED 3-DNF-SAT, as they are repre-
sentatives of the literals and clauses. The right-side struc-
ture agents provide options for “good” coalitions for the real
agents.

In essence, a popular partition can only exist if all right-
side agents are in good coalition which will allow for a par-
tition corresponding to the partition {{¢1, b1 }, {t2, b2}, {t3}}
to be popular. The good coalitions for the real agents are:

* coalitions of the type {as,z:} and {a—g,x¢} or
{a-~y,x} and {a,, z s} for the X -agents,

* coalitions {ag, aj;} for the Y-agents, and
* coalition C' U C"’ for the C-agents.

The crucial part is to determine the exact coalitions of the
X-agents. Whether we form {a,,z:} or {a—,x:} corre-
sponds to a truth assignment to the X variables.

To prove Theorem 1, we will show that the logical formula
is satisfiable if and only if there exists a popular partition in
the constructed ASHG. If we have a truth assignment, we can
define a partition as described above and prove that it is pop-
ular. Conversely, a popular partition has to be a structure sim-
ilar to the partition described above and we can use it to ex-
tract a truth assignment. The two directions of the proof will
be sketched in Sections 4.2 and 4.3.

4.2 Satisfiability Implies Popular Partition

Throughout this section, we assume that (X, ), ) is a Yes-
instance of 2-QUANTIFIED 3-DNF-SAT. Hence, there is
a truth assignment 7y to the variables in X such that for
all truth assignments 7y to the variables in ) it holds that
¥ (Tx,Ty) = TRUE. Consider the following partition of the
agents, denoted by 7*.

e For each x € X, if x is assigned TRUE by 7y then
{{az, 2}, {a-z, z¢}} C 7%, and if x is assigned FALSE
by 7 then {{a—z,2¢}, {az,x¢}} C 7"

» Each Y-agent ag forms a coalition with her correspond-
ing Y'-agent aj;.

* The coalition C'U C" is formed.
* Coalitions 77 U {b1} and T» U {by} are formed.

Our goal is to show that 7* is a popular partition. We formally
prove this statement in the full version of our paper. Here, we
focus on outlining key steps. Assume towards contradiction
that there exists a partition 7 that is more popular than 7*.
We wish to use 7 to extract a truth assignment 7'5, to the vari-
ables in ) such that ¢(7x, 7)) = FALSE. For this, we will
determine various structural insights about the partition 7 and
finally use the coalition (b1 ) to find both the assignment 73,
as well as a proof that it can be used to evaluate v as false.
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For determining the structure of 7, it is good to first con-
sider the popularity margin for certain groups of agents. By
using that 7* is a very good partition for the Y”-, X -, X;-,
and C’-agents, we obtain the following facts

* Foreach ag € Y, it holds that ¢{aﬂ7a2}}(ﬁ*, m) > 0.

* Foreach z € X, it holds that (4, a_, 22,3 (7", ™) >
0.

o If for every a. € C we have that ¢,_(7,7*) > 0, then
dcuc (m*,m) = —1. Otherwise, pcuc (7%, 7) > 0.

Together, the worst-case popularity margin of the right-side
agents is thus ¢pp(7*,m) > —1.

As a next step, we consider coalitions of left-side agents
and show that

1. Agents in 77 and 75 cannot be in the same coalition.
2. The coalition of b; contains a right-side agent.
3. The coalition of b, does not contain a right-side agent.

Item 1 holds because these agents only gain positive value
from b; and by, whereas valuations between agents in 7}
and T, are —oo. This insight can then be leveraged to show
that at least one agent of {b1, b2} has to contain a right-side
agent. Otherwise, it is easy to deduce that the left-side agents
have a popularity margin of ¢, (7*, 7) > 0, and furthermore
no C-agent can gain positive utility in 7, and therefore also
or(m*,m) > 0. Together, these two facts imply that 7 was
not more popular. Items 2 and 3 follow with little effort from
this conclusion.

We can now show that ¢, yr,ugp,3 (7", ) > 0. Together
with our other insights about the popularity margins, 7 can
only be more popular than 7* if ¢, (7*, 7) < 0.

Next, it is easy to see that each agent in 7 or 75 that forms
a coalition with a right-side agent would have to be in the
coalition with b;. However, by carefully analyzing 7 (b;), it
can then be shown that it cannot contain agents in 7% and 75.

To summarize our knowledge about left-side agents, we
know that b; forms a coalition with right-side agents only,
whereas all other left-side agents form coalitions with other
left-side agents.

The next step is to analyze the exact coalition of b; in 7. It
can be shown that 7(by) can only contain real agents (recall
that ¢, (7*,7) < 0) and that it has to contain exactly n X-
agents corresponding to the agents forming coalitions with
the X;-agents in 7*, all C-agents, and either ag or a-g for
every ) variable.

We can now extract a truth assignment Tﬁ, to Y from the
Y'-agents contained in 7(b;). The only way that 7 is more
popular than 7* is when all C'-agents prefer 7 over 7* which,
due to the valuations by the C-agents of the agents corre-
sponding to their respective literals, can only happen if 7y
and 73, evaluate every clause to FALSE. This implies that
Y(7x, 7)) = FALSE, a contradiction. We thus conclude this
part of the proof.

4.3 Popular Partition Implies Satisfiability

Throughout this section, we assume that there is a popu-
lar partition 7* in the reduced ASHG. We will prove that

this implies that the source instance is a Yes-instance to 2-
QUANTIFIED 3-DNF-SAT. The detailed proof of this state-
ment can be found in the full version of our paper. In this
section, we give an overview of the proof.

Our main goal is to show that 7* has a structure similar
to that of the popular partition defined in Section 4.2 (up to
symmetries), which will enable us to extract a satisfying truth
assignment to the variables in X’ by looking at the coalitions
of the X;-agents.

As a first step, we show that left-side and right-side agents
cannot form a joint coalition. Suppose a coalition S € 7*
contains both a left-side and a right-side agent. The only
agents who may have a nonnegative utility in such a coali-
tion are by, by, and real agents, and thus .S must contain some
combination of agents by and by. If both b; and bs are in S,
then the partition obtained from 7* by extracting b; and bo
from S, and forming the coalitions {b;} U T} and {b2} U T5,
can be shown to be more popular. So, only one of b; and
by may reside in S. Denote b; € S, and b; ¢ S, where
i,7 € {1,2}. Hence, it is easy to see that we must have either
7*(b;) = {b;} UTy or 7*(b;) = {b;} U T5. Without loss of
generality, assume 7*(b;) = {b;} U T1. Now, intuitively, we
can think of T3, T5, and S\ {b;} as the agents t1, t2, and t3
from the No-instance discussed in Section 4.1, respectively.
A deviation analogous to that discussed in the context of this
No-instance shows that this partition is not popular.

Having established that the left and right side are separated,
the only possibility for 7* to be popular is if agents form
coalitions with their corresponding agents, who give them
positive utility. Specifically, the following must hold.

1. For the left side, we have that {b; } UT} € 7* and {b3 } U
T, € w, or {bg} UTy € 7" and {bl} UTy €.

2. We have that C U C" € 7*.
3. Foreachag € Y, we have that {ag, aj} € 7"

4. For each z € X, we have that {a,,z;} € 7* and
{a-g, x5} €, 0r {0z, 2} € 7" and {a—y, x4} € 7*.

This allows us to define the following truth assignment
Tx to the X variables. For each x € X, x is assigned
TRUE if and only if 7*(a;) = {az,z:} (by Item 4, this is
a valid assignment). We claim that 7y is a satisfying assign-
ment to the 2-QUANTIFIED 3-DNF-SAT instance, i.e., that
¥(Tx,7y) = TRUE for all truth assignments 7y to the )
variables.

Assume otherwise, namely that there exists a truth assign-
ment 73, to the ) variables such that ¢)(7x,73,) = FALSE.
We will now find a partition that is more popular than 7*.
Recalling Item 1, let us assume without loss of generality that
{{b1} UTy, {ba} UT} C w*. Consider the partition 7 ob-
tained from 7* as follows.

* Extract all a, € X such that {a,,z:} € 7*, for some
xy € Xy, all ag € Y such that the literal represented by
ap is assigned TRUE by 73,, and all C-agents and agent
b1. With them, form a new coalition S.

* Extract by from her coalition, and set 7(by) = {b2} UT}.

Note that the new coalition S consists of 2n + m + 1 agents.
Moreover, by definition of Ty, if Ty assigns TRUE to z, then
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Figure 4: The reduction for the proof of Theorem 2. Each node
refers to a certain agent type, i.e., to the respective set of agents.
Edges indicate valuations between all agents in the respective sets.
When two values v1 /v2 appear, v1 refers to corresponding agents,
and vz to noncorresponding ones. Omitted edges imply value 0.

S contains a,, and if T assigns FALSE to z, then S contains
a-5. Inaddition, fory € Y, S contains a, if Tﬁ, assigns TRUE
to y and S contains a-,, if Tﬁ; assigns FALSE to y.

We compute the popularity margin between 7 and 7*. Let
c € C. Since ¥(7x, 7)) = FALSE, we have that c has at most
two literals in .S assigned TRUE by 7y and Tﬁ;. Hence, since
the X - and Y'-agents in S correspond to the literals assigned
TRUE by 7y and Tﬁ;, there are at most two X- or Y-agents
in S to whom a, assigns value —2 (to the other X- or Y-
agents she assigns 0). Therefore, all C-agents prefer 7 over
7*. Thus, it is simple to check that ¢r(7*, 7) = —1 (which
stems from the fact that |C'| — |C| = —1). Furthermore,
we have ¢, (7*, m) = 0 (T1-agents prefer 7, T»-agents pre-
fer 7*, and b; and b, are indifferent between the partitions).
Altogether, we conclude that ¢(7*,7) = —1, in contradic-
tion to 7* being a popular partition. Hence, (X,),v) is a
Yes-instance of 2-QUANTIFIED 3-DNF-SAT.

5 Popularity in Nonnegative FHGs

In this section, we discuss the reduction of Theorem 2. Due
to space constraints, we only describe the proof using the il-
lustration of Figure 4. The detailed proof is available in the
full version of our paper [Bullinger and Gilboa, 2024].

The reduction for ASHGs in Theorem 1 used one blown-
up No-instance, where the whole combinatorics of the source
problem had replaced the role of a single agent. For FHGs,
the combinatorics of the source instance is still encoded simi-
larly. Literals are still represented by X- and Y'-agents and
once again, they have good options to form coalitions to-
gether with their corresponding structure agents by form-
ing coalitions {ay,x:} and {a—,,xf, 2} or {a-z, 2} and
{az,zf, 2} for the X-agents, and coalitions {ag, aj,aj}
for the Y-agents. As in the proof for ASHGs, the coalitions
of the X;-agents in popular partitions correspond to satisfy-
ing truth assignments for the variables in A’

Howeyver, the combinatorics of the source instance is not
embedded in a single No-instance, but multiple No-instances
are used as gadgets. The gadgets are FHGs induced by a

star graph, which are known to not admit popular partitions
[Brandt and Bullinger, 2022] (see the left part of Figure 4).

This implies that popular partitions have to contain coali-
tions of some agent in the gadgets with another agent outside
the gadgets. We have one star gadget for every clause and the
only agent that is linked to the gadget by a positive valuation
is its corresponding clause agent. We will see that the only
possibility to achieve popularity is to use this single connec-
tion by forming coalitions of the type {a., £S}.

To prove Theorem 2, we will show that the logical formula
is satisfiable if and only if there exists a popular partition in
the constructed FHG. Every truth assignment lets us define a
popular partition along these ideas, while we can show that
every popular partition has such a structure and lets us extract
a truth assignment.

6 Conclusion

We considered the complexity of deciding whether popular
partitions exist in typical classes of hedonic games. By show-
ing that this problem is X5 -complete, we pinpoint its precise
complexity for ASHGs and FHGs with nonnegative valuation
functions. Hence, allowing coalitions of size at least three can
raise the complexity of popularity from completeness for the
first to the second level of the polynomial hierarchy.

Our work is an important step in understanding popular-
ity in coalition formation. However, there are still various
dimensions along which a deeper understanding would be
welcome. Firstly, our methods might aid in resolving the
exact complexity of popularity in other classes of coalition
formation games for which popularity was considered be-
fore [Kerkmann et al., 2020; Kerkmann and Rothe, 2020;
Brandt and Bullinger, 2022; Cseh and Peters, 2022]. Sec-
ondly, it would be interesting to consider popularity in other
classes of hedonic games, such as modified fractional hedonic
games [Olsen, 2012] and anonymous hedonic games [Bogo-
molnaia and Jackson, 2002].

Finally, popularity has the closely related concepts of
strong popularity, where a partition has to strictly win the
vote in a pairwise comparison against every other par-
tition, and mixed popularity, which considers probability
distributions of partitions that are popular in expectation.
In the domain of matching, strong popularity and mixed
popularity were first considered by Girdenfors [1975] and
Kavitha et al. [2011], respectively, and studied by Brandt
and Bullinger [2022] in ASHGs and FHGs. In these classes,
Brandt and Bullinger [2022] show that deciding whether a
strongly popular partition exists is coNP-hard? while comput-
ing a mixed popular partition is NP-hard. The exact complex-
ity of both problems remains open. Notably, 35 seems not
to be the right complexity class for these problems because
mixed popular partitions always exist and strongly popular
partitions are unique whenever they exist. Resolving their
complexity could lead to an intriguing complexity picture of
concepts of popularity in hedonic games.

3This aligns with known complexity results for strong popular-
ity in other classes of coalition formation games [Kerkmann et al.,
2020; Kerkmann and Rothe, 2020].



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

Martin Bullinger was supported by the AI Programme of The
Alan Turing Institute. Matan Gilboa was supported by an
Oxford-Reuben Foundation Graduate Scholarship. We would
like to thank Edith Elkind for many fruitful discussions.

References

[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak.
Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

[Aziz and Savani, 2016] Haris Aziz and Rahul Savani. He-
donic games. In Felix Brandt, Vincent Conitzer, Ulle En-
driss, J. Lang, and Ariel D. Procaccia, editors, Handbook
of Computational Social Choice, chapter 15. Cambridge
University Press, 2016.

[Aziz er al., 2013] Haris Aziz, Felix Brandt, and Hans Georg
Seedig. Computing desirable partitions in additively sepa-
rable hedonic games. Artificial Intelligence, 195:316-334,
2013.

[Aziz et al., 2019] Haris Aziz, Florian Brandl, Felix Brandt,
Paul Harrenstein, Martin Olsen, and Dominik Peters. Frac-
tional hedonic games. ACM Transactions on Economics
and Computation, 7(2):1-29, 2019.

[Banerjee ef al., 2001] Suryapratim Banerjee, Hideo Kon-
ishi, and Tayfun Sénmez. Core in a simple coalition for-
mation game. Social Choice and Welfare, 18:135-153,
2001.

[Bir6 et al., 2010] Péter Bir6, Robert W. Irving, and David F.
Manlove. Popular matchings in the marriage and room-
mates problems. In Proceedings of the 7th Italian Con-
ference on Algorithms and Complexity (CIAC), pages 97—
108, 2010.

[Bogomolnaia and Jackson, 2002] Anna Bogomolnaia and
Matthew O. Jackson. The stability of hedonic coalition
structures. Games and Economic Behavior, 38(2):201—
230, 2002.

[Brandl ef al., 2015] Florian Brandl, Felix Brandt, and Mar-
tin Strobel. Fractional hedonic games: Individual and
group stability. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), pages 1219-1227, 2015.

[Brandt and Bullinger, 2022] Felix Brandt and Martin
Bullinger. Finding and recognizing popular coalition

structures. Journal of Artificial Intelligence Research,
74:569-626, 2022.

[Brandt et al., 2023] Felix Brandt, Martin Bullinger, and
Anaélle Wilczynski. Reaching individually stable coali-
tion structures. ACM Transactions on Economics and
Computation, 11(1-2):4:1-65, 2023.

[Brandt et al., 2024] Felix Brandt, Martin Bullinger, and Leo
Tappe. Stability based on single-agent deviations in ad-
ditively separable hedonic games. Artificial Intelligence,
334, 2024.

[Bullinger and Gilboa, 2024] Martin Bullinger and Matan
Gilboa. Settling the complexity of popularity in additively
separable and fractional hedonic games. Technical report,
https://arxiv.org/abs/2411.05713, 2024.

[Bullinger and Kraiczy, 2024] Martin Bullinger and Sonja
Kraiczy. Stability in random hedonic games. In Proceed-
ings of the 25th ACM Conference on Economics and Com-
putation (ACM-EC), 2024.

[Bullinger et al., 2024] Martin Bullinger, Edith Elkind, and
Jorg Rothe. Cooperative game theory. In Jorg Rothe,
editor, Economics and Computation: An Introduction to
Algorithmic Game Theory, Computational Social Choice,
and Fair Division, chapter 3, pages 139-229. Springer,
2024.

[Cechldrov4 and Romero-Medina, 2001] Katarina ~ Cech-
larova and Antonio Romero-Medina. Stability in coalition

formation games. International Journal of Game Theory,
29:487-494, 2001.

[Cohen-Addad et al., 2022] Vincent Cohen-Addad, Silvio
Lattanzi, Andreas Maggiori, and Nikos Parotsidis. On-
line and consistent correlation clustering. In Proceedings

of the 39th International Conference on Machine Learning
(ICML), pages 4157-4179, 2022.

[Condorcet, 1785] Marquis de Condorcet. Essai sur
I’application de ’analyse a la probabilité des décisions
rendues a la pluralité des voix. Imprimerie Royale, 1785.
Facsimile published in 1972 by Chelsea Publishing Com-
pany, New York.

[Cseh and Peters, 2022] Agnes Cseh and Jannik Peters.
Three-dimensional popular matching with cyclic prefer-
ences. In Proceedings of the 2 1st International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
pages 309-317, 2022.

[Dimitrov et al., 2006] Dinko Dimitrov, Peter Borm, Ruud
Hendrickx, and Shao C. Sung. Simple priorities and core
stability in hedonic games. Social Choice and Welfare,
26(2):421-433, 2006.

[Dreze and Greenberg, 1980] Jacques H. Dréze and Joseph
Greenberg. Hedonic coalitions: Optimality and stability.
Econometrica, 48(4):987-1003, 1980.

[Faenza er al., 2019] Yuri Faenza, Telikepalli Kavitha,
Vladlena Powers, and Xingyu Zhang. Popular matchings
and limits to tractability. In Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2790-2809, 2019.

[Fanelli ef al., 2021] Angelo Fanelli, Gianpiero Monaco, and
Luca Moscardelli. Relaxed core stability in fractional he-
donic games. In Proceedings of the 30th International
Joint Conference on Artificial Intelligence (IJCAI), pages
182188, 2021.

[Fioravanti et al., 2023] Simone Fioravanti, Michele Flam-
mini, Bojana Kodric, and Giovanna Varricchio. e-
fractional core stability in hedonic games. In Proceedings
of the 37th Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2023.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Gairing and Savani, 2019] Martin Gairing and Rahul Sa-
vani. Computing stable outcomes in symmetric additively

separable hedonic games. Mathematics of Operations Re-
search, 44(3):1101-1121, 2019.

[Gale and Shapley, 1962] David Gale and Lloyd S. Shapley.
College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9-15, 1962.

[Gérdenfors, 1975] Peter Girdenfors. Match making: As-
signments based on bilateral preferences. Behavioral Sci-
ence, 20(3):166-173, 1975.

[Gupta et al., 2021] Sushmita Gupta, Pranabendu Misra,
Saket Saurabh, and Meirav Zehavi. Popular matching in
roommates setting is np-hard. ACM Transactions on Com-
putation Theory, 13(2):9:1-9:20, 2021.

[Kavitha er al., 2011] Telikepalli Kavitha, J. Mestre, and
M. Nasre. Popular mixed matchings. Theoretical Com-
puter Science, 412(24):2679-2690, 2011.

[Kerkmann and Rothe, 2020] Anna M. Kerkmann and Jorg
Rothe. Altruism in coalition formation games. In Pro-
ceedings of the 29th International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 461-467, 2020.

[Kerkmann er al., 2020] Anna M. Kerkmann, Jérome Lang,
Anja Rey, Jorg Rothe, Hilmar Schadrack, and Lena
Schend. Hedonic games with ordinal preferences and
thresholds. Journal of Artificial Intelligence Research,
67:705-756, 2020.

[Newman, 2004] Mark E. J. Newman. Detecting community
structure in networks. The European Physical Journal B -
Condensed Matter and Complex Systems, 38(2):321-330,
2004.

[Olsen, 2012] Martin Olsen. On defining and computing
communities. In Proceedings of the 18th Computing:
The Australasian Theory Symposium (CATS), volume 128
of Conferences in Research and Practice in Information
Technology (CRPIT), pages 97-102, 2012.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computa-
tional Complexity. Addison-Wesley, 1994.

[Peters, 2017] Dominik Peters. Precise complexity of the
core in dichotomous and additive hedonic games. In Pro-
ceedings of the 5th International Conference on Algorith-
mic Decision Theory (ADT), pages 214-227, 2017.

[Ray, 2007] Debraj Ray. A Game-Theoretic Perspective on
Coalition Formation. Oxford University Press, 2007.

[Stockmeyer, 1977] Larry J. Stockmeyer. The polynomial-
time hierarchy. Theoretical Computer Science, 3(1):1-22,
1977.

[Sung and Dimitrov, 2010] Shao C. Sung and Dinko Dim-
itrov.  Computational complexity in additive hedonic
games.  European Journal of Operational Research,

203(3):635-6309, 2010.

[Woeginger, 2013] Gerhard J. Woeginger. A hardness result
for core stability in additive hedonic games. Mathematical
Social Sciences, 65(2):101-104, 2013.



