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Abstract
Multi-temporal Point-of-Interest (POI) relationship
inference aims to identify evolving relationships
among locations over time, providing critical in-
sights for location-based services. While exist-
ing studies have made substantial efforts to model
relationships with custom-designed graph neural
networks, they face the challenge of leveraging
POI contextual information characterized by spa-
tial dependencies and temporal dynamics, as well
as capturing the heterogeneity of multi-type rela-
tionships. To address these challenges, we pro-
pose a Triad-Enhanced Spatio-Temporal Network
(TESTN), which conceptualizes triads as interac-
tions between relationships for capturing poten-
tial interplay. Specifically, TESTN incorporates
the spatial 2-hop aggregation layer to capture ge-
ographical and semantic information beyond first-
order neighbors and the temporal context extrac-
tor to integrate relational dynamics within adjacent
time segments. Furthermore, we introduce a self-
supervised pairwise neighboring relation consis-
tency detection scheme to preserve the heterogene-
ity of multi-type relationships. Extensive experi-
ments on three real-world datasets demonstrate the
superior performance of our TESTN framework.

1 Introduction
The rapid advancement of location-based services has en-
couraged users to share their geographical locations through
check-ins at various Points of Interest (POIs). This has
resulted in the generation of large-scale geographic data,
which has significantly advanced the development of smart
city applications [Wang et al., 2024b; Rao et al., 2022;
Deng et al., 2023], enabling more intelligent services for
users, businesses, and governments. A fundamental opera-
tion to support these applications is POI relationship infer-
ence, which has gained increasing attention due to its broad
applicability in commercial management and the analysis of
urban mobility patterns [Li et al., 2020; Chen et al., 2022;
Liu et al., 2022; Li et al., 2023a].

∗Corresponding authors.

Figure 1: An illustration of multi-temporal POI relationships, where
each graph along the timeline represents the relationships among
POIs at consecutive time segments.

Existing solutions to POI relationship inference use the
graph-based model with spatial information to identify miss-
ing relationships [Li et al., 2020; Chen et al., 2022; Li et al.,
2023a]. However, most studies [Li et al., 2020; Chen et al.,
2022] focus on static relationships, overlooking temporal dy-
namics. As shown in Figure 1, the relationship between two
POI locations may evolve over time. For instance, the com-
plementary relationship between the café and the residence
vanishes, while the competitive relationship between the café
and the restaurant converts to the complementary relationship
by midday. There are very limited studies on multi-temporal
POI relationship inference for dynamic relationships. Com-
pared with conventional time-independent relationship infer-
ence problems, it has a greater practical application value due
to more fine-grained relationship mining [Li et al., 2023a].

Although existing studies have achieved some success in
the POI relationship inference, they still face challenges in
the following aspects that hinder their effectiveness.

(1) Exploiting the POI contextual information with spa-
tial dependencies and temporal dynamics. Due to data
sparsity caused by spatial proximity and temporal constraint,
where most POI relationships exist within a limited dis-
tance range and time period, the dynamic relationship graph
faces difficulties in aggregating effective contextual informa-
tion. As discussed in existing multi-temporal POI relation-
ship inference study [Li et al., 2023a], most spatio-temporal
GNNs [Jin et al., 2023] focus on modeling continuous time
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series, they are not suitable for multi-temporal POI relation-
ship inference that focuses on the evolution of dynamic POI
relationships.

(2) Effectively modeling the heterogeneity of multi-
type relationships. POI nodes can have multiple types of
relationships with other nodes. Existing methods [Chen et
al., 2022] typically adopt a two-stage aggregation strategy to
model interactions between multi-type relationships. In the
first stage, they aggregate the representations of nodes within
the same type of relationship using graph neural networks.
In the second stage, they aggregate the representations across
different relationships through summation or other functions.
However, since all adjacent nodes of the same type are
aggregated in the first stage, these methods inherently lead
to a coarse-grained interaction between different types of
relationship and thus have limited ability to model relational
heterogeneity.

In this light, we propose a Triad-Enhanced Spatio-
Temporal Network (TESTN) for multi-temporal POI
relationship inference. Intuitively, relationships are conceptu-
alized as interactions between two nodes. Extending this per-
spective, triads linked by two relationships can be viewed as
interactions between adjacent relationships. This high-level
interaction contributes to capturing the intricate interplay
between relationships that traditional methods may overlook.
To address the first challenge, we develop the Spatial 2-hop
Aggregation Layer (S2-AGG) and Temporal Context Extrac-
tor (TC-Extractor). Specifically, S2-AGG utilizes second-
order spatial neighbors to explore potential geographical and
semantic information, while TC-Extractor integrates contex-
tual information from adjacent time segments by sequentially
fusing one-hop relationships in both the temporal and spatial
dimensions. To address the second challenge, we introduce
the self-supervised Pairwise Neighboring Relation Consis-
tency Detection (PNRCD) that distinguishes relational triads
to preserve the heterogeneity of multi-type relationships.

The main contributions are summarized as follows:
• We propose a multi-temporal POI relationship inference

framework, TESTN, which enhances relationship inter-
actions with triad structure from both spatio-temporal
view and relationship consistency view.

• We leverage spatial proximity and temporal evolution
with a self-supervised pairwise neighboring relation
consistency detection task to exploit contextual in-
formation and model the heterogeneity of multi-type
relationships.

• Extensive experiments on three real-world datasets
demonstrate the substantial superiority of TESTN
in HR and MRR metrics. Further analysis reveals
that triad-enhanced S2-AGG, TC-Extractor, and
PNRCD modules play a critical role in enhancing
relationship inference. Our source code is available at
https://github.com/wanghyhy/TESTN.

2 Related Work
In this section, we review the existing literature related to our
work, including GNN-based POI relationship inference and
self-supervised learning.

2.1 GNN-based POI Relationship Inference
Unlike the conventional relationship inference task [Yang et
al., 2012; Jalili et al., 2017; Li et al., 2006], the key to
POI relationship inference is effectively modeling the var-
ious interactions within the spatial context. Many efforts
have been devoted to advancing POI relationship inference
through different approaches. With the ability to capture in-
tricate relationships and dependencies among nodes, graph
neural networks offer a significant advantage in modeling
non-Euclidean spaces [Wang et al., 2024a; Sun et al., 2022;
Xu et al., 2024]. These strengths make GNNs particularly ef-
fective in revealing hidden relationships and dynamics within
complex relationship graphs. To discover the competitive
relationship of POIs, DeepR [Li et al., 2020] constructs a
heterogeneous POI information network composed of POIs,
brands, aspects, and their relationships, and proposes a spatial
adaptive graph neural network to capture spatial distance de-
pendencies. PRIM [Chen et al., 2022] introduces a weighted
relational graph neural network and a self-attentive spatial
context extractor to tackle multi-type POI relationship infer-
ence. Considering the temporal dynamics of POI relation-
ships, SEENet [Li et al., 2023a] develops a spatially evolving
graph neural network with self-supervised global spatial in-
formation maximum and local relational evolving constraint
tasks to discover multi-temporal relationships. Despite sig-
nificant efforts in existing methods, they do not effectively
explore the spatio-temporal contextual information, which is
crucial for multi-temporal relationship inference. In this pa-
per, we introduce a triad-enhanced spatio-temporal network
that exploits spatial proximity and temporal smoothness.

2.2 Self-supervised Learning
Self-supervised learning is a technique used to develop gen-
eralizable and effective data representations, particularly suit-
able for scenarios with scarce labeled data. Regarding spatio-
temporal learning, ST-SSL [Ji et al., 2023] introduces a spa-
tial region clustering task and a time-aware contrastive task
with the traffic flow graph to preserve spatial and tempo-
ral heterogeneity. SSH-GNN [Han et al., 2022] incorpo-
rates neighbor prediction and contextual inference tasks to
reduce air quality prediction bias in unmonitored regions. Re-
gionDCL [Li et al., 2023b] employs group-level and region-
level contrastive learning to adapt to varying region parti-
tion tasks. Motivated by these works, we develop a self-
supervised pairwise neighboring relation consistency detec-
tion method to preserve the heterogeneity of multi-type rela-
tionships, which has not been well explored in existing POI
relationship inference methods.

3 Preliminaries and Definitions
This section introduces preliminaries including the dynamic
relationship graph composed of POI nodes and relational
edges, and the definition of the multi-temporal relationship
inference problem.

Definition 1 (POI Node) Each POI node vi = (lati, loni) is
associated with a geographical coordinate tuple (i.e., latitude
and longitude), which represents its geospatial position.
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S2-AGG R1-Conv TC-Extractor Prediction

Discriminator

POI Node

Relation Type

Concatenate

Consistent Relational Triads Inconsistent Relational Triads

Self-supervised PNRCD

Triad

Figure 2: The architecture of the proposed TESTN model.

Definition 2 (Relational Edge) Each edge e
(t)
i,j = (vi,r,vj ,t)

indicates that there is a relationship type r ∈ R between node
vi and node vj in time segment t.

Definition 3 (Dynamic Relationship Graph) A dynamic
relationship graph is defined as a collection of time-specific
graphs G = {G(t)|G(t) = (V,E(t)), t ∈ [1, T ]}, where
V = {v1, . . . , vN} is the set of POI nodes with the size of
|V | = N , and E = {E(1), . . . , E(T )} is the set of relation-
ships. A sequence of T time-specific graphs constitutes the
dynamic relationship graph of a full day.

Definition 4 (Triad) A triad is defined as three associated
nodes linked by two relationships. To fully capture in-
teractions between relationships, we construct triads from
both spatio-temporal view and relationship consistency view.
Given a node vi in time segment t, triads are classified into:

triad (vi)=



spatial-spatial: vi
e
(t)
i,j←→ vj

e
(t)
j,k←→ vk

temporal-spatial: vi
(t,t′)←→ vi

e
(t′)
i,j←→ vj

consistent relation: vj
e
(t)
i,j,r←→ vi

e
(t)
i,k,r←→ vk

inconsistent relation: vj
e
(t)
i,j,r←→ vi

e
(t)

i,k,r′←→ vk
(1)

where (t, t′) represents the transition from time segment t to
t′, r and r′ are two different types of relationships. From the
perspective of spatio-temporal view, triads are divided into
spatial-spatial and temporal-spatial triads according to space
and time. From the perspective of relationship consistency
view, triads are divided into consistent and inconsistent re-
lation triads according to the same or different relationship
types between adjacent nodes. The construction detail is in-
troduced in Section 4.

Definition 5 (Multi-Temporal Relationship Inference)
Given the dynamic relationship graph G with coordinate
information and relationship type, the goal of multi-temporal
relationship inference is to learn a predictive function
f(V × V | G) that estimates the possibility score for each
relationship type of candidate POI pairs.

(a) S2-AGG

(b) TC-Extractor

Figure 3: An aggregation illustration of S2-AGG and TC-Extractor.

4 Methodology
This section presents our framework TESTN. As illustrated
in Figure 2, TESTN consists of four major components: (1)
Spatial 2-hop Aggregation Layer (S2-AGG) and (2) Rela-
tional 1-hop Convolution layer (R1-Conv) model spatial and
relational correlations within the time segment, (3) Tempo-
ral Context Extractor (TC-Extractor) learns from relational
graphs of adjacent time segments to obtain rich contextual
information, (4) Self-supervised Pairwise Neighboring Rela-
tion Consistency Detection (PNRCD) identifies the consis-
tency of relationship types to model the heterogeneity.

4.1 Spatial 2-hop Aggregation Layer
Exploiting the spatial proximity of POIs can effectively en-
hance the relationship inference, as according to Tobler’s first
law of geography [Tobler, 1970], near POIs are more related
than distant POIs. To enable sparse spatial distances suitable
for model learning, we employ the spatial distance embed-
ding module [Xu et al., 2022] to transform the distances into
discrete embeddings. Specifically, the entire distance range
is divided into multiple disjoint bins (e.g., 0-1km, 1-3km, 3-
7km, etc), and the distances within the bin range are mapped
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to the same distance embedding di,j by the embedding layer.
As illustrated in Figure 3a, vk serves as the spatial 2-hop

neighbor of vi via vj . Despite the absence of a direct rela-
tionship between vk and vi, vk is spatially closer to vi than
vj , indicating that 2-hop neighbors may have greater spatial
proximity compared to 1-hop neighbors. Furthermore, con-
ventional graph neural networks with two layers are unable
to capture this correlation, as information can only propagate
along edges. Consequently, the learned distances di,j and
dj,k do not have an explicit connection to di,k (unless vj is
on the straight path between vi and vk). The neighborhood of
S2-AGG is formally defined as:

N (t)
s (vi)=

{
(vj ,vk) |(vi, r1, vj , t)∈E(t),(vj , r2, vk, t)∈E(t)

}
,

(2)
where r1 and r2 are the relationship type of the spatial 1-
hop and 2-hop. Therefore, vi, vj , and vk together form a
spatial-spatial triad. Different from the SEENet [Li et al.,
2023a], which divides and processes second-order neighbors
according to first-order and second-order relationship types,
our method avoids the problem that the module size grows
quadratically with the number of relationship types.

Considering the propagation between nodes from geo-
graphical and semantic views, we enhance the Graph Atten-
tion layer (GAT) [Veličković et al., 2017] by incorporating
the direct distance embedding di,k of 2-hop neighbor vk as
the spatial feature and spatial 1-hop neighbor vj as the seman-
tic feature. A pairwise attention score α(t)

i,k for 2-hop neighbor
vk is calculated as:

h
(t)
spa,i,k=W(t)

spa [hk ∥di,k] ,h
(t)
sem,i,k=W(t)

sem [hi ∥hj ] , (3)

α
(t)
i,k=

exp
(
σ
(
W

(t)
e

[
h
(t)
spa,i,k ∥h

(t)
sem,i,k

]))
∑

c∈N (t)
s (vi)

exp
(
σ
(
W

(t)
e

[
h
(t)
spa,i,c ∥h

(t)
sem,i,c

])) ,
(4)

where W
(t)
spa, W

(t)
sem, and W

(t)
e are learnable parameters,

h
(t)
spa,i,k and h

(t)
sem,i,k are spatial and semantic representations.

∥ refers to the concatenation operation. hi, hj , and hk are
the input location embeddings, σ is the LeakyReLU function
with negative slope of 0.2.

Based on the attention score, we obtain the representations
that aggregate spatial context as follows:

h
(t)
s,i =

∑
k∈N (t)

s (vi)

α
(t)
i,k hk . (5)

4.2 Relational 1-hop Convolution Layer
Relational 1-hop Convolution layer (R1-Conv) is designed
for capturing the direct relationship, with the neighborhood of
node vi defined as N (t)

r (vi) =
{
vj | (vi, r1, vj , t) ∈ E(t)

}
,

where r1 refers to the relationship type of 1-hop.
Specifically, the feature aggregated from the 1-hop neigh-

bor vj is integrated with the distance embedding di,j , which
is represented as:

h
(t)
a,i,j = W(t)

a

[
h
(t)
s,j ∥ di,j

]
, (6)

where W(t)
a is the learnable parameters. Then the graph con-

volution operation can be formulated as follows:

h
(t)
c,i =

∑
vj∈N (t)

r (vi)

(deg (vi) deg (vj))
− 1

2 h
(t)
a,i,j , (7)

where deg (vi) is the degree of node vi in relationship graph.
Then we employ a residual connection in order to preserve

the spatial information and mitigate the vanishing gradient
problem [He et al., 2016], which is represented as:

h
(t)
u,i = h

(t)
c,i + h

(t)
s,i. (8)

4.3 Temporal Context Extractor
Given that human daily schedules typically follow fixed rou-
tines with limited movement range in the short term and hu-
man behavior relationships show regular and gradual changes
in adjacent time segments, Temporal Context Extractor (TC-
Extractor) is proposed to supplement contextual information
in evolving relational patterns.

To this end, we take the representations of the same node at
adjacent time segment into account to model the similarities
and differences over time. As illustrated in Figure 3b, for the
POI node vi in time segment t, TC-extractor takes vi with the
same geographical location in the adjacent time segment t′ as
temporal 1-hop, and further take vj which is the neighbors of
vi in the time segment t′ as the spatial 2-hop. Therefore, the
neighborhood of TC-Extractor is formally defined as:

N (t)
c (vi)=

{
vj|∃ t′∈ [t−ϵ, t+ϵ]\{t}, (vi, r2, vj , t′)∈E(t′)

}
,

(9)
where ϵ is the adjacent segment extraction size and r2 is the
relationship type of the spatial 2-hop. Therefore, vi in time
segment t and t′ and vj in time segment t′ together form a
temporal-spatial triad.

Through TC-extractor, node embedding aggregates the
neighborhood within the adjacent interval [t− ϵ, t+ ϵ], which
can provide additional context for time segment t. Specifi-
cally, similar to S2-AGG, TC-Extractor enhances the atten-
tion weight computation in GAT by incorporating the dis-
tance embedding di,j as the spatial feature and the represen-
tation of the same node vi in adjacent time segment t′ as the
semantic feature, which is represented as:

h
(t,t′)
spa,i,j=W

(t)
spa′

[
h
(t′)
u,j ∥di,j

]
,h

(t,t′)
sem,i,j=W

(t)
sem′

[
h
(t)
u,i ∥h

(t′)
u,i

]
,

(10)

α
(t,t′)
i,j =

exp
(
σ
(
W

(t)
e′

[
h
(t,t′)
spa,i,j ∥ h

(t,t′)
sem,i,j

]))
∑

c∈N (t)
c (vi)

exp
(
σ
(
W

(t)
e′

[
h
(t,t′)
spa,i,c ∥ h

(t,t′)
sem,i,c

])) ,
(11)

where W
(t)
spa′ , W

(t)
sem′ , and W

(t)
e′ are learnable parameters.

We employ a multi-head attention mechanism to obtain stable
contextual representations of adjacent time segments:

h
(t)
o,i = ∥

K
k=1

( ∑
j∈N (t)

c (vi)

α
(t,t′)
i,j h

(t′)
u,j

)
, (12)

where K is the number of attention heads.
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Finally, we utilize time-specific Multi-Layer Perceptron
(MLP) to transform the contextual information from multiple
adjacent time segments and merge it with the representation
of the current time segment, which is represented as follows:

z
(t)
i =

1

2ϵ

ϵ∑
c=1

W(t)
o (h

(t,t−c)
o,i +h

(t,t+c)
o,i )+h

(t)
u,i , (13)

where W(t)
o is learnable parameters of MLP and z

(t)
i denotes

the time-specific embeddings of the model output.

4.4 Pairwise Neighboring Relation Consistency
Detection

To acquire the generalized representation, we devise Pairwise
Neighboring Relation Consistency Detection (PNRCD)
to preserve relational heterogeneity by reinforcing the
divergence among multiple relational neighborhoods.

Specifically, we first define the relational neighbors based
on the relationship type. The relational neighborhood of type
rk is denoted as N (t)

r (vi, rk) =
{
vj | (vi, rk, vj , t) ∈ E(t)

}
.

Then we sample the node from the different relational
neighborhoods to construct inconsistent relational triads
(vp, vi, vp+), labeled as positive set Dp. In contrast, we
sample the node from the same relational neighborhood to
construct consistent relational triads (vn, vi, vn−), labeled
as negative set Dn. The representation of relational edge
between vi and vj is calculated as:

z
(t)
i,j = z

(t)
i · z

(t)
j (14)

Unlike relationship inference focusing on pairs of nodes,
the PNRCD task is targeted at pairs of adjacent edges (i.e.,
triads). By distinguishing the consistency of relational triads,
the PNRCD task is optimized with cross-entropy loss, which
is defined as follows:

Lssl = −
T∑

t=1

( ∑
(vp,vi,vp+ )∈Dp

log g
(
z
(t)
i,p, z

(t)
i,p+

)
+

∑
(vn,vi,vn− )∈Dn

log
(
1− g

(
z
(t)
i,n, z

(t)
i,n−

)))
,

(15)

where g(·) is the discriminator that evaluates the triad-level
consistent score through aggregating pairwise relationships
with bilinear transformation as follows:

g
(
z
(t)
i,p, z

(t)
i,p+

)
= σ

(
z
(t)
i,pWbz

(t)
i,p+

)
, (16)

where Wb is learnable parameters of the discriminator. In
addition, the divergence of node representation can be effec-
tively enhanced with the auxiliary PNRCD task, thereby alle-
viating the over-smoothing problem [Li et al., 2018] of graph
convolutional networks.

4.5 Prediction Layer
Given a pair of POI (vi, vj), the likelihood score of the exis-
tence of a relationship r between two POIs in time segment t
can be calculated by the DistMult factorization [Yang et al.,
2015] as:

ŷ
(t)
r,i,j = Sigmoid

(
z
(t)T

i W(t)
r z

(t)
j

)
, (17)

where W
(t)
r is the learnable parameter for relationship r. We

use the cross-entropy loss of predictions ŷ
(t)
r,i,j and ground

truth y
(t)
r,i,j as the optimization objective, which is defined as:

Lrel=−
T∑

t=1

∑
(vi,r,vj)∈D

(
y
(t)
r,i,j logŷ

(t)
r,i,j+(1−y(t)r,i,j)log(1−ŷ

(t)
r,i,j)

)
,

(18)
where D is the relationship set of training data, y(t)r,i,j = 1 if

relationship exist, otherwise y
(t)
r,i,j = 0.

4.6 Training and Optimization
In order to avoid overfitting and make the model more gener-
alizable, we use random edge sampling to construct a sub-
graph G′ of the training set as input during the training
epochs. The subgraph construction is formulated as follows:

G′ = (V,E′),where E′ ⊆ E and |E′| = ω · |E|, (19)

where G = (V,E) is the whole relationship graph of train set
and ω denotes the sampling ratio of edges.

In the training process, the self-supervised PNRCD task is
optimized jointly with the relationship inference. Therefore,
we have the total loss of the multi-task learning framework as
follows:

L = Lrel + λLssl, (20)

where λ is the hyper-parameter of the loss function to balance
the importance of the main task and self-supervised task.

5 Experiment
To demonstrate the effectiveness of the proposed TESTN, we
conduct extensive experiments on three real-world datasets to
answer the following research questions (RQs):

• RQ1: How does the proposed TESTN model perform
compared with previous studies on multi-temporal POI
inference task?

• RQ2: How do different modules of TESTN contribute
to model performance?

• RQ3: How do key hyperparameters affect the perfor-
mance of TESTN?

• RQ4: Can the learned representations provide intuitive
visualization to the performance?

Dataset Chicago NYC Tokyo

Relation Source Bike trip Check-in Check-in
# Nodes 483 1,548 3,103

# Relations at t1 1,059 699 1,820
# Relations at t2 5,894 1,024 3,991
# Relations at t3 6,275 1,136 9,419
# Relations at t4 1,322 512 1,446
# Relation Sum 14,550 3,371 16,676
Average Degree 60.2 4.4 10.7

Table 1: The statistics of three real-world datasets.
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Model Chicago NYC Tokyo

HR@3 HR@10 MRR@10 HR@3 HR@10 MRR@10 HR@3 HR@10 MRR@10

GCN 0.1042 0.3251 0.1076 0.2030 0.4328 0.1683 0.1328 0.3056 0.1315
GAT 0.1192 0.3348 0.1150 0.2358 0.4507 0.1876 0.1371 0.3218 0.1284
DGI 0.1168 0.3385 0.1176 0.2436 0.4623 0.1904 0.1864 0.4010 0.1643

RGRL 0.1266 0.3569 0.1286 0.2509 0.4769 0.2133 0.2083 0.4182 0.1684
ROLAND 0.1403 0.3827 0.1302 0.2645 0.4861 0.2090 0.2110 0.4235 0.1772

PRIM 0.1253 0.3672 0.1239 0.2811 0.5040 0.2217 0.1889 0.4074 0.1548
SEENet 0.1652 0.4256 0.1459 0.3402 0.5460 0.2609 0.2512 0.4706 0.2092
TESTN 0.1884 0.4442 0.1638 0.3749 0.6045 0.2766 0.2656 0.4923 0.2040

Table 2: The performance comparison of TESTN and baselines on three real-world datasets.

Model HR@3 HR@10 MRR@10

w/o S2-AGG 0.1502 0.3698 0.1308
w/o TC-Extractor 0.1762 0.3959 0.1531

w/o STC 0.1417 0.3565 0.1267
w/o PNRCD 0.1528 0.4320 0.1461

TESTN 0.1884 0.4442 0.1638

Table 3: The results of ablation studies on Chicago.

5.1 Experimental Settings
Dataset. We evaluate the performance on three real-
world POI datasets: Chicago1, Tokyo and New York City
(NYC)2 [Yang et al., 2014]. We follow the pre-processing
approach used in [Li et al., 2023a]. Depending on the data
type, the relationships generated by the dataset can be di-
vided into two categories: (1) Mobility-based relational data
(Chicago): This dataset contains bike riding data collected for
about 6 months in Chicago. We label high-flow and low-flow
relationships based on the mobility degree to explore the dy-
namics of urban mobility. (2) Business-based relational data
(Tokyo and NYC): Both datasets contain check-in data col-
lected for about 10 months in Tokyo and NYC. We label the
competitive and complementary relationships based on the
category of visited POIs to explore the dynamics in business
scenarios. In general, we evenly split a day into four time
segments: morning (t1), midday (t2), night (t3), and mid-
night (t4) to obtain time-specific relationships. The statistics
of datasets are presented in Table 1.
Baselines. We compare the performance of our model
with the following seven baselines: (1) GCN [Kipf and
Welling, 2017], (2) GAT [Veličković et al., 2017], (3)
DGI [Velickovic et al., 2019], (4) RGRL [Lee et al., 2022],
(5) ROLAND [You et al., 2022], (6) PRIM [Chen et al.,
2022], (7) SEENet [Li et al., 2023a].
Evaluation Metrics. We adopt top-K Hit Ratio (HR@K)
and Mean Reciprocal Ranking (MRR@K) not only to pre-
dict whether a relationship exists, but also to accurately rank
the potential relationship possibilities.

1https://divvybikes.com/system-data
2https://sites.google.com/site/yangdingqi/home/foursquare-

dataset

Implementation Details. We randomly divide the data with
training, validation, and test sets in a ratio of 8:1:1. We use
Adam optimizer [Kingma and Ba, 2014] with a learning rate
of 0.01 and a dropout rate of 0.2 to train the model. The
number of attention heads is set to 4. We implement negative
sampling [Mikolov et al., 2013] by randomly replacing a POI
in the relationship with a sampled POI. The ratio of positive
and negative samples is 1:5. The extraction size of the adja-
cent segment ϵ is set to 1. The details of the edge sampling
ratio ω and the weight loss of the self-supervised task λ are
illustrated in Section 5.4.

5.2 RQ1: Overall Performance

Table 2 presents the overall performance of TESTN and base-
lines with the best results shown in boldface and the second
best results shown in underline. According to the results, we
can get key observations as follows:

(1) TESTN achieves the best performance in most met-
rics across all datasets, demonstrating the superiority of our
model. In particular, on the Chicago dataset, TESTN sur-
passes the suboptimal model with ratios of 14.04%, 4.37%,
and 12.27% in terms of HR@3, HR@10, and MRR@10, re-
spectively. These results indicate that TESTN is highly ef-
fective in identifying and prioritizing relevant POIs among
numerous unrelated POIs.

(2) The performance of GCN and GAT that depend solely
on the topological structures derived from the relationship
graph is unsatisfactory. In contrast, models that integrate spa-
tial information of POIs (i.e., PRIM, SEENet, and TESTN)
exhibit a certain performance upgrade over GCN and GAT.
Furthermore, SEENet and TESTN which capture evolving
patterns gain greater improvement. The performance im-
provement of our model can be attributed to the multi-task
framework for capturing spatio-temporal context and preserv-
ing the heterogeneity of multi-type relationships jointly.

(3) It is worth noting that TESTN consistently ranks first on
the Chicago dataset with the smallest average degree, as well
as on the NYC dataset with the largest average degree. The
consistent performance across datasets with varying graph
densities validates the robustness of TESTN, highlighting its
effectiveness and adaptability in diverse graph structures.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) The impact of ω on Chicago (b) The impact of λ on Chicago

(c) The impact of ω on NYC (d) The impact of λ on NYC

Figure 4: The parameter sensitivity analysis of TESTN.

5.3 RQ2: Ablation Study
To validate the effectiveness of different components in the
TESTN model, we perform the ablation study with the fol-
lowing variants: (1) w/o S2-AGG removes the S2-AGG
module designed for spatial context extraction, (2) w/o TC-
Extractor removes the TC-Extractor module designed for
temporal context extraction, (3) w/o STC removes S2-AGG
and TC-Extractor modules for spatio-temporal context ex-
traction. (4) w/o PNRCD removes the PNRCD module to
model the relational heterogeneity. Table 3 presents the ex-
perimental results on the Chicago dataset. In general, we
can observe that TESTN consistently outperforms all vari-
ants, indicating that each component of TESTN contributes to
the model. Specifically, w/o S2-AGG and w/o TC-Extractor
(combined to form w/o STC variant) deteriorate the perfor-
mance of TESTN remarkably, which indicates that spatial and
temporal context can effectively supplement the scarce rela-
tional information. Furthermore, compared to the w/o PN-
RCD variant, the complete TESTN model exhibits a more
significant improvement in HR@3 relative to HR@10. This
suggests that more potential relationships are ranked within
the top 3, proving that self-supervised PNRCD task enhances
the ability to distinguish relationships.

5.4 RQ3: Parameter Sensitivity Analysis
We investigate the parameter sensitivity of TESTN to two
crucial hyperparameters: the sampling ratio of edges ω and
the loss weight of self-supervised task λ.
Effect of ω. As shown in Figure 4a and 4c, our method
achieves the best result with ω = 0.5 on both datasets. A
smaller ω results in an overly sparse graph, leading to mul-

(a) TESTN (b) SEENet

Figure 5: t-SNE visualization of node embeddings on NYC.

tiple disconnected components, which hinders representation
learning in graph neural networks. In contrast, a larger ω
tends to overfit the training data, reducing the generalizabil-
ity of the model.
Effect of λ. As shown in Figure 4b and 4d, our method shows
the best performance with λ= 2 on the Chicago dataset and
λ = 2.5 on the NYC dataset. This shows that the contribu-
tion of the self-supervised task varies on different datasets. A
smaller λ limits the interactions of multi-type relationships.
In contrast, a larger λ causes the model to overly focus on
triad-level discrimination, leading to a deterioration in rela-
tionship inference performance.

5.5 RQ4: Visualization
To investigate the reasons for the superior performance of
TESTN compared to the state-of-the-art SEENet method, we
employ t-SNE [Van der Maaten and Hinton, 2008] to vi-
sualize node embeddings at night (t3) on the NYC dataset.
Specifically, we leverage t-SNE to project learned POI node
embedding from both models with the same initialization
method into a two-dimensional space. As shown in Fig-
ure 5, TESTN exhibits more distinct separation between
nodes compared to SEENet, and thus relationships derived
from node embeddings are more distinguishable, indicat-
ing that the problem of oversmoothing [Li et al., 2018;
Shen et al., 2024] is alleviated.

6 Conclusion
To the end, we propose a triad-enhanced spatio-temporal net-
work for multi-temporal POI relationship inference, TESTN,
that integrates spatial 2-hop aggregation layer and temporal
context extractor modules to exploit spatial and temporal con-
textual information, respectively. To model the heterogeneity
of multi-type relationships, a self-supervised pairwise neigh-
boring relation consistency detection method is designed to
alleviate the over-smoothing problem. Extensive experimen-
tal results on three real-world POI datasets demonstrate the
effectiveness of the proposed TESTN model, which validates
that addressing investigated challenges contributes to improv-
ing the inference capacity of the model.
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