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Towards Micro-Action Recognition with Limited Annotations:
An Asynchronous Pseudo Labeling and Training Approach

Yan Zhang1 , Lechao Cheng1∗ , Yaxiong Wang1 , Zhun Zhong1,2∗ , Meng Wang1

1Hefei University of Technology
2 University of Nottingham

Abstract
Micro-Action Recognition (MAR) aims to classify
subtle human actions in video. However, annotat-
ing MAR datasets is particularly challenging due to
the subtlety of actions. To this end, we introduce
the setting of Semi-Supervised MAR (SSMAR),
where only a part of samples are labeled. We
first evaluate traditional Semi-Supervised Learning
(SSL) methods to SSMAR and find that these meth-
ods tend to overfit on inaccurate pseudo-labels,
leading to error accumulation and degraded perfor-
mance. This issue primarily arises from the com-
mon practice of directly using the predictions of
classifier as pseudo-labels to train the model. To
solve this issue, we propose a novel framework,
called Asynchronous Pseudo Labeling and Train-
ing (APLT), which explicitly separates the pseudo-
labeling process from model training. Specifically,
we introduce a semi-supervised clustering method
during the offline pseudo-labeling phase to gener-
ate more accurate pseudo-labels. Moreover, a self-
adaptive thresholding strategy is proposed to dy-
namically filter noisy labels of different classes.
We then build a memory-based prototype classifier
based on the filtered pseudo-labels, which is fixed
and used to guide the subsequent model training
phase. By alternating the two pseudo-labeling and
model training phases in an asynchronous manner,
the model can not only be learned with more ac-
curate pseudo-labels but also avoid the overfitting
issue. Experiments on three MAR datasets show
that our APLT largely outperforms state-of-the-art
SSL methods. For instance, APLT improves accu-
racy by 14.5% over FixMatch on the MA-12 dataset
when using only 50% labeled data. Code is avail-
able at https://github.com/zy-hfut/APLT.

1 Introduction
Micro-action refers to the fast and tiny movements or body
language signals that exhibit by humans during commu-
nication [Noroozi et al., 2021], which plays a significant

∗Corresponding authors.

Labeled data Unlabeled data
Setting: Semi-Supervised Micro-action Recognition

hands touching 
fingers

stretching 
arms

touching 
legs

Figure 1: We present a new setting, Semi-Supervised Micro-Action
Recognition (SSMAR), which aims to train a model that can recog-
nize subtle, rapid micro-actions in videos by utilizing both labeled
and unlabeled data.

role in revealing individuals’ inner states and true inten-
tions. Traditional action recognition [Arnab et al., 2021;
Feichtenhofer et al., 2019; Xie et al., 2018; Wang et al.,
2024] typically focuses on identifying and classifying overt
movements, e.g., running, jumping, etc. In contrast, Micro-
Action Recognition (MAR) [Chen et al., 2023b; Liu et al.,
2021] targets the detection and analysis of minor movement
changes, which are imperceptible to human eyes, making
MAR inherently more challenging. Existing MAR meth-
ods are mainly developed under a fully-supervised context,
which heavily depend on large amounts of high-quality la-
beled data [Caba Heilbron et al., 2015; Kay et al., 2017;
Soomro and others, 2012]. However, acquiring labeled MAR
datasets is labor-intensive and costly due to the subtlety of
micro-action and privacy concerns. To alleviate the chal-
lenges of labeling MAR datasets, we introduce a Semi-
Supervised Learning (SSL) setting for MAR, called Semi-
Supervised MAR (SSMAR). As shown in Fig. 1, SSMAR
aims to harness both labeled and unlabeled data to train a
MAR model, enabling performance close to that of a model
trained on fully-labeled data.

SSL has been well established in many fields, such as
image classification [Sohn et al., 2020; Berthelot et al.,
2019], semantic segmentation [Chen et al., 2021; Luo and
Yang, 2020], action recognition [Xing et al., 2023; Wu et
al., 2023], etc. The popular SSL methods mainly focus
on consistent regularization [Rasmus et al., 2015; Ke et al.,
2019] and pseudo-labeling strategies [Lee and others, 2013;
Xie et al., 2020b] (see Fig. 2, (c) left). However, di-
rectly applying these methods to the SSMAR task presents
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Figure 2: (a) Micro-actions (MA-12) are less distinct from each other and more difficult to differentiate than conventional actions (UCF101
and HMDB51). (b) Comparison of training process between our method and Fixmatch on the traditional action recognition datasets and a
MAR dataset with 50% labeled data. FixMatch performs well on traditional action recognition datasets (HMDB51 and UCF101). However,
when applying it on a MAR dataset (MA-12), as training proceeds, the number of unlabeled samples that pass the set threshold for the
online pseudo-labeling method gradually increases, and the accuracy of the pseudo-labeling gradually decreases. In contrast, our method
consistently generates high-accurate pseudo-labels. (c) FixMatch performs a synchronous pseudo-labeling and training. Instead, the proposed
asynchronous approach separates the pseudo-labeling from the training process, where the pseudo-labels are first obtained by semi-supervised
clustering in the offline phase and are then utilized for the online model training.

a new challenge, i.e., the model tends to accumulate pseudo-
labeling errors more significantly in the later stages of train-
ing. As shown in Fig. 2 (b), on a traditional action recogni-
tion dataset, UCF101 [Soomro and others, 2012], the popu-
lar method FixMatch [Sohn et al., 2020] is effective in min-
ing a large number of accurate pseudo-labels. However, as
the complexity of the action recognition task increases, such
as HMDB51 [Kuehne et al., 2011], the accuracy of pseudo-
labels declines significantly and the issue of overfitting to in-
correct pseudo-labels becomes increasingly severe. The prob-
lem is particularly acute in the context of MAR dataset, e.g.,
MA-12 [Guo et al., 2024] (examples of different tasks are
shown in Fig. 2 (a)). Specifically, when applying FixMatch
to the MA-12 dataset, the accuracy of pseudo-labels drops
sharply from an initially high level (80%) after early training
stages. Meanwhile, the model grows increasingly confident
in its predictions and assigns pseudo-labels to all samples.
These two observations indicate that FixMatch leads to an
increasing number of incorrect pseudo-labels in late training
stages. We argue that the primary cause of the overfitting is-
sue is that the model relies on its own predictions as pseudo-
labels while simultaneously using those same pseudo-labels
as supervisory signals for training. This approach works well
when the task is relatively simple, as shown with UCF101,
where it generates a large number of accurate pseudo-labels.
However, as task complexity grows, this approach becomes
more prone to inaccurate pseudo-labels, leading to error ac-
cumulation and performance degradation, as observed on the
MAR dataset.

To tackle this challenge, we introduce a novel frame-
work, called Asynchronous Pseudo Labeling and Training
(APLT), which explicitly decouples the pseudo-labeling from
the model training process (see Fig. 2, (c) right). The frame-
work operates in two phases: 1) offline pseudo-labeling
that aims to generate accurate pseudo-labels through a semi-
supervised clustering approach, and 2) online training that fo-
cuses on training the model using a prototype classifier in a
robust manner. In the offline pseudo-labeling phase, we pro-
pose a non-parametric, semi-supervised k-means clustering

algorithm to generate accurate pseudo-labels. Specifically,
we use labeled data as anchor points to cluster unlabeled data,
thereby generating initial pseudo-labels. To enhance stability,
we introduce a labeled-augmentation technique that increases
the diversity of labeled samples, making the clustering an-
chors more robust for guiding the clustering process. In addi-
tion, a self-adaptive thresholding strategy is proposed to fil-
ter out less reliable pseudo-labels. We then build a memory-
based prototype classifier by averaging the features of sam-
ples that are assigned with pseudo-labels for each cluster. In
the online training phase, the pseudo-labels generated in the
offline phase are used to supervise the outputs of the memory-
based prototype classifier. The prototype classifier remains
fixed during training and is updated only in the offline phase.
The offline and online phases are performed alternately, help-
ing the model to avoid the overfitting problem in an asyn-
chronous manner. Moreover, we reduce the update frequency
of pseudo-labeling to several epochs instead of one epoch,
further mitigating the overfitting risk. As shown in Fig. 2
(b), our method is more resistant to overfitting on inaccurate
pseudo-labels compared to FixMatch.

The main contributions are summarized as follows:
• We introduce a new setting, SSMAR, designed to reduce

the annotation requirements of MAR. Additionally, we
identify a critical challenge in applying the FixMatch to
SSMAR, i.e., overfitting on incorrect pseudo-labels.

• We propose a novel framework for SSMAR that explic-
itly separates the pseudo-labeling process from model
training, making them asynchronous. This strategy can
effectively mitigate the overfitting issue.

• Within our framework, we propose several strategies to
enhance the reliability of pseudo-labels during the of-
fline pseudo-labeling phase. Furthermore, we develop a
memory-based prototype classifier to mitigate the over-
fitting issue during the online model training phase.

• Experiments on three SSMAR benchmarks demonstrate
that our method significantly improves the performance
of FixMatch, achieving state-of-the-art results.
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2 Related Works

Micro-Action Recognition (MAR). Unlike the traditional
action recognition, MAR focuses on classifying subtle and
transient human body movements. To facilitate the study of
MAR, multiple MAR datasets are proposed. The iMiGUE
dataset [Liu et al., 2021] combines fine-grained gesture ac-
tions with sentiment labels for micro-gesture understanding
and sentiment analysis. Similarly, Chen et al. [Chen et al.,
2023b] propose the SMG dataset, where participants per-
form various micro-gestures by narrating both false and true
stories. Building on this, the MA-52 dataset [Guo et al.,
2024] is proposed by capturing natural micro-actions from
psychological interviews. Traditional action recognition has
been benefited from large-scale labeled datasets to achieve
high accuracy [Caba Heilbron et al., 2015; Kay et al., 2017;
Soomro and others, 2012], allowing models [Wang et al.,
2018; Lin and others, 2019; Bertasius and others, 2021].
However, obtaining labeled MAR datasets is much more dif-
ficult. The proposed SSMAR setting aims to utilize both la-
beled and unlabeled data to train a MAR model that can be
comparable with the one trained with fully-labeled data.
Semi-Supervised Learning (SSL). SSL has gained signif-
icant attention in the community, aiming to leverage abun-
dant unlabeled data alongside limited labeled data to enhance
model performance. Two prominent SSL trends are pseudo-
labeling and consistency regularization. Pseudo-labeling ap-
proaches [Lee and others, 2013; Xie et al., 2020b] rely on
adding high-confidence pseudo-labels to the training dataset.
Consistency regularization approaches [Rasmus et al., 2015;
Ke et al., 2019; Oliver et al., 2018] assume that applying
perturbations to input samples or features does not change
the outputs of the model. FixMatch [Sohn et al., 2020]
combines pseudo-labeling and consistency regularization by
using high-confidence pseudo-labels of weakly augmented
samples to supervise strongly augmented samples. Soft-
Match [Chen et al., 2023a] uses a Gaussian function to assign
weights to samples, resolving the trade-off between quantity
and quality of pseudo-labels. The above methods mainly are
designed for image classification task. Instead, we propose
a novel SSL framework for the MAR task, which performs
pseudo-labeling and model training in an asynchronous way.
Semi-Supervised Action Recognition (SSAR). The explo-
ration of SSL in video recognition lags behind the progress in
image classification. VideoSSL [Jing et al., 2021] compares
SSL methods that are specifically applied to videos, revealing
limitations in extending pseudo-labeling directly. LTG [Xiao
et al., 2022] introduces temporal gradient as an additional
modality to generate high-quality pseudo-labels for training.
Recently, self-supervised learning has proven to be effective
in learning powerful video representations [Dave et al., 2022;
Feichtenhofer et al., 2021; Qian et al., 2024]. TimeBal-
ance [Dave et al., 2023] leverages the temporal contrastive
losses from TCLR [Dave et al., 2022] to learn the tempo-
ral distinctive teacher. SVFormer [Xing et al., 2023] ex-
plores the potential benefit of Video Transformers for SSAR.
FinePseudo [Dave et al., 2025] is proposed to improve
pseudo-labeling through temporal alignment for fine-grained
action recognition under SSL context. Different from them,

this work focuses on the SSMAR task, which is more difficult
than traditional and fine-grained action recognition tasks.

3 Method
Task Definition. In SSMAR, we are given a set of human
micro-action videos, defined as D = {Dl,Du}, where sam-
ples of Dl are labeled while samples of Du are unlabeled.
Dl = {V i

l , y
i
l}

Nl
i=1 consists of Nl videos and correspond-

ing labels. The videos are from C categories, i.e., the la-
bel yil is derived from the set of labels Y = {1, 2, · · · , C}.
Du = {U i}Nu

i=1 consists of Nu unlabeled videos. The goal
of SSMAR is to leverage both labeled and unlabeled data to
learn an effective MAR model.

3.1 Overview
As shown in Fig. 3, we propose an asynchronous pseudo-
labeling and training framework, dubbed APLT, for SSMAR,
which includes two phases: offline pseudo-labeling and on-
line model training. During offline phase, we propose a
non-parametric, semi-supervised k-means clustering method
to obtain accurate pseudo-labels. In particular, labeled data
serve as anchors to guide the clustering, producing initial
pseudo-labels for unlabeled data. To improve robustness, we
employ a labeled-augmentation approach that enhances la-
beled sample diversity, making the clustering anchors more
dependable for guiding the clustering process. Addition-
ally, a self-adaptive thresholding mechanism is presented to
filter out less reliable pseudo-labels. Then, we construct a
memory-based prototype classifier by averaging the features
of samples assigned with the same cluster. During online
phase, pseudo-labels produced in the offline phase are used
to supervise the memory-based prototype classifier’s outputs.
This classifier remains unchanged throughout training and is
only updated in the offline phase. By alternating between
offline and online phases, the model effectively avoids over-
fitting in an asynchronous manner. Note that, the FixMatch
is also applied in our framework in default, which uses the
predictions of the parametric classifier as pseudo-labels to su-
pervise the same classifier.

3.2 Warm-Up
Our asynchronous learning strategy is implemented after a
warm up stage with FixMatch. Specifically, given a labeled
video V i

l , we calculate the cross-entropy loss for labeled set
by:

Llogits
sup =

1

B

B∑
i=1

H(yil , pm(y | ω(V i
l ))), (1)

where B is the batch size, ω(·) indicates the weak data aug-
mentation function, pm(·) is the output probability from the
parametric classifier, yil is the ground-truth label for V i

l , and
H(·, ·) is the cross-entropy loss.

For the unlabeled set, we use a similar loss function but
generate pseudo-labels for unlabeled data as we do not have
ground-truth labels for them. The loss for unlabeled data is
formulated as:

ℓlogitsu =
1

B

B∑
i=1

1(max(qi) ≥ τ)H(q̂i, pm(y | A(U i))), (2)
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Figure 3: Overview of the proposed APLT framework. APLT includes two phases: offline pseudo-labeling and online model training. During
the offline phase, we propose an approach to generate reliable pseudo-labels by semi-supervised clustering and self-adaptive thresholding. In
addition, we construct a memory-based prototype classifier by averaging features assigned with the same cluster. During the online phase, we
augment samples for both labeled and unlabeled samples. For the labeled data, we use the ground-truth labels to supervise the two classifiers
(Lmargin

sup and Llogits
sup ). For the unlabeled data, we use the predictions of traditional classifier to supervise the same classifier (Llogits

u )
while use the pseudo-labels generated by the offline phase to supervise the prototype classifier (Lmargin

u ). “WA” and “SA” stand for weak
augmentation and strong augmentation, respectively.

where qi is the predicted class distribution of unlabeled video
data after weak augmentation: qi = pm(y | ω(U i)). q̂i =
argmax(qi) is the predicted pseudo-label. A(·) means the
strong data augmentation function. 1(·) is an indicator func-
tion of the confidence-based threshold and τ is the threshold.

Overall, the loss function for warm up stage is:

Llogits = Llogits
sup + Llogits

u . (3)

After training the model with the basic FixMatch for sev-
eral epochs, we will additionally include the proposed asyn-
chronous method, which includes the offline pseudo-labeling
and online model training phases.

3.3 Phase I: Offline Pseudo-Labeling
To mitigate the risk of overfitting on incorrect supervisions
during training, we propose to generate pseudo-labels by a
non-parametric clustering method instead of directly using
the output of the parametric classifier, which includes three
strategies: semi-supervised clustering, labeled-augmentation,
and self-adaptive threshold strategy.
Semi-supervised Clustering. The key of semi-supervised
clustering is using labeled data as anchors to guide the clus-
tering on unlabeled data, which is inspired by [Vaze et al.,
2022]. Specifically, after a training epoch, we first gener-
ate features for all data, F = {Fu, Fl}, in which the feature
is obtained by the feature extractor fθ. Fl and Fu represent
the features of labeled and unlabeled data respectively. We
then initialize the C centroids by averaging the features of
labeled data for each class and implement the following two
stages. 1) Cluster Assignment: Each unlabeled instance is as-
signed with a cluster label by identifying its nearest centroid.
2) Center Update: The centroids are updated by averaging

all data features within each cluster, where the cluster labels
are ground-truth labels for labeled data and are the pseudo-
labels generated by first stage (cluster assignment) for unla-
beled data, respectively. We iteratively repeat the above two
stages until the algorithm converges, resulting in clustering
pseudo-labels for unlabeled data.
Labeled-Augmentation. To improve the clustering stability,
we introduce the labeled-augmentation by applying strong
augmentation to the labeled data during the semi-supervised
clustering. In this way, we can obtain the augmented labeled
set Dsl which is also utilized to initialize and update cen-
ters in the clustering process. This strategy enables us obtain
more robust clustering centers and thus produce more accu-
rate pseudo-labels for unlabeled data.
Self-Adaptive Threshold Strategy. During clustering, hard
samples will be assigned with wrong clustering labels. Us-
ing such incorrect pseudo-labels for model training will ham-
per the optimization. Thus, it is important to select reliable
pseudo-labels. One common solution is using a threshold to
filter out pseudo-labels with low-confidence. However, since
micro-action categories are diverse, the difficulties of recog-
nizing them are very different. Thus, using a single fixed
threshold to constrain all classes is not reasonable. For ex-
ample, the average confidence level for the head movement-
related category is typically higher than that for the upper
limb movement-related category, as recognizing the former
category is more easy.

To solve this problem, we propose a self-adaptive thresh-
olding strategy, which is calculated by both global threshold
and category-specific local thresholds. Specifically, given an
unlabeled sample, we use its distance from the assigned cen-
troid as the confidence indicator. The global threshold τglobal
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is set as the average distance of unlabeled data from their cor-
responding assigned clusters, reflecting the overall clustering
status. Local thresholds respond to the clustering state of each
class, in which we compute the class-specific local threshold
for each cluster. By considering both global and local thresh-
olds, our self-adaptive thresholding can be expressed as:

τglobal =
1

Nu

Nu∑
i=1

dis(U i),

τlocal(c) =
1

N c
u

Nc
u∑

i=1

dis(U i
c),

τadapt(c) =
τlocal(c)

max(τlocal)
· τglobal,

(4)

where U i
c represents an instance assigned with category

c in Du and N c
u is the number of unlabeled instances

assigned with category c. dis(.) indicates the distance
to the assigned class center for an unlabeled instance.
τadapt(c) is the adaptive threshold of class c. τlocal =
[τlocal(1), τlocal(2), . . . , τlocal(C)] is the set of local thresh-
olds. Given an unlabeled sample U i, if its distance to the
assigned center c is lower than τadapt(c), we regard its pre-
dicted cluster label as a reliable pseudo label. Otherwise, we
ignore its pseudo label. By doing so, we could obtain a fil-
tered pseudo-label set Dsu = {U i

p, y
i
p}

Np

i=1 with Np instances.
Memory-based Prototype Classifier. Most of the previous
SSL approaches rely on the supervision of the output of the
parametric-classifier during training on unlabeled data. In-
stead, we build a non-parametric memory-based prototype
classifier based on the features of all data. Specifically, for
a class c, we average all features of labeled data with class
label c and unlabeled data assigned with pseudo-label c, ob-
taining corresponding prototype feature:

ρc =
1

Nc

Nc∑
i

F i
c , (5)

where Nc is the number of samples belonging to class c. F i
c

is the feature of an instance belonging to class c. Thus, the
prototype feature is ρ = {ρ1, ρ2, · · · , ρC}, constructing the
memory-based prototype classifier. This non-parametric clas-
sifier is directly added after the backbone for model training,
like the parametric one.

3.4 Phase II: Online Training
During the online training, we not only train the model with
the basic FixMatch loss based on parametric classifier but
also with a margin loss based on the non-parametric classi-
fier. Specifically, given a sample with strong data augmen-
tation, we first calculate its feature and obtain the prediction
based on the non-parametric classifier. The margin loss for
labeled data is formulated as:

Lmargin
sup = − 1

B

B∑
i=1

log
exp(F i

l · ρc)∑C
i=1 exp(F

i
l · ρi)

, (6)

where F i
l is the feature of the labeled sample i obtained by

the current training model and ρc is the prototype feature cor-
responding to the ground-truth c.

Similarly, the margin loss for unlabeled data is as:

Lmargin
u = − 1

B

B∑
i=1

log
exp(F i

u · ρc)∑C
i=1 exp(F

i
u · ρi)

, (7)

where F i
u is the feature of the unlabeled sample i and ρc is

the prototype feature of the assigned pseudo-label c of the
unlabeled sample i.

The final margin loss can be formulated as:
Lmargin = Lmargin

sup + Lmargin
u . (8)

By combining with the basic Fixmatch, our final loss is
defined as:

L = Llogit + λLmargin, (9)
where λ is a hyperparameter that balances the contribution
between Llogit and Lmargin.

3.5 Phase Iteration
In our framework, the offline clustering phase and the on-
line model training phase are performed alternately. Specifi-
cally, during model training, the memory-based classifier re-
mains fixed and is used only to produce predictions. Dur-
ing the offline clustering, we both recalculate pseudo-labels
based on the most recent model and update the prototypes
of the memory-based classifier. Unlike FixMatch, this ap-
proach avoids creating pseudo-labels, updating the memory-
based classifier, and producing predictions in the same it-
eration and manner, thereby mitigating overfitting to incor-
rect pseudo-labels. Furthermore, because deep networks pos-
sess a strong capacity to overfit, updating the prototypes and
pseudo-labels too frequently can also lead to overfitting is-
sue. Consequently, we run the online phase every 10 training
epochs instead of every epoch.

During testing, we discard the parametric classifier and use
the outputs of the memory-based classifier as the final predic-
tions.

4 Experiments
4.1 Dataset and Experimental Setup
Benchmarks: We build semi-supervised micro-action recog-
nition datasets based on three datasets, i.e., MA-52 [Guo et
al., 2024], iMiGUE [Liu et al., 2021], and SMG [Chen et
al., 2023b]. Note that, many classes in these three datasets
are not satisfied for semi-supervised learning, as they do not
have insufficient samples. For example, in the SMG dataset,
actions like Touching or covering and Pulling shirt collar
have only 11 instances each. Hence, we only select classes
with sufficient samples to form the datasets, results in MA-
12, iMiGUE-11, and SMG-5, each of which has 12, 11, and
5 classes respectively.
Experimental Setup. For each video, we use 8-frame clips
for training and testing. We use the ResNet-18 [He et al.,
2016] as the backbone in default. For the warm up stage,
we train the model with 15 epochs with only the FixMatch
loss function. We then introduce our asynchronous learning
strategy and train the model with additional 40 epochs. The
model is updated by SGD optimizer with a momentum of 0.9
and a weight decay of 0.0005. The learning rate is set to 0.002
and follows a cosine decay schedule. The offline clustering
phase is implemented after every 10 training epochs.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

MA-12 SMG-5 iMiGUE-11

Resnet-18 Resnet-50 Resnet-18 Resnet-18

Method 10% 25% 40% 50% 10% 25% 40% 50% 20% 30%

Baseline (Labeled Only) 24.8 30.7 35.8 36.3 23.8 31.7 34.8 38.0 51.6 38.0

Pseudolabel [Lee and others, 2013] 26.9 32.7 34.6 35.6 17.6 29.8 40.1 39.3 57.2 32.3
Mean Teacher [Tarvainen and Valpola, 2017] 21.5 26.0 31.0 14.4 20.0 23.6 37.5 34.5 48.0 30.9
VAT [Miyato et al., 2018] 22.9 23.8 13.7 25.6 21.7 8.5 23.1 29.8 50.4 26.7
MixMatch [Berthelot et al., 2019] 21.7 25.9 23.4 23.1 19.1 35.7 43.0 42.5 42.4 34.4
UDA [Xie et al., 2020a] 27.7 32.8 38.3 41.3 25.2 37.0 41.6 43.3 52.8 40.0
FixMatch [Sohn et al., 2020] 28.0 35.5 38.8 42.8 27.8 35.8 44.5 44.2 56.0 41.6
FlexMatch [Zhang et al., 2021] 25.6 31.8 37.8 44.5 25.3 33.3 42.6 43.7 56.8 41.6
FreeMatch [Wang et al., 2022] 26.7 35.4 39.7 43.1 25.8 33.3 42.1 43.2 53.6 40.7
SoftMatch [Chen et al., 2023a] 24.6 28.3 34.3 34.6 26.8 32.4 37.5 36.1 57.2 36.4
InfoMatch [Han et al., 2024] 24.4 32.4 35.3 41.0 22.8 31.3 36.7 36.4 55.2 41.5
FineSSL [Gan and Wei, 2024] 27.9 30.9 32.3 33.3 28.1 31.1 31.9 33.1 57.6 32.4

APLT (Ours) 34.1 43.8 52.9 57.3 34.7 50.5 57.8 63.9 59.2 43.8

Table 1: Performance (%) comparison with traditional SSL methods. Results are evaluated on MA-12 (↑), SMG-5 (↑) and iMiGUE-11 (↑).

4.2 Comparison with State of The Arts

Comparison with Traditional SSL Methods. We first com-
pare our method with 11 state-of-the-art SSL approaches de-
signed for image classification. For a fair comparison, we use
the same backbone and experimental settings (e.g., data aug-
mentation, optimizer, and training epochs) for all methods.
The results on MA-12, SMG-5, and iMiGUE-11 are shown in
Table 1. Our method clearly outperforms all baselines in ev-
ery setting. For instance, with only 10% labeled data on MA-
12, APLT surpasses FixMatch [Sohn et al., 2020] by 6.1%.
Moreover, most of the compared methods fail to improve on
MA-12 with 10% and 25% labeled data, reflecting the chal-
lenges posed by SSMAR. In contrast, our method signifi-
cantly boosts the baseline under both conditions. We further
demonstrate that APLT benefits from a more powerful back-
bone. For example, using ResNet-50 instead of ResNet-18
yields an additional 6.6% improvement on MA-12 with 50%
labeled data. However, most of the other methods show only
marginal or even negative gains when switching to ResNet-
50.

Comparison with SSL Methods for Action Recognition.
We also compare with the art SSL methods designed for
action recognition, including TCL [Singh et al., 2021] ,
LTG [Xiao et al., 2022] and SVFormer [Xing et al., 2023].
Results on MA-12 are shown in Table 2. We can observe that
our approach consistently achieves higher accuracies over all
settings over the compared methods in which LTG and SV-
Former use more complex backbones (3D-ResNet-18 or VIT-
B). This further demonstrates the superiority of our method in
SSMAR over previous SSL methods.

Further Comparison with FixMatch. Fig. 4 (left) illus-
trates the class-specific gains of APLT compared to Fix-
Match [Sohn et al., 2020]. We can find that the majority of
classes benefit from our method and only two classes show
comparable performance to FixMatch. Fig. 4 (right) pro-
vides a qualitative comparison between our APLT and Fix-
Match. Our approach accurately identifies different micro-
actions that are misclassified by FixMatch.

Method Backbone Labeled Ratio

10% 25% 40% 50%

Baseline (Labeled Only) ResNet-18 24.8 30.7 35.8 36.3

TCL[Singh et al., 2021] ResNet-18 16.3 25.0 32.1 37.3
LTG [Xiao et al., 2022] 3D-ResNet-18 9.5 18.7 32.9 34.9
SVFormer [Xing et al., 2023] ViT-B 32.3 37.3 38.3 44.9

APLT (Ours) ResNet-18 34.1 43.8 52.9 57.3

Table 2: Comparisons with state-of-the-art SSL methods for action
recognition methods on MA-12 (↑).

4.3 Ablation Study
Analysis of Components of Non-Parametric Clustering.
In Table 3, we evaluate the effectiveness of the compo-
nents of the proposed non-parametric clustering. Based on
the FixMatch (+SSL), we further train the model with vari-
ants of our method, in which we generate pseudo-labels by
different methods, including pure k-means (+KM), semi-
supervised k-means (+SSKM), and SSKM with labeled-
augmentation (+LA) and self-adaptive thresholding (+SAT).
We also evaluate the effect of training the model with weak
or strong augmentation. We make the following conclu-
sions. First, semi-supervised learning obtains limited im-
provement for SSMAR. Second, using non-parametric clus-
tering to generate pseudo-labels can significantly improve the
accuracy. Third, updating the model with strong augmenta-
tions achieves slightly better results. Fourth, all the proposed
components can consistently increase the performance and
our full method obtains the best results on all settings.
Effectiveness of Non-Parametric Classifier and Asyn-
chronous Strategy. The proposed non-parametric classifier
and the asynchronous pseudo-labeling model training strat-
egy are both critical components of our approach. In Table 4,
we evaluate the contributions of these two techniques. Specif-
ically, when applying the asynchronous strategy to FixMatch,
we generate pseudo-labels via the parametric classifier in an
offline manner and keep them fixed during training. Con-
versely, when using a synchronous strategy in our method, we
take the non-parametric classifier’s online outputs as pseudo-
labels, rather than the clustering results. We observe the fol-
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Figure 4: Left: Class accuracy comparison between APLT with FixMatch for MA-12 with 10% and 50% labeled data. Right: Visualization
of the predictions of APLT and FixMatch. The two methods are trained with ResNet-18.

Method Labeled Ratio

25% 40% 50%

Baseline (Labeled Only) 32.0 36.0 41.4

SSL 35.5 38.8 42.8
SSL + KM 39.8 45.9 50.1
SSL + SSKM (W) 40.2 48.0 51.7
SSL + SSKM (S) 41.0 50.7 53.8
SSL + SSKM (S) + LA 42.5 52.1 56.0
SSL + SSKM (S) + SAT 41.7 51.8 54.6
SSL + SSKM (S) + LA + SAT 43.8 52.9 57.3

Table 3: Ablation study on MA-12 (↑). SSL: FixMatch, KM: K-
Means, SSKM: Semi-Supervised K-Means, W: Weak augmenta-
tion, S: Strong augmentation, LA: Labeled-Augmentation, SAT:
Self-Adaptive Thresholding.

MA-12 (50% labeled data)

Method Update Strategy Top-1 Acc.

FixMatch (Baseline) SYN 42.8
FixMatch ASY 43.4

APLT (Ours) SYN 54.3
APLT (Ours) ASY 57.3

Table 4: Evaluation on synchronous strategy (SYN) and asyn-
chronous strategy (ASY) on MA-12.

lowing: 1) Using our non-parametric classifier substantially
improves accuracy over FixMatch (Baseline), even under the
synchronous strategy; 2) Both FixMatch and our APLT ben-
efit from the asynchronous strategy, with APLT achieving a
higher performance gain. These findings validate the effec-
tiveness of both the proposed non-parametric classifier and
the asynchronous strategy. Furthermore, when pseudo-labels
and classifier outputs are generated through different mech-
anisms (e.g., our APLT), the asynchronous strategy delivers
even stronger benefits.
Further Evaluation on Non-Parametric Classifier. To fur-
ther evaluate the benefit of the non-parametric classifier, we
evaluate two variants. 1) Variant I: We remove the non-
parametric classifier but further use the pseudo-labels gen-
erated by the clustering to train the parametric classifier that
is used for testing. 2) Variant II: We train the model with only

Method Labeled Ratio

25% 40% 50%

Baseline 30.7 35.8 36.3

Variant I of APLT 39.3 44.0 50.8
Variant II of APLT 37.6 44.9 48.1

APLT (Ours) 43.8 52.9 57.3

Table 5: Effect of non-parametric classifier on MA-12. Variant I:
Directly applying clustering labels on parametric classifier. Variant
II: Only using non-parametric classifier during testing.

the basic FixMatch loss, i.e., the model is trained without the
loss of Lmargin. However, we implement clustering with the
final model and build the non-parametric classifier for testing.
Results in Table 5 show that without using the non-parametric
classifier during training significantly reduces the accuracies.
This indicates the importance of the non-parametric classi-
fier in our approach. On the other hand, only using the non-
parametric classifier can also achieve a clearly higher results
than the baseline, further indicating the high-quality of the
pseudo-labels generated by our non-parametric clustering.

5 Conclusion
In this work, we introduce the Semi-Supervised MAR (SS-
MAR) setting. Through our evaluation, we show that tradi-
tional Semi-Supervised Learning (SSL) methods are prone to
overfitting on inaccurate pseudo-labels. To overcome this,
we present the Asynchronous Pseudo Labeling and Train-
ing (APLT) framework, which decouples the pseudo-labeling
process from model training. In the offline pseudo-labeling
phase, we propose a semi-supervised clustering approach to
generate accurate pseudo-labels. During the online model
training phase, we optimize the model with the proposed
memory-based prototype classifier and the generated pseudo-
labels. By alternating between pseudo-labeling and train-
ing phases asynchronously, APLT effectively mitigates er-
ror accumulation and enhances the accuracy. Extensive ex-
periments on three MAR datasets validate the superiority of
APLT, achieving significant performance gains over state-of-
the-art SSL methods.
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