
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

HA-SCN: Learning Hierarchical Aligned Subtree Convolutional Networks for
Graph Classification

Xinya Qin1 , Lu Bai1∗ , Lixin Cui2∗ , Ming Li3,4 , Hangyuan Du5 ,
Yue Wang2 , Edwin Hancock6

1School of Artificial Intelligence, Beijing Normal University, Beijing, China
2School of Information, Central University of Finance and Economics, Beijing, China

3Zhejiang Institute of Optoelectronics, Jinhua, China
4Zhejiang Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal

University, Jinhua, China
5School of Computer and Information Technology, Shanxi University, Taiyuan, China

6Department of Computer Science, University of York, York, United Kingdom.
XinyaQin@mail.bnu.edu.cn, bailu@bnu.edu.cn, cuilixin@cufe.edu.cn.

Abstract
In this paper, we propose a Hierarchical Aligned
Subtree Convolutional Network (HA-SCN) for
graph classification. Our idea is to transform
graphs of arbitrary sizes into fixed-sized aligned
graphs and construct a normalized K-layer m-ary
subtree for each node in the aligned graphs. By
sliding convolutional filters over the entire subtree
at each node, we define a novel subtree convolution
and pooling operation that hierarchically abstracts
node-level information. We demonstrate that the
proposed HA-SCN model not only realizes the con-
volution mechanism similar to the Convolutional
Neural Networks (CNNs), which have the charac-
teristics of weight sharing and fixed-sized recep-
tive fields, but also effectively mitigates the over-
squashing problem. Meanwhile, it establishes the
correspondence information between nodes, alle-
viating the information loss issue. Experimental
results on various benchmark graph datasets show
that our approach achieves state-of-the-art perfor-
mance in graph classification tasks.

1 Introduction
Graph machine learning is a significant research direction in
the field of artificial intelligence. Graph data has demon-
strated tremendous potential in various domains, such as
bioinformatics [Yan et al., 2023; Jing et al., 2021], so-
cial networks [McAuley and Leskovec, 2012; Min et al.,
2021], and recommendation systems [Wang et al., 2023;
Chen et al., 2022]. However, graph data lacks a fixed node
ordering, a predefined Euclidean structure, and consistent
neighbor counts, which makes it challenging to directly ap-
ply traditional CNNs to graph-based tasks.

To address this issue, researchers have proposed the spec-
tral Graph Neural Networks (GNNs) such as the Spectral

∗Corresponding Authors: Lu Bai and Lixin Cui

GNN [Bruna et al., 2013], ChebNet [Defferrard et al., 2016]
and GCN [Kipf and Welling, 2017], which treat the graph as a
graph signal and perform convolution in the spectral domain.
However, these methods are computationally expensive and
are limited by the eigenvalue spectrum of the graph. To over-
come these limitations, the spatial GNNs have been intro-
duced, transitioning from the spectral domain to the spatial
domain (e.g., the GraphSAGE [Hamilton et al., 2017], GIN
[Xu et al., 2019]). Spatial convolution strategies perform con-
volution operations based on aggregating information from
their neighbors without spectral decomposition. While these
approaches offer better computational efficiency compared to
spectral methods, they still face several challenges.

First, the spatial convolution strategies essentially act as
a function similar to globally shared multi-layer perceptrons
(MLPs) for the graph structure. Their weight matrices W are
of size d× d′, which can be viewed as d′ convolution kernels
of size 1×1×d, where d represents the feature dimension of
the graph. This only applies to the channel dimension of the
graph and does not involve the interaction of node informa-
tion. As a result, spatial convolution introduces a normalized
adjacency matrix to facilitate the node information propaga-
tion. However, unlike CNNs, this approach fails to achieve
weight sharing or local receptive fields, thus failing to adap-
tively capture the importance of individual nodes.

Second, the GNNs face the issue of the over-squashing.
This problem arises from two main causes. On one hand,
it occurs during the node propagation and aggregation pro-
cess. As the number of the GNN layers increases, the re-
ceptive field of one node grows exponentially. This leads to
the compression of information into fixed-sized vectors dur-
ing message passing, resulting in the over-squashing issue.
On the other hand, it occurs during the learning of the global
graph representation. Due to the lack of a fixed node order in
the graph, the GNNs typically use the permutation-invariant
aggregation functions (such as max, sum, or average) for
graph readout. However, these aggregation operations simply
summarize the features of all nodes, ignoring the topological

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

structure and local details of graphs, leading to information
loss and exacerbating the over-squashing problem.

To address these issues, some methods focus on con-
structing fixed-sized grid structures or local neighborhoods,
such as the Deep Graph Convolutional Neural Network
(DGCNN) [Zhang et al., 2019] and the PATCHY-SAN Graph
Convolutional Network (PSCN) [Niepert et al., 2016]. Al-
though these methods can capture rich features residing on
local nodes and outperform the traditional GNN models in
graph classification tasks, they typically rely on establishing
the node order for each individual graph. Thus, they cannot
accurately reflect the topological correspondence information
between graphs. Moreover, both models may suffer from sig-
nificant information loss, as nodes with lower ranks may be
discarded.

To address the aforementioned issues, we develop a novel
Hierarchical Aligned Subtree Convolutional Network (HA-
SCN) for graph classification tasks in this paper. One inno-
vation of this work is establishing spatial correspondence in-
formation for each node through graph alignment, which re-
duces information loss and eliminates the node order depen-
dency. Another innovation is the hierarchical subtree con-
volution and pooling operations, which effectively mitigate
the over-squashing problem and provide weight-sharing and
fixed-sized filters. Specifically, the main contributions of this
study are as follows.

Graph Alignment: We introduce a novel graph alignment
method using a prototype graph to establish spatial corre-
spondence between nodes. First, we perform k-means clus-
tering on the graph nodes to obtain prototype nodes, and then
we align the original graph nodes with the prototype nodes
that have the most similar semantic features. This process
transforms graphs of arbitrary sizes into fixed-sized aligned
graphs, reducing information loss and eliminating the node
order dependency existing in the traditional GNNs.

Hierarchical Subtree Convolution: We propose a hierar-
chical subtree convolution pooling operation. For each node
in the aligned graph, we construct a subtree and perform hier-
archical convolution and pooling on this subtree to extract the
abstracted node information. We then use a more expressive
function than the permutation-invariant readout functions in
the GNNs, to obtain the graph representation. This operation
combines the advantages of the CNNs, such as weight sharing
and fixed-sized filters, while effectively mitigating the over-
squashing problem in the GNNs.

State-Of-The-Art Performance: Extensive experiments
on various benchmark graph datasets demonstrate that our
method achieves superior performance in graph classification
tasks, surpassing the current state-of-the-art results.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the related work on the GNNs and the over-
squashing problem. Section 3 presents the details of the pro-
posed HA-SCN. Section 4 provides the experimental setup
and results, and Section 5 concludes the paper.

2 Related Works
2.1 The Graph Neural Networks (GNNs)
The GNNs have gained significant attention in the field of
graph machine learning [Wu et al., 2021]. For example, the
Spectral GNN [Bruna et al., 2013] designes graph convolu-
tion operations in the Fourier domain using the graph Lapla-
cian matrix. The ChebNet [Defferrard et al., 2016] improves
computational efficiency by employing Chebyshev expansion
of the graph Laplacian polynomial. The GCN [Kipf and
Welling, 2017] simplifies the convolution operation by ag-
gregating only the node features from single-hop neighbors,
transitioning the method to the spatial domain. The Graph-
SAGE [Hamilton et al., 2017] generates node embeddings
by sampling and aggregating features from local neighbors,
which can be extended to large graphs and handle invisible
neighbors. The GIN [Xu et al., 2019] enhances performance
in graph classification tasks by employing more expressive
aggregation functions. The DGCNN [Zhang et al., 2019]
proposes converting unordered node features of fixed sizes,
ordered representations, enabling traditional CNNs to be ap-
plied to graph classification. The PSCN [Niepert et al., 2016]
constructs a fixed-sized local node grid structure by normal-
izing the neighborhood and applying standard convolutional
filters to adjacent nodes.

However, unlike CNNs, most spatial-based methods can-
not achieve weight sharing and local receptive fields, limiting
their performance. Although the DGCNN and PSCN nor-
malize the graph structure, they do not consider node corre-
spondences, which may incur information loss during nor-
malization. To address this, we propose a graph alignment
method that accounts for node correspondences, reducing in-
formation loss and enabling subsequent subtree convolutions
to have weight sharing and local receptive field properties.

2.2 The Over-Squashing on the GNNs
The over-squashing problem is a significant challenge in the
GNNs [Dai et al., 2023; Singh, 2023]. As the number of
layers increases, the receptive field of nodes expands expo-
nentially, leading to the compression of large amounts of in-
formation into fixed-sized node representations. This com-
pression causes information loss. Moreover, simple readout
functions, such as max, average, or sum, exacerbate this issue
by aggregating node representations into a single graph-level
representation. As a result, the GNNs struggle to capture the
topological relationships between nodes, negatively impact-
ing the performance of graph classification tasks.

Recently, several methods have been proposed to address
the over-squashing problem. For example, Alon and Ya-
hav [Alon and Yahav, 2021] introduce a Fully-Adjacent (FA)
layer in the final layer, ensuring that every pair of nodes
is directly connected, which helps alleviate the information
compression issue caused by the expansion of node recep-
tive fields. The Stochastic Discrete Ricci Flow (SDRF) [Top-
ping et al., 2022] method alleviates the over-squashing prob-
lem by modifying negatively-curved edges, thereby enhanc-
ing the flow of information and improving the representa-
tion ability of the graph structure. The First-order Spectral
Rewiring (FoSR) [Karhadkar et al., 2023] method addresses

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: The process framework of the Hierarchical Aligned Subtree Convolutional Network.

the over-squashing problem by optimizing the spectral gap
of the graph input to the GNNs. The Greedy Total Resistance
(GTR) method reduces the effective resistance between nodes
by rewiring edges in the graph, thus alleviating the over-
squashing problem in the GNNs. However, none of these
methods can achieve a fixed-sized receptive field, only pre-
venting the expansion of the receptive field.

3 The Hierarchical Aligned Subtree
Convolutional Network (HA-SCN)

Figure 1 illustrates the process framework of the proposed
HA-SCN method. Step 1: Align to Prototype Graph, we
align the original graphs with a prototype graph, transform-
ing the arbitrary-sized graphs into fixed-sized aligned graphs.
This process establishes nodes correspondences, mitigating
the information loss and node order dependency issues in the
GNNs. Step 2: Grow Subtrees For Each Node, we employ
graph grafting and pruning procedures to grow a normalized
K-layer m-ary subtree for each node in the aligned graphs.
This step is designed to create a local neighborhood struc-
ture for each node, which is essential for the subsequent sub-
tree convolution network. Step 3: Subtree Convolution and
Pooling, we perform the subtree convolution and pooling op-
eration by sliding the convolution kernel over the normalized
subtrees, achieving weight sharing and progressively reduc-
ing the size of the subtrees layer by layer. Step 4: Readout
and Predict, a more expressive Multilayer Perceptron (MLP)
is used to readout the graph representation and make predic-
tions. Below, we introduce these steps in sequence.

3.1 STEP 1: Aligning to Prototype Graph
In this step, we align the original graphs with the proto-
type graph, resulting in a set of aligned graphs. Inspired
by previous works [Bai et al., 2019; Bai et al., 2022a;
Bai et al., 2022b; Bai et al., 2023; Cui et al., 2024], we first
cluster the nodes in the graph using the k-means algorithm to
obtain prototype nodes. Then, we align the nodes of the origi-
nal graph with the prototype nodes that have the most similar
semantic features, producing an alignment matrix. Finally,
we use this alignment matrix to assign the original graph, ob-
taining a fixed-sized grid structure with nodes that have spa-
tial correspondences.

First, we obtain the node representations of the prototype
graph to capture the main features of the nodes in the graph

Figure 2: The process of obtaining the prototype nodes.

dataset, as shown in Figure 2. Let the graph dataset G =
{G1, G2, . . . , GN} consist of N graphs. Assume that there
are n nodes in G, and their feature vectors are represented
as R = {R1, R2, . . . , Rn}. We apply the k-means [Witten et
al., 2011] algorithm to determine M centroids by minimizing
the objective function

argmin
Ω

M∑
j=1

∑
Ri∈cj

∥∥Ri − µj

∥∥2 , (1)

where Ω = {c1, c2, . . . , cM} represents M clusters, and µj

is the mean of the node representations belonging to the j-th
cluster cj . The set PR = {µ1, µ2, . . . , µM} represents the M
prototype node representations of the prototype graph. Next,
we compute the distance between the node features of each
graph Gp and the prototype node representations. Specifi-
cally, each sample graph Gp (where p ∈ {1, . . . , N}) is rep-
resented as Gp(Xp, Ap), with np as the number of nodes, fp
as the feature dimension, Xp ∈ Rnp×fp as the node feature
matrix, and Ap ∈ {0, 1}np×np as the adjacency matrix. We
calculate the distance matrix Dp as

Dp(i, j) = ∥Rp;i − µj∥2 . (2)

The matrix Dp is a np × M matrix, where each element
Dp(i, j) represents the distance between the i-th node repre-
sentation Rp;i of graph Gp and the prototype node µj ∈ PR.
If Dp(i, j) is the smallest in row i, it indicates that node i is
closest to the j-th cluster center, and thus, we align the node
i with the prototype node j. Based on this, we can construct

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

the corresponding alignment matrix Cp ∈ {0, 1}np×M , i.e.,

Cp(i, j) =

{
1 if Dp(i, j) is the smallest in row i,

0 otherwise.
(3)

With the corresponding alignment matrix, we align the sam-
ple graph Gp(Xp, Ap) with the prototype graph, as two ex-
amples are shown in Figure 3. In this step, we adopt an al-
location strategy similar to that of the DiffPool [Ying et al.,
2018]. The aligned graph Ḡp(X̄p, Āp) is then defined as

X̄p = (Cp)
TXp, and Āp = (Cp)

T ÃpCp, (4)

where X̄p ∈ RM×fp is the node feature of the aligned graph,
Āp ∈ {0, 1}M×M is the adjacency matrix, Ãp is the adja-
cency matrix with added self-loops (i.e., Ãp = A+ I).

Figure 3: The examples of obtaining the aligned graphs.

To construct reliable grid structures for graphs, we utilize
the depth-based (DB) representations as the node represen-
tations, which are defined by calculating the entropies of a
series of K-layer expansion subgraphs rooted at a node [Bai
and Hancock, 2014]. It is shown that such a DB representa-
tion encapsulates rich entropy content flow from each local
node to the global graph structure.

3.2 STEP 2: Growing Subtrees for Each Node
In this step, we construct a normalized K-layer m-ary tree for
each node. It comprises two steps: (1) construct a m-ary tree
for each node by the graph grafting and graph pruning algo-
rithm; (2) The leaf nodes of the i-level m-ary tree are further
replaced by their own neighborhood m-ary trees, hence a K-
level m-ary tree is recursively constructed. Below we will
introduce these steps.

Constructing the m-ary Tree
To facilitate the use of a fixed-size filter for subtree convolu-
tion, we standardize the number of leaf nodes for each node.
Given the variability in the number of neighbors for each
node, we employ the graph grafting and graph pruning al-
gorithm to construct the m-ary tree.

Graph Grafting. For the node with less than m 1-hop
neighbors, we use the graph grafting algorithm to select nodes
from its i-hop neighborhood (i ≥ 2) to supplement the m-ary
tree. As illustrated in Figure 4, let m = 3, with the starred
node as the root. The node requires three leaf nodes, but it has
only two 1-hop neighbors. Consequently, nodes are selected
from the 2-hop neighborhood. If the 2-hop neighbors are in-
sufficient, nodes are further chosen from the 3-hop neighbor-
hood, continuing this process until the condition is satisfied.
If more than m nodes are available, nodes with higher PageR-
ank values are prioritized. Finally, the leaf nodes of the m-ary
tree are ranked based on their PageRank.

Figure 4: An example of the Graph Grafting.

Graph Pruning. For the node with more than m 1-hop
neighbors, graph pruning is applied to select the top m nodes
with the highest PageRank values. As shown in Figure 5, the
starred node has four 1-hop neighbors. The blue node with
the lower PageRank is pruned, leaving the remaining three
neighbors to form the m-ary tree.

Figure 5: An example of the Graph Pruning.

Mapping Graphs to Trees
Through graph grafting and pruning, the subgraph of each
node is normalized into an m-ary tree (i.e., the receptive field
size of each node is m + 1). Then we grow the depth of the
tree, by recursively replacing their leaf nodes by their own
neighborhood m-ary trees, resulting in a K-level m-ary tree
for each node. Algorithm 1 details the Mapping Graph to
Tree process.

Algorithm 1 Mapping Graph to Tree
Input: Graph, receptive field size m + 1, PageRank algo-
rithm, graph grafting, graph pruning, depth K
Output: K-level m-ary tree for each node

1: Initialize graph structures.
2: Compute PageRank values for each node.
3: Construct an m-ary tree for each node using graph graft-

ing and pruning algorithms.
4: for i = 2 → i ≤ K do
5: Replace the leaf nodes of the i-level m-ary tree with

their own neighborhood m-ary trees.
6: end for
7: return K-level m-ary tree for each node.

3.3 STEP 3: The Subtree Convolution and Pooling
In this subsection, we perform hierarchical subtree convolu-
tion and pooling operations on the normalized K-layer m-ary
trees, as shown in Figure 6. Specifically, the subtree con-
volution operation uses a fixed-sized convolution kernel and
slides over the subtrees constructed in Step 2 to extract local
features. This operation helps capture the structural informa-
tion within the local neighborhood of each node and enhances
the expressive capability of the model through weight shar-
ing. The subtree pooling operation aggregates the features of

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 6: An example of the Subtree Convolution and Pooling.
Here, K = 3, m = 3, f l−1 = 2 and f l = 3.

each subtree, retaining the most important feature informa-
tion. This operation helps in reducing computational com-
plexity, and hierarchically reducing the size of the subtrees,
thereby improving the graph representation capability. Be-
low, we will introduce these two steps in detail.

The Subtree Convolution
We design a convolution operation on the K-layer m-ary
trees, where a fixed-sized convolution kernel is used to per-
form sliding convolution and extract structural features as the
output of the convolutional layer. This design is similar to the
convolution layers in CNNs, achieving weight sharing and
fixed-sized convolution kernels.

As shown in Figure 6, the orange subtree represents sub-
tree convolution kernels containing m + 1 nodes, and each
ellipse represents a convolutional window. The convolution
operation involves sliding this convolution kernel over each
of these ellipses to perform the convolution. Specifically,
we use W l ∈ R(m+1)×f l−1×f l

to denote the weight ma-
trix of the subtree convolution kernel at layer l, and X l−1 ∈
R(m+1)×f l−1

to represent the features of the nodes in the con-
volution receptive field. Here, the number of input feature
channels for each node is f l−1, and the number of output
feature channels after applying the subtree convolution is f l.
The convolution operation can be defined as

Y l = f(

fl−1∑
i=1

(W l,i ⊙X l−1,i) + bl), (5)

where i corresponds to the input feature dimension, i ∈
{1, . . . , f l−1}, and ⊙ denotes the element-wise multiplica-
tion. bl ∈ R(m+1)×f l

is the bias, and f(·) represents an acti-
vation function. Y l ∈ R(m+1)×f l

is the output of the subtree
convolution. This convolution operation means performing a
weighted summation for each input feature.

The Subtree Pooling
We perform subtree pooling operations within each subtree
receptive field (i.e., the ellipse), pooling the nodes within
each field into a single node, thereby reducing the number
of nodes and parameters. Traditional graph pooling methods,
such as DiffPool [Ying et al., 2018], typically use a GCN
layer to learn the clustering information and perform pooling
over each cluster. In contrast, our pooling operation directly
acts on the output of the previous layer without any prepro-
cessing steps. This allows more efficient processing of the
graph structure. The pooling operation is defined as

X l = f(W l · pool(Y l) + bl), (6)

where W l ∈ R1×f l

and bl ∈ R1×f l

are the weight vector and
bias of the pooling layer. The function pool(·) is typically de-
fined as either max pooling or average pooling, as commonly
used in CNNs.

3.4 STEP 4: Readout and Prediction
After the hierarchical subtree convolution and pooling opera-
tions, each subtree is ultimately reduced to a root node. These
root nodes are then concatenated to represent the entire graph.
We pass this graph feature through an MLP layer to predict
the labels of graphs. Since the nodes in the graph have been
aligned with the prototype graph in Step 1, we are able to
leverage the MLP for prediction, which provides more ex-
pressive power compared to the permutation-invariant read-
out function typically used in the GNNs. To train the model,
we use the cross-entropy loss function, which is commonly
employed for classification tasks.

3.5 Advantages of the HA-SCN Model
The HA-SCN model offers several key advantages that en-
hance its performance and efficiency.

First, by iteratively updating cluster centers using k-means,
the HA-SCN identifies the most representative nodes in the
graph, aligning the nodes of the original graph with the proto-
type graph nodes that share similar semantics. This alignment
process ensures spatial correspondence among the nodes, uti-
lizing information from all nodes in contrast to methods like
the SortPool in the DGCNN, which only retains the highest-
ranking nodes. Moreover, the alignment enables the use of an
MLP as the readout function, effectively reducing informa-
tion loss. The process also leads to a reduction in the number
of nodes, making the graph more uniform and reducing com-
putational complexity in subsequent steps.

Second, through the growth of subtrees, the HA-SCN con-
structs normalized K-layer m-ary trees. This technique helps
achieve parameter sharing and sliding convolution, while also
limiting the size of the receptive field, thus mitigating the
over-squashing problem. By performing convolution within a
fixed-sized subtree, the model ensures better control over the
feature aggregation process.

Third, the HA-SCN employs hierarchical subtree convolu-
tion and pooling operations, where each subtree is progres-
sively abstracted layer by layer. Unlike the traditional GNNs,
where the receptive field grows exponentially with the num-
ber of layers, the HA-SCN maintains a fixed receptive field
size as the network deepens. This fixed-size convolution ker-
nel applied within a fixed-sized receptive field further alle-
viates the over-squashing issue, ensuring that important fea-
tures are preserved as the network depth increases.

4 Experiments
4.1 Experimental Setups
We evaluate the proposed HA-SCN model on seven bench-
mark graph classification datasets of two categories: bioin-
formatics (Bio) and social networks (SN). Detailed descrip-
tions are shown in Table 1. We set the number of nodes

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dataset MUTAG PTC MR PROTEINS D&D IMDB-B IMDB-M REDB

Max Nodes 28 64 620 5748 136 89 3782
Avg Nodes 17.9 25.5 39.1 284.3 19.8 13 429.6
Graphs 188 344 1113 1178 1000 1500 2000
Classes 2 2 2 2 2 3 2
Domain Bio Bio Bio Bio SN SN SN

Table 1: Detailed descriptions of the datasets

in the prototype graph according to the scale of the input
graphs. Specifically, we set it to 16 for the MUTAG dataset,
64 for the D&D and REDB datasets, and 32 for the remain-
ing datasets. For each aligned graph, we choose K = 2 and
m = 3, constructing a 3-layer binary tree for each node. Our
HA-SCN model consists of five layers: one input layer, two
subtree convolution pooling layers for extracting node fea-
ture information, one MLP layer for integrating graph-level
information, and one output layer. In the convolution pooling
layers, we set the number of filters to 32. We use the Adam
optimization algorithm [Kingma and Ba, 2014] for gradient
descent. All weights are randomly initialized from a normal
distribution with mean zero and variance 0.01, and we adopt
ReLU as the activation function and apply average pooling
for readout. To evaluate the classification performance, we
perform 10-fold cross-validation, using nine folds for training
and one fold for testing. The experiment is repeated 10 times,
and we report the average classification accuracies along with
the standard errors. Code is available on GitHub.1

We compare the HA-SCN with seven graph kernel meth-
ods, eleven advanced GNNs, and four GNNs to address
the over-squashing issue. Specifically, the graph kernel
methods include: 1) the RWGK [Gartner et al., 2003], 2)
GK [Shervashidze et al., 2009], 3) WLSK [Shervashidze et
al., 2011], 4) JTQK [Bai et al., 2014], where q = 2, 5)
ASK [Bai et al., 2015], 6) EDBMK [Xu et al., 2021], and
7) QBMK [Bai et al., 2024]. The advanced GNNs include:
five baseline models—1) the DGCNN [Zhang et al., 2019],
2) DiffPool [Ying et al., 2018], 3) ECC [Simonovsky and
Komodakis, 2017], 4) GIN [Xu et al., 2019], and 5) Graph-
SAGE [Hamilton et al., 2017]—as well as six additional ad-
vanced models: 1) the DGK [Yanardag and Vishwanathan,
2015], 2) p-RWNN [Nikolentzos and Vazirgiannis, 2020],
with p = 1, 2, 3, and 3) GKNN WL & GKNN GL [Cosmo et
al., 2024]. The GNNs addressing the over-squashing issue
include: 1) the FA [Alon and Yahav, 2021], 2) SDRF [Top-
ping et al., 2022], 3) FoSR [Karhadkar et al., 2023], and 4)
GTR [Black et al., 2023].

4.2 Experimental Results and Discussion
The classification accuracy and standard error of the exper-
iments are shown in Table 2, Table 3, and Table 4. Since
the alternative kernels are evaluated with the same setup, we
directly use the accuracies from the corresponding literature.
For the baseline GNN models, we adapt the results from the
fair comparison [Errica et al., 2020]. For other GNNs, we
report the best results from their original papers. The Rank
column represents the mean ranking of each method.

1https://github.com/Xiaoqin0421/HA-SCN

Figure 7: The results on different K and m.

Experimental results show that the proposed HA-SCN
model outperforms the compared graph kernels, GNNs, and
models designed to address the over-squashing. The effec-
tiveness of the proposed HA-SCN is threefold.

First, the HA-SCN aligns nodes to a prototype graph,
preserving structural correspondence and enhancing node
feature expressiveness. This overcomes the limitations of
the GNNs and the graph kernels which ignore the node-
matching information, significantly boosting classification
performance. Second, although the ASK, the EDBMK, and
the QBMK kernels consider node-matching information, they
perform pairwise graph alignment. In contrast, our model
aligns sample graphs with a prototype graph, improving the
alignment efficiency. Additionally, we utilize a deep learn-
ing model for learning, which is more effective for learning
compared to shallow C-SVM models for feature extraction.
Third, the HA-SCN employs a subtree convolution and pool-
ing mechanism that provides each node with a fixed-sized
receptive field, preventing excessive information aggregation
and mitigating the over-squashing.

4.3 Hyperparameter Analysis
We perform hyperparameter analysis to study the size of the
subtrees. Specifically, we vary the number of layers K and
the number of leaf nodes m, evaluating their impact on per-
formance. Using the MUTAG, PTC MR, and PROTEINS
datasets as examples, we test on K = 2, 3, 4 and m = 1, 2, 3,
with the results presented in Figure 7.

Based on the experimental results, we find that the HA-
SCN model performs best with a 3-layer binary tree structure.
Specifically, the number of leaf nodes has a significant im-
pact on model performance. When the number of leaf nodes
decreases, the receptive field of each node becomes smaller,
making it difficult to capture sufficient local structural infor-
mation, which affects feature extraction and reduces classifi-
cation accuracy. On the other hand, increasing the number of
leaf nodes may dilute effective node features and introduce
noise, and the additional weight parameters can lead to over-
fitting, decreasing the generalization ability of the model.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/Xiaoqin0421/HA-SCN


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

MUTAG PTC MR PROTEINS D&D IMDB B IMDB M REDB Rank

HA-SCN 90.05±1.14(1) 63.18±1.47(1) 76.28±0.27(1) 79.29±0.39(1) 73.20±0.37(1) 49.87±0.60(1) 88.67±0.25(6) 1.71
DGCNN — — 72.9±3.5(10) 76.6±4.3(6) 69.2±3.0(8) 45.6±3.4(9) 87.8±2.5(7) 8.00
DiffPool — — 73.7±3.5(7) 75.0±3.5(8) 68.4±3.3(10) 45.6±3.4(9) 89.1±1.6(5) 7.80
ECC — — 72.3±3.4(11) 72.6±4.1(10) 67.7±2.8(11) 43.5±3.1(11) — 10.75
GIN — — 73.3±4.0(8) 75.3±2.9(7) 71.2±3.9(2) 48.5±3.3(3) 89.9±1.9(3) 4.60
GraphSAGE — — 73.0±4.5(9) 72.9±2.0(9) 68.8±4.5(9) 47.6±3.5(7) 84.3±1.9(8) 8.40
DGK 82.66±1.45(7) 57.32±1.13(4) 71.68±0.50(12) 78.50±0.22(2) 66.96±0.56(12) 44.55±0.52(10) 77.34±0.18(9) 8.00
1-RWNN 89.2±4.3(2) — 75.7±3.3(2) 77.6±4.7(3) 70.8±4.8(3) 47.8±3.8(6) 90.4±1.9(1) 2.83
2-RWNN 88.1±4.8(4) — 74.1±3.3(6) 76.9±4.6(5) 70.6±4.4(5) 48.8±2.9(2) 90.3±1.8(2) 4.00
3-RWNN 88.6±4.1(3) — 74.3±3.3(5) 77.4±4.9(4) 70.7±3.9(4) 47.8±3.5(5) 89.7±1.2(4) 4.12
GKNN WL 85.73±2.70(5) 59.29±2.54(3) 74.94±1.10(4) — 69.7±2.20(7) 47.87±1.78(4) — 4.60
GKNN GL 85.24±2.28(6) 60.13±1.94(2) 75.36±1.12(3) — 69.90±1.44(6) 45.67±1.22(8) — 5.00

Table 2: Classification accuracy (in % ± standard error) for comparisons with graph kernels

MUTAG PTC MR PROTEINS D&D IMDB B IMDB M REDB Rank

HA-SCN 90.05±1.14(1) 63.18±1.47(1) 76.28±0.27(1) 79.29±0.39(3) 73.20±0.37(1) 49.87±0.60(3) 88.67±0.25(1) 1.57
RWGK 80.77±0.72(8) 55.91±0.37(6) 74.20±0.40(2) 71.70±0.47(7) 67.94±0.77(5) 46.72±0.30(5) 72.73±0.39(5) 5.42
GK 81.66±0.11(7) — 71.67±0.55(5) 78.65±0.27(4) 73.19±0.23(2) 45.42±0.87(6) 77.34±0.18(3) 4.50
WLSK 82.88±0.57(6) 56.05±0.51(5) 73.52±0.43(3) 79.78±0.36(1) 71.88±0.77(4) 49.50±0.49(4) 76.56±0.30(4) 3.85
JTQK 85.50±0.55(5) 57.39±0.46(3) 72.86±0.41(4) 79.49±0.32(2) 72.45±0.81(3) 50.33±0.49(1) 77.60±0.35(2) 2.85
ASK 87.50±0.65(3) — — 70.38±0.72(8) — 50.12±0.51(2) — 4.33
EDBMK 86.35(4) 56.75(4) — 78.19(5) — — — 4.33
QBMK 88.55±0.43(2) 59.38±0.36(2) — 77.60±0.47(6) — — — 3.33

Table 3: Classification accuracy (in % ± standard error) for comparisons with the GNNs

MUTAG PROTEINS IMDB B REDB Rank

HA-SCN 90.05±1.14(1) 76.28±0.27(1) 73.20±0.37(1) 88.67±0.25(4) 1.75
FA 83.45±1.74(4) 72.30±0.67(4) 71.48±0.88(4) 90.22±0.48(3) 3.75
SDRF 82.70±1.78(5) 70.92±0.79(5) 70.21±0.81(5) 86.83±0.52(5) 5.00
FoSR 86.15±1.49(2) 75.25±0.86(3) 71.96±0.69(2) 90.94±0.47(1) 2.00
GTR 86.10±1.76(3) 75.78±0.76(2) 71.49±0.93(3) 90.41±0.41(2) 2.50

Table 4: Classification accuracy (in % ± standard error) for compar-
isons with the GNNs to address the over-squashing issue

Regarding tree depth, if the number of layers is too small,
the model fails to capture deep graph structural features, lead-
ing to insufficient representation of hierarchical features and
negatively impacting classification performance. Conversely,
too many layers may cause excessive information compres-
sion, leading to the loss of important details. Therefore, the
3-layer binary tree structure provides an appropriate receptive
field, with subtree of each node containing 7 nodes, effec-
tively covering sufficient local structural information and al-
lowing the model to perform optimally in classification tasks.

4.4 Visualization
In Figure 8, we visualize the effect of graph alignment of the
proposed HA-SCN model. Figures (a)–(d) and (e)–(h) dis-
play examples from the PROTEINS and D&D datasets, re-
spectively, where different colors represent different clusters.
Figures (a), (c), (e), and (g) show the original graph struc-
ture (gray edges), while the corresponding graphs on the right
overlay the aligned structure, with larger nodes and black
edges indicating the nodes and edges in the aligned graph.
From these figures, it can be seen that nodes with similar rep-
resentations are effectively assigned to the same cluster. This
alignment not only helps aggregate similar nodes, but also
establishes clearer correspondences between the nodes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Visualization of the clustering results.

5 Conclusion
In this paper, we have proposed a novel HA-SCN model for
graph classification, overcoming the limitations of the tradi-
tional GNNs. Our method introduces a novel approach that
transforms graphs into fixed-sized aligned grid structures, es-
tablishing spatial correspondence between nodes. By defin-
ing a new subtree convolution and pooling operation, we hi-
erarchically abstract node information, allowing the model to
capture deeper graph features. This approach effectively mit-
igates the over-squashing problem commonly encountered in
GNNs, enabling more stable and efficient learning. Addition-
ally, the HA-SCN implements effective weight sharing and
uses fixed-sized convolution filters, further enhancing its per-
formance. Experiments on benchmark graph datasets demon-
strate the superior classification performance of the HA-SCN.
In future work, we will explore the use of other aligned sub-
structures, such as paths and cycles, and design more effective
and specialized convolutional strategies.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work is supported by the National Natural Science Foun-
dation of China under Grants T2122020, 61602535, and
62172370. This work is also supported in part by the Jin-
hua Science and Technology Plan (No. 2023-3-003a), the
Humanity and Social Science Foundation of Ministry of Ed-
ucation (24YJAZH022), and the Program for Innovation Re-
search in the Central University of Finance and Economics.

References
[Alon and Yahav, 2021] Uri Alon and Eran Yahav. On the

Bottleneck of Graph Neural Networks and its Practical Im-
plications. In Proceedings of ICLR, 2021.

[Bai and Hancock, 2014] Lu Bai and Edwin R. Hancock.
Depth-Based Complexity Traces of Graphs. PR, pages
1172–1186, 2014.

[Bai et al., 2014] Lu Bai, Luca Rossi, Horst Bunke, and Ed-
win R. Hancock. Attributed Graph Kernels Using the
Jensen-Tsallis q-Differences. In Proceedings of ECML-
PKDD, pages 99–114, 2014.

[Bai et al., 2015] Lu Bai, Luca Rossi, Zhihong Zhang, and
Edwin R. Hancock. An Aligned Subtree Kernel for
Weighted Graphs. In Proceedings of ICML, pages 30–39,
2015.

[Bai et al., 2019] Lu Bai, Yuhang Jiao, Lixin Cui, and Ed-
win R. Hancock. Learning Aligned-Spatial Graph Convo-
lutional Networks for Graph Classification. In Proceed-
ings of ECML-PKDD, pages 464–482, 2019.

[Bai et al., 2022a] Lu Bai, Lixin Cui, and Edwin R. Han-
cock. A Hierarchical Transitive-Aligned Graph Kernel
for Un-Attributed Graphs. In Proceedings of ICML, pages
1327–1336, 2022.

[Bai et al., 2022b] Lu Bai, Lixin Cui, Yuhang Jiao, Luca
Rossi, and Edwin R. Hancock. Learning Backtrackless
Aligned-Spatial Graph Convolutional Networks for Graph
Classification. TPAMI, pages 783–798, 2022.

[Bai et al., 2023] Lu Bai, Yuhang Jiao, Lixin Cui, Luca
Rossi, Yue Wang, Philip S. Yu, and Edwin R. Hancock.
Learning Graph Convolutional Networks Based on Quan-
tum Vertex Information Propagation. TKDE, pages 1747–
1760, 2023.

[Bai et al., 2024] Lu Bai, Lixin Cui, Ming Li, Yue Wang, and
Edwin Hancock. QBMK: Quantum-based Matching Ker-
nels for Un-attributed Graphs. In Proceedings of ICML,
pages 2364–2374, 2024.

[Black et al., 2023] Mitchell Black, Zhengchao Wan, Amir
Nayyeri, and Yusu Wang. Understanding Oversquashing
in GNNs through the Lens of Effective Resistance. In Pro-
ceedings of ICML, pages 2528–2547, 2023.

[Bruna et al., 2013] Joan Bruna, Wojciech Zaremba, Arthur
Szlam, and Yann LeCun. Spectral Networks and Lo-
cally Connected Networks on Graphs. arXiv preprint
arXiv:1312.6203, 2013.

[Chen et al., 2022] Huiyuan Chen, Chin-Chia Michael Yeh,
Fei Wang, and Hao Yang. Graph Neural Transport Net-
works with Non-Local Attentions for Recommender Sys-
tems. In Proceedings of WWW, 2022.

[Cosmo et al., 2024] Luca Cosmo, Giorgia Minello,
Alessandro Bicciato, Michael M. Bronstein, Emanuele
Rodolà, Luca Rossi, and Andrea Torsello. Graph kernel
neural networks. TNNLS, pages 1–14, 2024.

[Cui et al., 2024] Lixin Cui, Lu Bai, Xiao Bai, Yue Wang,
and Edwin R. Hancock. Learning Aligned Vertex Convo-
lutional Networks for Graph Classification. TNNLS, pages
4423–4437, 2024.

[Dai et al., 2023] Shi Dai, Andi Han, Lequan Lin, Yi Guo,
and Junbin Gao. Exposition on Over-Squashing Problem
on GNNs: Current Methods, Benchmarks and Challenges.
arXiv preprint arXiv: 2311.07073, 2023.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
son, and Pierre Vandergheynst. Convolutional Neural Net-
works on Graphs with Fast Localized Spectral Filtering. In
Proceedings of NeurIPS, pages 3844–3852, 2016.

[Errica et al., 2020] Federico Errica, Marco Podda, Davide
Bacciu, and Alessio Micheli. A Fair Comparison of Graph
Neural Networks for Graph Classification. In Proceedings
of ICLR, 2020.

[Gartner et al., 2003] Thomas Gartner, Peter A. Flach, and
Stefan Wrobel. On Graph Kernels: Hardness Results and
Efficient Alternatives. In Proceedings of COLT, pages
129–143, 2003.

[Hamilton et al., 2017] William L. Hamilton, Rex Ying, and
Jure Leskovec. Inductive Representation Learning on
Large Graphs. In Proceedings of NeurIPS, pages 1025–
1035, 2017.

[Jing et al., 2021] Bowen Jing, Stephan Eismann,
Pratham N. Soni, and Ron O. Dror. Equivariant Graph
Neural Networks for 3D Macromolecular Structure. arXiv
preprint arXiv:2106.03843, 2021.

[Karhadkar et al., 2023] Kedar Karhadkar, Pradeep Kr.
Banerjee, and Guido Montúfar. FoSR: First-Order Spec-
tral Rewiring for Addressing Oversquashing in GNNs. In
Proceedings of ICLR, 2023.

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba.
Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-Supervised Classification with Graph Convolutional
Networks. In Proceedings of ICLR, 2017.

[McAuley and Leskovec, 2012] Julian McAuley and Jure
Leskovec. Learning to Discover Social Circles in Ego Net-
works. In Proceedings of NeurIPS, pages 539–547, 2012.

[Min et al., 2021] Shengjie Min, Zhan Gao, Jing Peng,
Liang Wang, Ke Qin, and Bo Fang. STGSN — a
Spatial–Temporal Graph Neural Network Framework for
Time-Evolving Social Networks. KBS, 2021.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Niepert et al., 2016] Mathias Niepert, Mohamed Ahmed,
and Konstantin Kutzkov. Learning Convolutional Neu-
ral Networks for Graphs. In Proceedings of ICML, page
2014–2023, 2016.

[Nikolentzos and Vazirgiannis, 2020] Giannis Nikolent-
zos and Michalis Vazirgiannis. Random Walk Graph
Neural Networks. In Proceedings of NeurIPS, pages
16211–16222, 2020.

[Shervashidze et al., 2009] Nino Shervashidze, S. V. N.
Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. Efficient Graphlet Kernels for Large Graph
Comparison. In Proceedings of AISTATS, pages 488–495,
2009.

[Shervashidze et al., 2011] Nino Shervashidze, Pascal
Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. Weisfeiler-Lehman Graph
Kernels. JMLR, pages 2539–2561, 2011.

[Simonovsky and Komodakis, 2017] Martin Simonovsky
and Nikos Komodakis. Dynamic Edge-Conditioned
Filters in Convolutional Neural Networks on Graphs. In
Proceedings of CVPR, pages 29–38, 2017.

[Singh, 2023] Akansha Singh. Over-Squashing in Graph
Neural Networks: A Comprehensive Survey. arXiv
preprint arXiv: 2308.15568, 2023.

[Topping et al., 2022] Jake Topping, Francesco Di Gio-
vanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding Over-Squashing
and Bottlenecks on Graphs via Curvature. In Proceedings
of ICLR, 2022.

[Wang et al., 2023] Yu Wang, Yuying Zhao, Yi Zhang, and
Tyler Derr. Collaboration-Aware Graph Convolutional
Networks for Recommendation Systems. In Proceedings
of WWW, pages 91–101, 2023.

[Witten et al., 2011] Ian H. Witten, Eibe Frank, and Mark A.
Hall. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Publishers Inc., 3rd
edition, 2011.

[Wu et al., 2021] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and Philip S. Yu. A Com-
prehensive Survey on Graph Neural Networks. TNNLS,
pages 4–24, 2021.

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How Powerful are Graph Neural Net-
works? In Proceedings of ICLR, 2019.

[Xu et al., 2021] Lixiang Xu, Lu Bai, Xiaoyi Jiang, Ming
Tan, Daoqiang Zhang, and Bin Luo. Deep Rényi Entropy
Graph Kernel. PR, 2021.

[Yan et al., 2023] Yujun Yan, Gao Li, and Danai Koutra.
Size Generalizability of Graph Neural Networks on Bio-
logical Data: Insights and Practices from the Spectral Per-
spective. arXiv preprint arXiv:2305.15611, 2023.

[Yanardag and Vishwanathan, 2015] Pinar Yanardag and
S.V.N. Vishwanathan. Deep Graph Kernels. In Proceed-
ings of KDD, pages 1365–1374, 2015.

[Ying et al., 2018] Rex Ying, Jiaxuan You, Christopher Mor-
ris, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Hierarchical Graph Representation Learning with Dif-
ferentiable Pooling. In Proceedings of NeurIPS, page
4805–4815, 2018.

[Zhang et al., 2019] Muhan Zhang, Zhicheng Cui, Marion
Neumann, and Yixin Chen. An End-to-End Deep Learn-
ing Architecture for Graph Classification. In Proceedings
of AAAI, pages 4438–4445, 2019.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


