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Abstract

We introduce DisPIM, a framework that leverages
pretrained image models (PIMs) for visuo-motor
control. Applying PIMs to visuo-motor control
faces a big difficulty due to the distribution shift
between the distribution of visual environmental
states and that of the pretraining datasets. Due to
such a distribution shift, fine-tuning PIMs specifi-
cally for visuo-motor control may hurt the general-
izability of PIMs, while adding additional tunable
parameters for specific actions apparently leads to
high computational costs. DisPIM addresses these
challenges using a novel feature distillation ap-
proach, which obtains a compact model that not
only inherits the generalization capability of PIMs
but also acquires task-specific skills for visuo-
motor control. This good for both sides is mainly
achieved by means of a target Q-ensemble mech-
anism, which is inspired by double Q-learning.
This Q-ensemble mechanism can adaptively adjust
the distillation rate, so as to balance the objective
of generalization and task-specific ability during
training. With this balancing mechanism, DisPIM
achieves both task-specific and generalizable con-
trol requiring a low computation cost. Across a
series of algorithms, task domains, and evaluation
metrics in both simulation and a real robot, our
DisPIM demonstrates significant improvements in
generalization and overall performance with low
computational overhead.

1 Introduction

Visuo-motor control, which involves training a robot to make
decisions based on visual inputs, may benefit from large-
scale pretrained image models (PIMs). Recently, PIMs such
as SAM [Kirillov et al., 2023] and MAE [He et al., 20221,
have shown promise in performing visual control tasks in a
zero-shot manner. Inspired by their success, researchers have
begun applying PIMs to visuo-motor control by processing
observation frames, given that these models were pretrained
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Figure 1: Pipeline comparison between (a) Learning from Scratch
(LFS), (b) Learning from Pretraining (LFP), (c) Ensemble, (d) Our
distillation framework, and (e) The experiments of real robot in our
work

on out-of-domain datasets. Compared to Learning-From-
Scratch (LFS) methods (Figure 1 (a)), Learning-From-PIMs
(LFP) (Figure 1 (b)) can effectively enhance the generaliza-
tion capability of visuo-motor control.

Nevertheless, directly applying PIMs to visuo-motor con-
trol faces great challenges, primarily due to the distribution
shift between the visual states in environments and the large-
scale datasets in pretraining [Yang et al., 2023]. While fine-
tuning PIMs on the specific control task seems like a possible
good solution, recent studies have shown that such fine-tuning
often leads to a significant loss of the model’s pretrained gen-
eralization abilities [Yuan et al., 2022]. An alternative so-
lution is to employ ensemble models (Figure 1 (c)), which
combine LFS and LFP approaches to harness their respective
strengths and potentially mitigate distributional shift issues
[Lin er al., 2023]. As illustrated in Figure 2, the ensemble
method outperforms LFS, LFP, and fine-tuned PIMs in the
PixMC generalization benchmark [Xiao et al., 2022]. Un-
fortunately, ensemble models introduce additional complex-
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Figure 2: Comparison of generalization capability on the PixMC
benchmark [Xiao et al., 2022]. Bubble size indicates the number
of parameters in the models. A higher number of GFLOPs im-
plies greater computational demands during the test phase. Our
method achieves a better balance between generalization capabil-
ity and computational cost.

ity and computational overhead (e.g., higher GFLOPs), which
can be prohibitive in resource-constrained environments.

In contrast to the trend of using larger PIMs or complex
ensemble models, our study turns attention to downsizing the
model while keeping their generalization capability in visuo-
motor control. This leads to a critical question: How can
we effectively transfer the generalization capability of exist-
ing PIMs to a small one, thereby retaining the generaliza-
tion capability with minimal computational cost? Drawing
inspiration from transfer learning in computer vision [Wu et
al., 2022], this work attempts to answer the question from
the perspective of feature-based distillation [Romero et al.,
2014]. Feature-based distillation enables a small LFS model
to mimic the output of a PIM, thereby allowing a small model
to acquire similar generalization capability. However, apply-
ing feature-based distillation directly to visuo-motor control
often results in unstable training, as shown in Figure 5. The
distillation process acts as a regularization term. If the small
model is pushed too closely to the PIM, it may compromise
task-specific learning needed for visual control tasks. Con-
versely, emphasizing task-specific learning too much might
lose the generalization capacity, a challenge we refer to as
“Unbalanced Feature Distillation.”

To address these challenges, we propose DisPIM, a
novel feature distillation framework for visuo-motor control.
DisPIM enables a control model to be both task-specific and
generalizable while requiring low computational costs dur-
ing the test phase. As shown in Figure 1 (d), “task-specific”
is achieved through end-to-end training with a policy head,
while the “generalizable” capability is achieved by using a
PIM as a teacher to transfer pretrained knowledge to the
smaller model.

The key innovation of our DisPIM is the Q-dynamic fea-
ture distillation mechanism. Inspired by double Q-learning
that reduces the overestimation bias by using two indepen-
dent Q-functions, the Q-dynamic mechanism employs a Q-
ensemble module. This module dynamically balances gener-
alization and task-specific learning. It adjusts the distillation
rate, allowing the LFS encoder to maintain the generalization
abilities of the LFP encoder without sacrificing task-specific

knowledge. Thus, the issue of “Unbalanced Feature Distil-
lation” is resolved. Additionally, the Q-ensemble module
can be combined with upper-confidence bound (UCB) explo-
ration to further enhance the agent’s performance.

We thoroughly evaluate the performance of our DisPIM
framework on three widely used generalization benchmarks:
DMC-GB [Hansen and Wang, 2020], DrawerWorld [Wang
et al., 2021], and PixMC [Xiao et al., 2022]. We also per-
form real-world experiments in Aubo i5 robot. ' In all
evaluations, our method demonstrates superior performance,
showcasing its effectiveness and versatility. We highlight the
contributions of this paper as follows:

1. We propose DisPIM, an effective framework for gener-
alizable visuo-motor control. It effectively enables an
control model to be both task-specific and generalizable
under a small computational cost.

2. We introduce a Q-dynamic feature distillation approach
to solve the “Unbalanced Feature Distillation” problem,
ensuring that the model simultaneously achieves both
task-specific and generalizable capability.

3. We perform extensive evaluations of different methods
both in simulation and a real robot, showing significant
improvement of our method in generalization capability.

2 Related Work

2.1 Pretrained Image Models for Generalizable
visuo-motor control

Using pretrained image models (PIMs) for visuo-motor con-
trol has achieved promising results [Xiao et al., 2022; Yen-
Chen et al., 2020; Shridhar et al., 2022; Khandelwal et al.,
2022; Ebert et al., 2021]. For example, RRL [Shah and
Kumar, 2021] and PIE-G [Yuan et al., 2022] use pretrained
ResNet [He ef al., 2015] for state representation learning that
can generalize to unseen visual scenarios in a zero-shot man-
ner. VRL3 [Wang er al., 2022] proposes a multi-stage pre-
trained framework for solving visual control tasks. APV [Seo
et al., 2022] introduces a framework that learns representa-
tions useful for understanding the dynamics via generative
pre-training on videos. Some studies [Banino er al., 2021;
Du et al., 2023] investigate the use of pretrained visual-
language models such as BERT [Devlin et al., 2018] for un-
derstanding and interpreting visual scenarios. Other works
[Chen et al., 2024; Wang et al., 2023] leverage the prompt-
able segmentation of SAM [Kirillov er al., 2023] to enhance
the generalization capabilities. However, most of the above
methods require additional computational costs during fine-
tuning or directly using the ensemble model. Our proposed
DisPIM leverages LFP and the LFS model during the training
phase, while only using the LFS model for testing, which has
a low computational cost.

2.2 Feature-based Knowledge Distillation

Knowledge distillation is a technique for transferring knowl-
edge from a teacher model to a student model. Mainstream

'https://www.aubo-robotics.cn/
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Figure 3: Overview of our DisPIM framework.

distillation methods can be broadly classified into three cat-
egories: logits-based [Hinton et al., 2015], similarity-based
[Tung and Mori, 2019], and feature-based [Romero et al.,
2014]. Research has indicated that feature-based distillation
offers clearer optimization targets and surpasses the perfor-
mance of the other two methods [Chen et al., 2022a].

Several studies have explored distilling PIMs into more
compact models through feature-based knowledge distilla-
tion. For instance, CLIPPING [Pei et al., 2023] empha-
sizes model compression, aiming to comprehensively transfer
knowledge from a large Clip4clip model [Luo et al., 2021]
to MobileViT-v2 [Mehta and Rastegari, 2022]. Meanwhile,
VLKD [Dai er al., 2022] focuses on aligning the features of
the language model with the CLIP model and then integrating
them into a multi-modal generator. All of these methods have
the common goal of distilling knowledge from one model to
another. Differently, in our case, we have two distinct objec-
tives: preserving the generalization capability of a PIM and
ensuring effective task-specific capability.

To balance these two objectives, we do not simply use a
feature-based distillation method. Instead, we carefully de-
signed a feature distillation method for visuo-motor control
tasks based on a Q-ensemble. Our DisPIM allows for the
flexible adaptation of features from PIMs to the LFS model
without sacrificing task-specific capability.

3 Background
3.1 Visuo-Motor Control with MDP

We formulate the problem of visuo-motor control as a
Markov Decision Process (MDP) [Bellman, 19571, which is
defined as a tuple (S, A, P, R,~). Here, S is the state space,
A is the action space, P : S x A — A(S) is the transition
function of system that defines a probability distribution over
the next state given the current state and action, where A(S)
is the distribution over the state space S. The reward function
R : S8 x A — [0,1] assigns a scalar reward to each state-
action pair (s, at), and vy € [0, 1) is the discount factor. The
objective is to learn a policy 7 that maximizes the expected
discounted sum of rewards:

o
L= Esmamshah"' [Z ’Ytrt‘| (1)
t=0

where sg is the initial state and a, = 7(s;) is the action cho-
sen by the policy at timestep ¢.

3.2 Feature-based Distillation

The feature-based distillation is achieved by enforcing the
feature consistency between the teacher and student models:

L
_ ) _ r(s)
Lrp = N EN IIf Iz, ()

where f(t), f(s) and N denote the teacher model, student
model, and batch size, respectively. The objective of our
DisPIM is to improve the generalization capability in the LFS
model, which is crucial for visuo-motor control tasks.

3.3 Generalization

Given a training environment M,, and a set of testing en-
vironments st = {Mps1, Mpto, ..., Myuim}, where
each environment M, is defined as a MDP represented
by a tuple (S;, A;, P;, R;,7;). The objective of generaliz-
able visuo-motor control is to learn a control policy 7* =
arg maxy B, ~p,,0in (M) [0, ()] in the training phase that
generalizes well across both the training and testing environ-
ments. The policy 7* should perform well in training envi-
ronments (task-specific), while also performing well in the
unseen testing environments (generalizable).

4 Method

In this section, we first provide a brief overview of the overall
workflow of DisPIM. Then, we introduce our design moti-
vations and specific implementations. Finally, we integrate
an effective exploration technique into our DisPIM for explo-
ration.

4.1 Method Overview

To achieve the above goal, we now present the overview of
our DisPIM, as illustrated in Figure 3. In the Training stage,
DisPIM uses three primary components: (1) Feature Distil-
lation Module, (2) Q-ensemble Module, and (3) Exploration
Module.

At each time step ¢, the agent receives a pixel observation
o¢. Initially, we employ an LFP encoder f and an LFS en-
coder g to acquire the frozen and learnable feature represen-
tation 2 = f(o;) € R” and 2, = g(0;) € R, respectively.
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[Huang et al., 2024]. (c) The proposed Q-dynamic feature distillation employs a Q-ensemble to achieve dynamic balance in feature learning.
Our method aims to simultaneously optimize generalization capability and task-specific knowledge, enhancing the overall performance of the
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Subsequently, these two representations are fed into two ran-
domly initialized actor-critics to make decisions, respectively.
At the same time, we take the LFP encoder as a teacher and
use Q-ensemble for feature distillation. Finally, we use a ucb-
based technique for exploration. In the Test stage, only the
LES encoder is used to visuo-motor control. Next, we present
our DisPIM in detail.

4.2 Q-Dynamic Feature Distillation for control

Using an LFP encoder as the teacher model, the two common
methods for implementing feature-based distillation are illus-
trated in Figure 4 (a) [Chen erf al., 2022b] and (b) [Huang et
al., 2024]. The method in Figure 4 (a) is to apply a projector
to map z, from the student space to the teacher space. This
way expects the projection MLP(z,) to remain the same as
the pretrained ones zy, while relaxing the constraints on z,
for fitting the control tasks. However, under such a condi-
tion, the distillation loss Lrp = ||zy — M LP(z,)||2 would
be too loose for z, to keep close with z;, thereby limiting its
generalization capability.

The other common way (as shown in Figure 4 (b)) is to use
a residual network for balancing the two learning objectives
when conducting distillation. This design allows the LFS fea-
tures to effectively receive supervision from generalized ones

while also keeping task-specific. As shown in Figure 4 (b),
this design applies a residual network h on z4 to transform its
representation with an MLP projector and an identity map-

ping:
h(zg) = 2y + W x MLP(z,) 3)

where W is a hyperparameter that is used to balance the learn-
ing of generalization and task-specific capability. In this way,
the generalizable target z; can directly guide the generaliz-
able learning of z; but not enforce z, to be the same as zy,
which makes it flexible for z, to fit the control tasks.

Nevertheless, we found that when incorporating the above
residual distillation network structure for visuo-motor control
tasks, the balancing hyperparameter W plays a crucial role in
training stability. As shown in Figure 5, when the residual
weight W is set to a small number (W = 0.1), the embed-
ding space of z, is largely constrained by the teacher model,
causing rapid convergence in the early stages but a sharp de-
cline later on. Conversely, with a large W (W = 0.9), z, may
overfit the training task, reducing generalization. Although
the training curve converges smoothly, the convergence rate
slows down. Based on these observations, we demonstrate
that the control performance can be significantly penalized if
W is not dynamically adjusted, as different training stages
require different values for optimal stability and learning pro-
gression. Therefore, an intuitive idea is to relate the distilla-
tion ratio W to control performance.

Similar to how Double Q-learning addresses the over-
estimation of Q-values by using multiple Q-functions, we
consider dynamically calculating W through a Q-ensemble
mechanism. As shown in Figure 4 (c), we apply an ensemble
of two control agents {Qy,, Ty, }7_;, where 6; and ¢; denote
the parameters of the ¢-th Q-function and policy, respectively.
Each Q-function has a unique target Q-function ), . For each
agent ¢, we consider a Q-dynamic weight based on an ensem-
ble of target Q-functions:

Wy(s,a) =20 (—Qstd(s, a)) ()]

where o is the sigmoid function and Q4(s,a) is the



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

empirical standard deviation of all target Q-functions 2
{Qg,}7_,. Note that the W,(s,a) is bounded in [0, 1], be-
cause Qg:q(s, a) is always positive.

By dynamically linking the distillation ratio to the evalua-
tion of state-action pairs through the Q-functions, the model
optimizes the knowledge distillation process based on the ac-
tual performance of each state-action pair during training,
avoiding the issues caused by a fixed distillation ratio.

After obtaining the transformed vector Z, = h(z,) = z4 +
Wy x MLP(z,4), we can use the LFP model as the teacher to
distill knowledge. The distillation loss can be written as:

N
Lpp = Z | f(0:) — h(g(or))ll2 ®)

The overall learning objective is then the combination of
reinforcement learning and distillation losses:

L=Lgrr+Lrp (6)

Where Lgy is a certain reinforcement learning algorithm
loss, such as PPO [Schulman et al., 2017], DrQ-v2 [Yarats
etal., 2021].

4.3 UCB Exploration

Since the ensemble can express higher uncertainty on unseen
samples, it can also be leveraged for efficient exploration [Os-
band ef al., 2016], as shown in Figure 3. We consider an
optimism-based exploration that chooses the action by the
following:

at = mfx{Qmean(Sta a) + AQsta(st,a)} @)

where @Qeqn and Qs:q are the empirical mean and standard
deviation of all parameterized Q-functions, and A is a hyper-
parameter. This inference method was originally proposed in
[Osband e al., 2016] for efficient exploration in DQN [Mnih
et al., 2013]. In this work, we extend it to our ensemble learn-
ing framework for better exploration.

4.4 Implementation

For the teacher encoder, we use the ViT-Small Encoder
[Dosovitskiy er al., 2020] with a 16 x 16 patch size, 384 hid-
den sizes, 6 attention heads, and 12 blocks. We use the MAE
framework [He er al., 2022] to pretrain the teacher model on
the TmageNet dataset [Deng er al., 2009]. For the student en-
coder, we use a 6-layer transformer encoder, with the other
parameters being the same as those of the teacher encoder.

S Experiments

5.1 Benchmark

DMC-GB [Hansen and Wang, 2020]. We evaluate the ro-
bustness in terms of the visual background changes on DMC-
GB. Models are trained in an original DMControl environ-
ment [Tassa et al., 2018], and we measure generalization to

Qsta = \/% ((Qé1 — 10)* + (Qa, — MQ)2>9 where pg =

Qg, +Qg,
2

Training

Visual Background Changes

Figure 6: The visualization of DMC-GB, DrawerWorld, and PixMC
benchmark.

environments with natural videos as background. This set-
ting consists of more complicated and fast-switching video
backgrounds that are drastically different from the training
environments, as shown in Figure 6.

DrawerWorld [Wang et al., 2021]. We measure gener-
alization on surfaces of different textures, which are unlike
the grid texture used for training. These tasks are extremely
challenging for two main reasons: 1) The agent has never en-
countered any realistic textures during training; 2) Each tex-
ture has a different color, requiring the agent to handle both
color changes and texture changes simultaneously.

PixMC [Xiao et al., 2022]. We also evaluate our method
on the PixMC benchmark, which is different from DMC-GB
and MetaWorld. These tasks vary in interaction type and diffi-
culty, and there is variability in objects and locations between
different episodes.

5.2 Baselines

We compare DisPIM with three different types of baseline
methods: the LFS methods, the ensemble methods, and the
LFP methods. The LFS methods include: (1) SAC [Haarnoja
et al., 2018]: a widely used off-policy RL algorithm; (2)
DrQ-v2 [Yarats et al., 2021]: the state-of-the-art LFS algo-
rithm in terms of continuous control; The Ensemble methods
include: (3) SpawnNet [Lin ef al., 2023]: the state-of-the-art
method in terms of generalization through ensemble learning;
The LFP methods include: (4) PIE-G [Yuan et al., 2022]:
another state-of-the-art method for generalization by using a
pretrained ResNet encoder. (5) FTD [Chen et al., 2024]: a
state-of-the-art generalization reinforcement learning method
that employs the SAM model [Kirillov et al., 2023], enabling
the agent to make decisions based solely on task-relevant ob-
jects.

For a fair comparison, all baselines employ the same data
augmentation method (random shift and overlay augmenta-
tion). All experimental results are the average of five random
seeds.
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DMC-GB

(video hard) DrQ-v2 SpawnNet PIE-G FTD Ours
Cartpole, 13043 352463 401421 207426 | 60459
Swingup

Walker, Stand | 15113 885436 852456 421138 | 932446

Walker, Walk | 34+11  623+73 600428 39649 | 701431

Cup, Catch | 97427  799+121 786447 658+87 | 813+24

Cheetah, Run | 2345 161427 154417 229443 | 223+15

Finger, Spin | 2144 820418 762459 5914146 | 916+43
Average | 76 607 592 417 | 698

Table 1: Generalization results on the DMC-GB benchmark. Mean
and std of 5 seeds are reported. Our method are robust on visual
background changes.

Setting | SAC  DrQ-v2 SpawnNet PIE-G FTD | Ours
Training | 100% 98% 98% 9%  98% | 99%
Metal 0% 46% 76% 70%  71% | 86%
Wood 0% 32% 64% 56%  58% | 70%
Blanket 0% 8% 76% 1%  68% | 78%

Average | 25% 46% 79% T4%  T4% | 83%

Table 2: Generalization on DrawerWorld benchmark. Evaluation
on tasks with distracting textures. Our method is robust to texture
changes.

5.3 Simulation

Generalization on DMC-GB Benchmark (visual back-
ground changes). The generalization capability of DisPIM
and the baselines were evaluated on the DMC-GB bench-
mark. We evaluate DisPIM on the challenging generalization
setting: video hard, and compare with several recent state-of-
the-art baselines. Results are shown in Table 1. We find that
DisPIM outperforms state-of-the-art methods in all instances.

LFS methods (DrQ-v2) hardly acquire any improvement
during the test phase. This indicates that when facing envi-
ronments distracted by task-irrelevant backgrounds, the LFS
representations are insufficient to assist the model in solv-
ing the task. The ensemble method (SpawnNet) simultane-
ously employs LFS and LFP encoders. Therefore, SpawnNet
demonstrates effectiveness in generalization tasks. However,
the parameter count and computational load of the ensemble
are substantial, making it challenging to implement in prac-
tical applications. LFP methods (FTD and PIE-G) also sig-
nificantly outperform the LFS method in generalization tasks.
However, due to their lack of task-specific capability, the po-
tential of these methods is constrained. DisPIM uses only the
LFES encoder for generalization. Therefore, DisPIM not only
performs well in all tasks but also has fewer parameters than
these methods.
Generalization on DrawerWorld Benchmark (visual tex-
ture changes). We also tested our DisPIM on the Drawer-
World benchmark with different background textures. The
action space contains the end-effector positions in 3D. We
use the success rate as the evaluation metric for its goal-
conditioned nature. From Table 2, we observe that DisPIM
can achieve better or comparable generalization performance
in all settings.

Vision encoder sensitivity to textures poses a big challenge

Setting | SAC DrQ-v2 SpawnNet PIE-G FTD | Ours
Training | 43% T4% 91% 90%  83% | 91%
Shape 0% 52% 86% 82% 71% | 87%
Color 0% 41% 77 % T4%  68% | 75%
Size 0% 28% 61% 59%  44% | 68%
Average ‘ 11% 49% 78% 76%  67% ‘ 81%

Table 3: Generalization on PixMC benchmark. Evaluation on tasks
with a distractor object. Our method is robust against the distractor
object.
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Figure 7: Real world manipulation results. We evaluate each method
on each task over 20 trials. We report the mean and standard error.

for visual adaptation. 1) LFS methods, i.e., SAC and DrQ-
v2, break down during texture testing, as textures are not uti-
lized during the training process. 2) LFP (PIE-G and FTD)
and ensemble methods (SpawnNet) have learned the textures,
shapes, colors, and other features of images during the pre-
training process. These methods are able to leverage the gen-
eralization capability of the pretrained representations to rec-
ognize and understand these new textures. 3) DisPIM and
SpawnNet both utilize pretrained and LFS Encoders. How-
ever, SpawnNet only combines the pretrained representa-
tions and LFS representations in equal proportions, while our
method employs Q-dynamic feature distillation enabling dy-
namic transfer learning. Consequently, DisPIM demonstrates
strong generalization capability with low computational cost,
as shown in Figure 2.

Generalization on PixMC Benchmark (visual shape
changes). We introduce a distractor at test time that varies
from the training object in color, shape, and size. Table 3
shows that our DisPIM outperforms baselines in the Franka
environment. In particular, DisPIM improves the agent’s gen-
eralization capability with respect to various colors, shapes,
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and sizes, while LFS methods could barely generalize to these
changes. We attribute this to the LFS encoder’s lack of fea-
ture learning capability for shape variations. While ensemble
methods and LFP approaches possess the capability to recog-
nize variations in object shapes, their task success rates are
inferior to our method, owing to the absence of task-specific
knowledge within their encoders.

5.4 Real Robot Experiments

We conduct real robot experiments using an Aubo i5 robot.
We perform online training on the simulator and deployed the
model directly on the Aubo i5 robot to conduct experiments
on the Lift Duck and Pick&Place tasks (shown in Figure 1).

The experimental results are presented in Figure 7. For
each baseline, we conduct 20 trials per task and recorded the
success rates. We observe that DisPIM performs better than
baselines in both the simulator and real robot. On the one
hand, for tasks with random locations (Lift Duck), all base-
lines fail to achieve 50% success rates while DisPIM achieves
greater than 50%. Because DisPIM has the benefits from en-
semble training with UCB exploration. On the other hand,
for tasks with fix location but complex visual background
(Pick&Place), all the algorithms fail to achieve 50% success
rate. This is because the model has not been fine-tuned on a
real robot, direct deployment of the model results in very low
success rates for all algorithms.

5.5 Ablation Study

‘We conduct a series of ablation studies to take a close at the
proposed method.

Effectiveness of UCB exploration

To verify the effects of UCB exploration in our framework,
we evaluate it on the PixMC manipulation task because this
environment is relatively demanding for exploration. We con-
sider a variant of DisPIM, which selects actions without UCB
exploration during training. As shown in Figure 8§, DisPIM
with UCB exploration (green curve) significantly improves
the sample efficiency in the environment.

Effect of student model size

We analyze the effect of student model size on the Franka en-
vironment from PixMC. Figure 8 shows that the performance
of the agent can be improved by increasing the model size,
but the improvement is saturated around 6 layers. Thus, we
use a 6-layer student encoder for all experiments.

Adopting the teacher encoder for control

We analyze the effect of directly using the teacher encoder for
visuo-motor control after training. Figure 8 shows that the
teacher encoder achieves a suboptimal control performance
in the Franka environment. This result is consistent with the
simulation experiment results in the simulation section. Due
to its lack of task-specific capability, the potential of the LFP
encoder is constrained.

Adopting other PIMs as the teacher model

We investigate the efficacy of other PIMs as a teacher model
in our DisPIM. MoCo-v3 [Chen et al., 2021] is a pretrained
ViT optimized via contrastive learning. Table 4 shows that

Task DisPIM  DisPIM (w / MoCo-v3)
Walker Walk 701 + 31 688 + 23
Cheetah Run 223 + 15 201 £+ 19
Walker Stand 931 + 50 925 £+ 51

Table 4: Using other PIMs as the teacher model.

Task ImageNet CLIP Ego4D
Walker Walk 701 £31 720 +30 451 £ 19
Cheetah Run 223+ 15 181 £62 126+ 11
Walker Stand 931 £50 904 +£39 770 +£55

Table 5: Using other datasets to pretrain teacher model.

100
—— DisPIM w/o UCB

DisPIM w/ LFP
—— Layer 12

—— Layer 6 (Ours)
50 Layer 3

—— Layer 2
Layer 1

Success Rate (%)

T 20 40
Environment Steps (x10°)

Figure 8: Learning curves of DisPIM with varying values of student
encoder (LFS encoder) size on the Franka generalization tasks.

DisPIM with MoCo-v3 can also obtain a comparable perfor-
mance. This result demonstrates the flexibility of the DisPIM
framework, which can flexibly apply PIMs as teacher models
for feature distillation.

Adopting other datasets for the teacher model

In addition to ImageNet [Deng et al., 2009], we also uti-
lize another widely recognized dataset to pretrain the teacher
model. These datasets include CLIP [Radford et al., 2021]
(Contrastive Language-Image Pretraining) and Ego4D [Grau-
man et al., 2021] (Daily-life activity videos). Table 5 shows
that the agent pretrained with CLIP achieves comparable per-
formance with those pretrained with ImageNet. Since Ego4D
collects the data with the first-person view, the view differ-
ence between the tasks and dataset leads to a decrease in per-
formance.

6 Conclusion

We propose DisPIM, a compact and effective framework that
enables the control model to leverage both readily available
visual priors and task-specific information while minimizing
computational costs. Our carefully designed DisPIM frame-
work, combined with UCB exploration, not only enhances
performance on training tasks but also crucially preserves
generalization capability to unseen environments. DisPIM
achieves superior performance over state-of-the-art methods
across three challenging benchmarks and real-world robotic
experiments.
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