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Abstract

In single Domain Generalization (single-DG), data
scarcity in the single source domain hampers the
learning for invariant features, leading to overfit-
ting over source domain and poor generalization to
unseen target domains. Existing single-DG meth-
ods primarily augment the source domain by ad-
versarial generation. However, there are still two
key challenges. i) With simple feature perturbation
to confuse the classifier, it may generate unnatural
samples with semantic ambiguity or distortion. ii)
It is still difficult to cover the sufficient shift in a
real domain by generating indistinguishable sam-
ples from source data, thus the learning model is
inescapable from overfitting to the single source
domain. To this end, we turn to augment the do-
main prompt, considering that text prompt pertur-
bation is easier to generate and generalize. Then
the source domain is expanded with the guidance
of augmented text prompts, which are learnable
with both semantic consistency and style diversity.
Specifically, we propose a ProMpt-driven Expan-
sion and Alignment (ProMEA) method for single-
DG, in which a Domain Prompt Expansion mod-
ule is first developed to expand the single source
domain with frequency features of augmented text
prompts, in which the amplitude spectrum predom-
inantly harbors the domain style information. With
source prompts, a Domain Prompt Alignment mod-
ule is further designed in inference for adapting
target samples to the expanded source domains,
in order to reduce the domain discrepancy. Fi-
nally, empirically results over single-DG bench-
marks demonstrate the superiority of our proposal.

1 Introduction

In the past years, deep learning has indeed made remarkable
achievements over various tasks. However, these accomplish-
ments and efforts are all built on a basic assumption that the
test data share the same data distribution with the training
data. In practice, this assumption can be easily violated since
the distribution discrepancy between training and target data
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Figure 1: Difference between previous single-DG methods and our
proposed ProMEA. (a) Existing methods primarily focus on expand-
ing source domain by feature perturbation or adversarial generation.
(b) ProMEA leverages augmented text prompts to guide the feature
expansion in training, and align the target samples to source domains
in inference.

is often tremendous [Chen et al., 2020; Chen et al., 2021b;
Long ef al., 2018; Luo et al., 2020]. Such a phenomenon
is termed as distribution shift and usually leads to severe
performance degradation. To tackle this problem, a series
of research has been proposed, primarily focusing on do-
main adaptation (DA) and domain generalization (DG). DA
endeavors to learn transferable knowledge from the labeled
source data to unlabeled target data, in which target data are
accessible in model learning. DG mainly attempts to solve
a more challenging problem, that is, generalize the learning
model to an unseen target domain by learning from multiple
source domains. Both DA and DG exhibit impressive gener-
alization performance over out-of-distribution data.

In real tasks, however, collecting and annotating data
from different domains or environments is commonly time-
consuming and resource-intensive, which hinders the appli-
cation of DA and DG methods. Recently, the paradigm of sin-
gle domain generalization (single-DG) has been introduced,
which learns robust representation for generalizing from only
one single source domain. State-of-the-art single-DG meth-
ods commonly generate diverse training samples with feature
perturbation or adversarial data augmentation, in order to ex-
pand the representation scope of the source domain, and con-
sequently enhance the generalization ability of source model,
as shown in Fig. 1 (a). However, it is usually hard to guar-
antee that the augmented samples effectively assist the model
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in performing well on target domain, since the target data is
inaccessible in training and the generation is actually unori-
ented. First, through simply modifying features by confusing
the classifier, it may generate unnatural samples with seman-
tic ambiguity or distortion. Second, it is difficult to cover a
real domain with sufficient shift by generating indistinguish-
able samples from the source data, thus the model will still
be stuck in overfitting to the single source domain, and thus
contribute slightly to generalization over unknown domains.

Unlike typical single-DG methods that aim to enlarge the
scope of single-source domain with adversarial sample gen-
eration, we propose a text-to-image generation to augment
the text prompts of domain first, that is, we learn multiple
domain prompts with both semantic consistency and style di-
versity, and then use the generated text prompts to guide the
data expansion in the frequency domain. In real applications,
the visual perturbations are usually complex and difficult to
control, sometimes a slight change in visual perturbation may
lead to unpredictable results [Schiappa et al., 20221, while the
text prompts perturbations are easier to generate and general-
ize. To the end, we propose a novel ProMpt-driven Expansion
and Alignment (ProMEA for short) method for single-DG,
which utilizes augmented text prompts to compensate for the
distribution discrepancy between source and target domains
in both training and testing stage.

In ProMEA, we design a Domain Prompt Expansion (DPE)
module in the training process, in which a prompt generator is
first trained to augment the text prompt, in order for more re-
liable feature expansion. The prompt generator creates class
prompts that are filled with specific category words and ex-
panded domain or stylistic words, thus helps preserve se-
mantic information accompanied with diverse domain styles.
Then, the distribution of source domain is expanded under the
guidance of frequency features from class prompts, as shown
in Fig. 1 (b). For instance, for a given class of dog, utiliz-
ing an augmented text prompt such as “a sketch of dog” or
“a painting a dog”, an expanded feature domain comprising
“sketch dogs” or “painting dogs” will be generated. Here, the
class prompts are learnable for both semantic consistency and
style diversity. Further, to reduce the discrepancy between
source and unseen target domains in inference, an distribution
alignment module named Domain Prompt Alignment (DPA)
is developed in inference. Specifically, the prompt generator
also extracts domain prompts containing stylistic information
for individual domains. When target samples come, the simi-
larities between the target images and source domain prompts
will be calculated. Ultimately, the target domain prompt will
be represented as a linear combination of source prompts dur-
ing the testing phase, in order to adapt the target data to the
convex hull of source domains.

Different from previous single-DG works that employ ad-
versarial data augmentation to enlarge the distribution of
source data, ProMEA utilizes augmented text-prompts to
guide the data expansion, as well as style transfer for tar-
get samples, in order to narrow the distribution gap be-
tween the source and target domains. Besides, some multi-
source DG methods [Liu and Wang, 2023; Cho et al., 2023;
Cheng et al., 2024] treat text features directly as training sam-

ples, and guide the feature extraction of image samples with a
unified representation space. However, off-the-shelf solutions
to multi-domain DG are not applicable to single-DG, since
the former relies on domain identifiers as supervision signals
for learning domain invariant representation. Moreover, dif-
ferent from directly utilizing the text features as training data,
ProMEA aims to guide the expansion of source domain us-
ing augmented text prompts, so as to boost the diversity of
source distribution with semantic consistency. To summarize,
our main contributions are list as follows,

* We propose a novel ProMEA method for single-DG, in
which a Domain Prompt Expansion module is developed
for text-to-image expansion. It generates diverse text
prompts embodying both semantic consistency and do-
main diversity, then source expansion is guided with the
augmented text prompts in training for robust domain
generalization.

A Domain Prompt Alignment module is designed to
adaptively align the target data to source domain using
source prompts in the inference stage, so as to further
bridge the distribution gap between domains.

Extensive experiments have been conducted over sev-
eral DG benchmarks (PACS, Office-Home, and VLCS)
to demonstrate the competitiveness of ProMEA. Further-
more, we conduct qualitative analysis and ablation stud-
ies to verify the effectiveness of proposal.

2 Related Work

2.1 Domain Generalization

Domain generalization (DG) aims to train a learning model
from source domains that can generalize to unknown tar-
get domains, so as to keep robust performance on out-
of-distribution data. DG tasks can be divided into multi-
source and single-source settings in terms of the number of
source domains for training. Various methods have been
proposed for multi-source DG, such as learning domain-
invariant representation [Chen et al., 2021a; Li et al., 2017a;
Seo et al., 2020; Dayal et al., 2024], feature disentanglement
[Xu et al., 2014; Li et al., 2017b; Yang et al., 2023] or meta-
learning [Jia and Zhang, 2024].

In single-DG, there is only one source domain available,
thus current state-of-the-art single-DG methods typically use
perturbation-based approaches to expand source domain dis-
tribution, in order to enhance the generalization ability of
model. For example, Cugu et al. [Cugu et al., 2022] uti-
lize visual corruptions for data augmentation to expand the
domain distribution while maintain the class semantic con-
sistency. Wang et al. [Wang er al., 2021] adopt a bound
of mutual information (MI) between domains to extract se-
mantic features and generate diverse images. Gokhale et al.
[Gokhale et al., 2023] use adversarial neural network and a
diversity module to generate new samples with both diver-
sity and hardness. Chen et al. [Chen ef al., 2023] employ
a novel angular center loss to push the augmented samples
away from the class centers. Liu et al. [Liu et al., 2024b] use
stylization and destylization module for style transfer, in or-
der to learn domain-invariant representation among the gener-
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Figure 2: The model overview of ProMEA, in which Domain Prompt Expansion adaptively learns text prompts for guiding the source
expansion, so as to preserve both semantic consistency and domain diversity. Further, Domain Prompt Alignment is introduced in inference,
in order to further align the target data to source domain for better generalization.

ated domains with different styles. These methods inevitably
face the issues of semantic distortion or insufficient diversity
caused by feature perturbations. Moreover, due to the invis-
ibility of the target domain, they can not guarantee that the
augmented source domain is close to the unknown target do-
main.

2.2 Vision and Language Pre-training

Pre-trained Vision Language Models (VLMs), trained on vast
amounts of data, have gained widespread application in nat-
ural language processing and computer vision tasks due to
their proficiency in handling multi-modal data. VLMs sig-
nificantly reduce data requirements for specific tasks, making
them invaluable in resource-constrained scenarios. Recently,
VLMs models, such as CLIP, have been introduced into DG
learning tasks. Liu et al. [Liu and Wang, 2023] exploit CLIP
to project texts and images into a common space, and then
text features are actually treated as training data, in order to
expand the sample distribution of multi-source DG. Cho et al.
[Cho et al., 2023] synthesize diverse style features via learn-
able word vectors, in order to simulate various distributions
via adopting prompts for source-free DG. Niu et al. Niu et al.
[Niu ef al., 2022] yield domain-unified representations with
prompts generated by VLMs, in order to cope with samples
from open-world domains. Cheng et al. [Cheng et al., 2024]
disentangle text prompt into domain-specific and domain-

invariant descriptions first by a large language model, and
then enable the learning of domain-invariant features more
effectively. However, previous methods commonly treat text
features directly as training samples in multi-source DG, so as
to guide the feature extraction for image samples from multi-
ple domains. While ProMEA adopts text prompts to guide the
source expansion and distribution alignment for single-DG, it
aims to achieve both semantic coherence and distribution di-
versity, which will be described in the next section.

3 Methodology

3.1 Preliminary and Model Structure

Assuming that we have a single source domain D, =

{(zi, yi)}fvzl, where x; denotes the i-th sample from source
domain D, and y; is the corresponding label from the la-
bel space y € {1,...,N.}, N and N, denote the number
of source samples and classes, respectively. For each input
image x; € RE*HXW where C, H and W represent the
channel number, height and width of the image. The goal of
ProMEA is to train a learning model over D;, so that it per-
forms well on an unknown target domain D;. The source and
target domains have the same label space.

To address the generalization issue in single-DG, we pro-
pose ProMEA, and the method overview is shown in Fig. 2.
In ProMEA, Domain Prompt Expansion is first proposed in
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training for source domain expansion, which utilizes learn-
able text prompts to guide the source expansion. Further-
more, unlike previous work treating text features directly
as training samples to learn feature extractor, Fourier trans-
formation (FFT) [Nussbaumer and Nussbaumer, 1982] is
adopted to decouple text prompts into phase and amplitude,
capitalized on its well-established property that the phase
component of the Fourier spectrum preserves high-level se-
mantics of the original signal, while the amplitude compo-
nent contains low-level statistics [Oppenheim et al., 1979;
Yang and Soatto, 2020]. The text amplitude is actually
domain style information, which are combined with image
phase of semantic information through inverse Fourier trans-
formation, in order for prompt-guided expansion of source
domain. In inference, there is domain prompt alignment be-
tween source and target domains. Specifically, the similarities
of target image and domain prompt features are calculated.
With the similarity vector, the alignment prompt will be in-
troduced into the target image, so as to align the target data to
the convex hull of source domains.

3.2 Domain Prompt Expansion

For single-DG, learning content-invariant representation is a
critical component. However, due to the scarcity of source
domain samples, data augmentation becomes essential. To
maintain semantic consistency with respect to categories
while achieving distribution diversity with respect to domains
in source expansion, we propose the DPE module to expand
the source domain with augmented text prompts.

Learning for Augmented Text Prompts. We adopt two types
of text prompt here, which is shown in Fig.2. The class
prompt contains domain-related words and class-specific
words, as well as domain-agnostic and domain-specific con-
text variables [Ge et al., 2023], which are learnable in train-
ing, since a slight change of the prompt often causes a huge
variance in performance [Zhou et al., 2022a]. The domain-
agnostic context is shared across all domains, while domain-
specific context is specific for each domain. The domain
prompts are similar to the class prompts, except for the lack
of class-specific words. Specifically, the class prompts and
domain prompts follow an unified style as,

212 = la] ... [a]M1 bl ... [b]M2 [Domain),, [Class], ,(1)
and

zztyle = [a], ... [a]p, [0], - - - [bl g, [Domain], , (2)

where [a],, ,m1 € {1,2,..., M} is the domain-agnostic

context with the same dimension as word embedding, M; is
the number of context tokens applied in our class prompts.
[0],,, sm2 € {1,..., Ma} is the domain-specific context, M
is the number of domain-specific tokens. [Domain], ,k €
{1,..., K} and [Class], ,t € {1,..., N.} denote the vocab-
ularies for domains and classes, respectively.

To obtain a sufficient amount of domain-related words,
which have inherent connections with the source domain
while significantly different styles, we introduce a pretrained
lexical substitution model [Arefyev et al., 2022] in DPE. It re-
places any word in a given sentence with various semantically

similar alternatives. Further, these domain prompts generated
still exhibit strong underlying correlations with each other.
As a result, the text encoder might not be able to identify
these prompts when extracting features from them [Zhou et
al., 2022b]. However, the style of the target domain may dif-
fer entirely from that of the source domain. To alleviate this
issue, we leverage the learnable part of prompts to maximize
the diversity between the generated domain prompts and the
source prompt, so that the style of the augmented domains
has a sufficiently large distributional difference from source
domain,

K
Lo = = 3 KL (B (39 D) B (7 T) ). 3)
k=1

where F,; is the text encoder from CLIP, zijtyle represents
the source domain prompt and 7" is the temperature of a soft-
ened softmax.

Domain Expansion with Text Prompts. To maintain seman-
tic consistency during data augmentation, we attempt to de-
couple the semantic and domain information from both image
samples and text prompts, which is exactly what the Fourier
transformation accomplishes. For a given z, the Fourier
transformation F () decouples each channel into two com-
ponents, i.e., phase spectrum P (z) and amplitude spectrum
A (z) , which can be treated as semantic and domain infor-
mation, respectively. Specifically,

H-1W-1
F (@) (u,v) = Z Z z (h,w) e_j%(%“”%”), 4)
h=0 w=0
where u and v are the frequency domain indices represent-

ing the horizontal and vertical frequency components, respec-
tively. Then

Alw) = [B () (w) + 1 () (w)] 2. 9)
" () (1,0)
z) (u,v
P (I) = arctan |:R(‘(L‘)(U7'U):| , (6)
where R(z) and I(z) represent the real and imaginary parts
of F (z).

We decouple the image features and the prompt features
extracted by text encoder into their corresponding amplitude
and phase parts. With the separated phase and amplitude
spectrum features, we reconstruct the augmented samples for
the kth domain with the inverse FFT algorithm,

it = F(AGE) s e T) @)

where z}gt shares the same class semantics with z;, or x;
belongs to the tth class.

Finally, we incorporate these augmented samples into the

training phase to enhance the generalization ability of model.
The loss function can be written as,

N K
£a9 ==3"3"yilog (f (259;0)). (8)

i=1 k=1
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3.3 Domain Prompt Alignment

The DPE module improves generalization ability by generat-
ing diverse source representations for training. At the same
time, since we actually have no clue of the real target distri-
bution, it is difficult to guarantee that the augmented samples
perfectly match the target data. Inspired by testing-time style
shifting [Park et al., 2023], we further align the distribution of
target data with that of the training domains during the testing
time without model updating.

In order to effectively align each target sample with the
training domains, we try to transfer the target style to that
of the training domains to better align with the classifier. To
achieve this goal, we compute the similarity vector w;j us-
ing cosine similarity between the features extracted from each
2179 and those from the K source domains during training,
where k € 1,..., K. In terms of the similarities, we can ob-
tain the weighted amplitude features over all source domains,

mic _ 1 < style
AT = Ve Zwik/l (zk ), 9)

k=1

which helps transfer the style of the target samples towards
that of the training domains. Then for each target sample,
we decouple it into A (27*"9") and P ({*"?*"), and then
reconstruct it with,
i,;nix - J,—_~71 (A:nm % e—j*P(mf“Wct)) . (10)
Further, we adopt an adaptive alignment in terms of the
similarity, since in practical situations, not all target samples
have a large style discrepancy from source domain. When
the target style is similar to that of source domain, for ex-
ample, an "art” source and a “photo” target, we directly use
the original target data in inference, allowing the model to
adapt flexibly to varying levels of style discrepancy between
domains.

| f@re),

K2

i [l A (2f70) — A2 > 7
otherwise.

11
where 7 is the average cosine similarity between amplitudes
of the target sample and training domain prototypes.

3.4 Optimization Objective

To make full use of training data, we also reconstruct ac;””
with P (z;) and A7"* during training as a supplement to the
scarce source data, and formulate the classification loss as,

N
mir == "yilog (f (277;0)). (12)
1=1

Finally, the total training loss for our ProMEA model to
backward can be formulated as,
L= Los+all + BLTE + N\Lys, (13)

cls

where L5 is the classification loss of original images with
standard cross entropy, «, 5 and A are trade-off parameters.
The learning process is summarized in Algorithm 1.

Algorithm 1 Training of ProMEA

Input: Source domain D,, domain words W; =
{d1,...,dx}, prompt templates Prompts, and CLIP text en-
coder E(-)
Output: Learned model weights 6§

1: for e € MaxFEpoch do

W e o Prompts, Wy b initialize text prompts
Calculate L5 according to Eq. 3
zip? — FHA(2§5Y), P(x;)) > synthesize samples
for domain word d;, € W, do

wik < similarity(x;, zztyle)

end for
_Aznix — % 25:1 wirA (zztyle)

90 x4 FL((APT), P(ay))
10:  Calculate £%"9, LM® according to Eq. 8,12

cls »~cls
11:  if warm up then
12: update 6 to minimize Loy + «Ly)? + AL,
13:  else
14: update # to minimize £ according to Eq. 13
15:  endif
16: end for

4 Experiments

In this section, we evaluate our model ProMEA on three chal-
lenging benchmark datasets for single-DG.

4.1 Datasets

PACS [Li et al., 2017a] is composed of four domains (Photo,
Art, Cartoon, Sketch) and 7 classes (dog, elephant, giraffe,
guitar, horse and person), and there is large distribution dis-
crepancy between different domains. VLCS [Fang er al.,
2013] consists of 10,729 images across 5 classes (bird, car,
chair, dog, and person), sourced from 4 real-world datasets
(VOC2007, LabelMe, Caltech, SUNQ9). The scenes captured
vary from urban to rural. OfficeHome [Venkateswara et al.,
2017] is a challenging dataset. It contains 30,475 images be-
longing to 65 classes, originating from four different domains
(Art, Clipart, Product, Real), where the domain shift mainly
stems from differences in image styles and viewpoints.

4.2 Comparison Methods

We compare ProMEA with state-of-the-art methods: ERM
[Koltchinskii, 2011], ADA [Volpi et al., 2018], Augmix
[Hendrycks et al., 20191, pAdaln [Nuriel ef al., 2021], Sag-
Net [Nam et al., 20211, MixStyle [Zhou e al., 2021], L2D
[Wang et al., 2021], FACT [Xu er al., 2021], ACVC [Cugu er
al., 2022], Pro-RandConv [Choi et al., 2023], ACVC/MAD
[Qu er al., 2023], CADA [Chen et al., 2023], UniFreqSDG
[Liu et al., 2024a] and StyDeSty [Liu et al., 2024b]. ERM is
the baseline method, MixStyle, SagNet and FACT are multi-
source DG methods, and the others are single-DG methods.
All compared methods are conducted over the same datasets
and backbone networks.

4.3 Implementation details

Following previous works, we adopt the pre-trained CLIP
model to extract text prompts. Images are uniformly resized
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Methods Art Cartoon Sketch Photo Avg.
ERM 70.90 76.50 53.10 44.20 40.70
ADA 73.20 71.97 44.63 45.73 58.70

Augmix 72.73 76.83 46.22 46.32 60.22
SagNet 73.2 75.67 48.53 50.07 61.9
L2D 76.91 77.88 52.29 53.66 65.18

RandConv+AugMix 76.70 79.30 61.6 54.60 68.10

ACVC 73.68 77.39 55.30 48.05 63.61
FACT 75.73 78.43 62.83 50.7 66.92
Pro-RandConv ~ 76.98 78.54 62.89 57.11 68.88
ACVC/MAD 5295 75.51 77.25 57.75 65.87
CADA 76.33 79.08 61.59 56.65 68.41
UniFreqSDG  78.94 79.51 68.92 56.97 70.59
StyDeSty 80.06 79.86 63.24 62.22 71.35
ProMEA 82.58 81.43 62.52 61.09 71.91

Table 1: single-DG accuracy over PACS dataset. Each model is
trained over ResNet18.

to 224 x 224. For PACS and VLCS, we select ResNet-18 as
our backbone. We use SGD optimizer for training, set the
batch size to 16, the weight decay to Se-4, and train for 75
epochs. The initial learning rate is le-3, and the warm-up
period consists of 25 epochs. For OfficeHome, we choose
ResNet-50 as the backbone and set the weight decay to Se-5,
training for 50 epochs. We train with SGD optimizer and set
the batch size to 16. The initial learning rate is le-3 and de-
cays by 0.1 at 80% of the total epochs. The warm-up period
lasts for 10 epochs. When the number of current epoch is less
than the warm-up epoch, we merely train the model without
performing testing-time alignment.

The model is trained on a single source domain and evalu-
ated on the remaining domains. To ensure a fair comparison,
we adopt the same backbone network as previous approaches.
For PACS and OfficeHome, we follow the data splits from
Shu et al. [Shu et al., 2021]. For VLCS, we randomly split
each domain into 90% training and 10% validation subsets.

4.4 Comparison Results

The comparison results are shown in Tables 1-3, in which the
best performance among the compared methods is indicated
by bold values, and the second best performance is indicated
by underlines.

Results on PACS From Table 1, among the four general-
ization tasks, ProMEA achieves the best performance over
two tasks and the second-optimal performance over one task.
Overall, ProMEA attains the highest average accuracy, with
an improvement of 0.56%. Moreover, compared with the sub-
optimal method StyDeSty, the performance of ProMEA is
improved by 2.52% and 1.57% over the Art and Cartoon do-
mains respectively. As aresult, by conducting domain prompt
expansion for source domain and domain prompt alignment
for target data, ProMEA can effectively enhance the perfor-
mance of single-DG.

Results on VLCS From Table 2, ProMEA achieves the best
performance in three tasks and the second-optimal perfor-
mance in the other task. Finally, ProMEA achieves the best

average accuracy. Compared with the suboptimal StyDeSty
method, ProMEA achieves significant improvements in three
domains (VOC2007, LabelMe, Caltech), with respective in-
creases of 2.2%, 9.1% and 5.29%, and the overall perfor-
mance improvement achieves 2.78%.

Methods A% L C S Avg.
ERM 76.72 5886 4495 5771 59.56
Augmix 75.52 5952 4590 57.43 59.53
pAdaln 76.03 6521 43.17 57.94 60.59
MixStyle 75.73 6129 44.66 56.57 59.56
ACVC 76.15 6123 4743 60.18 61.25
ACVC/MAD 76.15 69.36 48.04 61.74 63.82
Pro-RandConv - - - - 53.35
StyDeSty 76.87 6287 5373 6541 64.72
ProMEA 79.07 7197 59.02 59.94 67.50

Table 2: single-DG accuracy over VLCS dataset. Each model is
trained with ResNet18.

Methods Art Clipart Product Real Avg.
ERM 57.08 54.59 51.48 60.86 56.00
SagNet 55.18 5248 51.16 60.83 54.91
Augmix 59.69 56.82 54.71 62.54 58.44
RandConv+AugMix 54.22 5222 50.16 59.51 54.03
ALT 59.87 55.89 54.72 64.66 58.79
Pro-RandConv - - - - 59.20
StyDeSty 59.09 57.78 54.73 65.02 59.16
ProMEA 62.52 5698 56.02 65.64 60.29

Table 3: single-DG accuracy over OfficeHome dataset. Each model
is trained with ResNet50.

Results on OfficeHome From Table 3, ProMEA also
achieves the best performance in three tasks and the second-
optimal performance in the other task. Finally, ProMEA
achieves the best average accuracy with an improvement of
1.09%. These results further validate the superiority of our
proposal.

4.5 Ablation Study

To evaluate each component in ProMEA, we conduct ablation
experiments over the PACS dataset.

Methods|L£529 L£77.% Las| Art Cartoon Sketch Photo Avg.
baseline 7590 79.41 58.31 51.15 66.44
v 79.16 80.34 58.94 58.01 69.11

v 78.89 78.92 60.97 56.34 68.78

v v 18097 80.23 57.00 57.77 68.99

v v 180.43 81.38 62.21 59.01 70.76

Ours v v v |82.58 81.43 62.52 61.09 71.91

Table 4: Ablation Study over different training losses. We train
ProMEA on PACS and adopt RestNet18 as the backbone.

Effect of Training Loss. We conduct an ablation study to
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Figure 3: Accuracy analysis for Testing-time Alignment over PACS
dataset.

investigate the effect of each training loss component of the
ProMEA model, as shown in Table 4. First, with £\, the
model achieves a significant improvement by using the gen-
erated domain data. However, when we only use the origi-
nal images and mixed data from prompt domains for training,
the model performance improves sightly because of insuffi-
cient domain augmentation. Furthermore, by incorporating
L5 into the optimization loss, the classification accuracy of
ProMEA has improved significantly, indicating that it plays
a crucial role in improving the generalization capabilities,
which aligns well with our expectations.

Analysis of Testing-time Alignment. In ProMEA, the PDA
module plays a crucial role in addressing domain shift across
different domains. By aligning target data with source do-
mains during the testing phase, PDA enables the model to
classify target samples more effectively. To analyze the im-
pact of testing-time alignment, we select one domain as the
source and the remaining three as targets on the PACS dataset.
As illustrated in Fig.3, the performance with testing-time
alignment surpasses that without alignment in most scenarios.
This improvement is particularly pronounced in the Sketch
domain, which contains less stylistic information, highlight-
ing the effectiveness of PDA in domains with limited style
diversity. These results confirm that the distribution align-
ment at testing time can indeed enhance the performance in
target domains.
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Figure 4: Hyperparameter analysis of ProMEA with respect to pa-
rameters «, 3, A and warm-up epoch over PACS dataset.

4.6 Hyperparameter Analysis

In this subsection, we perform hyperparameter analysis for
«, f and A, and the warm-up epoch on PACS dataset, as illus-
trated in Fig. 4. In the experiments, we initially set o = 0.3, 8
=0.5, A =0.01 and the warm-up epoch at 10. When analyz-
ing the sensitivity of a specific parameter, we fix the values
of the other parameters. From Fig. 4(a), the performance of
ProMEA improves progressively as more generated samples
are integrated. From Fig.4 (b) and (c), we observe that 3
and A have a relatively limited impact on the Cartoon and
Art domains, while their changes cause larger fluctuations on
Sketch and Photo domains. To ensure reliable style transfer
for target samples during the testing phase, ProMEA imple-
ments a warm-up epoch to optimize the prompt tokens. Ac-
cording to Fig.4(d), the warm-up epoch has a limited effect
on performance fluctuations over the Sketch domain. This
is because the Sketch domain contains relatively less style
information compared to other domains. Additionally, insuf-
ficient training iterations hinder the effective optimization of
both domain-agnostic and domain-specific tokens within the
prompts. Consequently, it results in an inadequate represen-
tation of prompt styles, reducing the model ability to generate
high-quality augmented samples.

(a) Results on Art (b) Results on Sketch
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Figure 5: Stability Analysis for ProMEA over PACS dataset.

ProMEA is trained on Cartoon and tested on the other domains.

4.7 Stability Analysis

We conduct stability analysis for the performance of
ProMEA, comparing it with ERM and L2D in Fig.5, from
which we can observe that ProMEA maintains a relatively
stable performance compared to both ERM and L2D. During
the training process, while the accuracy curve shows some
fluctuations, the overall classification accuracy steadily in-
creases. This trend further validates the effectiveness of our
proposed method.

5 Conclusion

In this paper, a prompt-driven expansion and alignment
model is proposed for single-DG. Leveraging the ease of gen-
eration and generalization in text prompt perturbations, we
expand the single source domain using frequency prompts of
augmented texts. Further, we design a testing-time alignment
module that adapts target samples to the convex hull of source
prompt features during inference. It effectively minimizes the
discrepancy between the source and target domains. Exten-
sive experiments demonstrate that ProMEA outperforms ex-
isting SOTA single-DG methods, highlighting its superiority
in handling domain shift challenges with a single source.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

References

[Arefyev ef al., 2022] Nikolay Arefyev, Boris Sheludko,
Alexander Podolskiy, and Alexander Panchenko. Always
keep your target in mind: Studying semantics and im-
proving performance of neural lexical substitution. arXiv
preprint arXiv:2206.11815, 2022.

[Chen et al., 2020] Zhi Chen, Jingjing Li, Yadan Luo,
Zi Huang, and Yang Yang. Canzsl: Cycle-consistent ad-
versarial networks for zero-shot learning from natural lan-
guage. In Proceedings of the IEEE/CVF winter conference
on applications of computer vision, pages 874-883, 2020.

[Chen et al., 2021a] Yang Chen, Yu Wang, Yingwei Pan,
Ting Yao, Xinmei Tian, and Tao Mei. A style and se-
mantic memory mechanism for domain generalization. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9164-9173, 2021.

[Chen et al., 2021b] Zhi Chen, Yadan Luo, Ruihong Qiu,
Sen Wang, Zi Huang, Jingjing Li, and Zheng Zhang. Se-
mantics disentangling for generalized zero-shot learning.
In Proceedings of the IEEE/CVF international conference
on computer vision, pages 8712-8720, 2021.

[Chen et al., 2023] Tianle Chen, Mahsa Baktashmotlagh, Zi-
jian Wang, and Mathieu Salzmann. Center-aware adver-
sarial augmentation for single domain generalization. In
Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 4157-4165, 2023.

[Cheng et al., 2024] De Cheng, Zhipeng Xu, Xinyang Jiang,
Nannan Wang, Dongsheng Li, and Xinbo Gao. Disentan-
gled prompt representation for domain generalization. In
2024 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 23595-23604, 2024.

[Cho et al., 2023] Junhyeong Cho, Gilhyun Nam, Sungyeon
Kim, Hunmin Yang, and Suha Kwak. Promptstyler:
Prompt-driven style generation for source-free domain
generalization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 15702—
15712, 2023.

[Choi et al., 2023] Seokeon Choi, Debasmit Das, Sungha
Choi, Seunghan Yang, Hyunsin Park, and Sungrack Yun.
Progressive random convolutions for single domain gener-
alization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10312—
10322, 2023.

[Cugu et al., 2022] Tlke Cugu, Massimiliano Mancini, Yan-
bei Chen, and Zeynep Akata. Attention consistency on vi-
sual corruptions for single-source domain generalization.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4165-4174, 2022.

[Dayal et al., 2024] Aveen Dayal, Vimal KB, Linga Reddy
Cenkeramaddi, C Mohan, Abhinav Kumar, and Vineeth
N Balasubramanian. Madg: margin-based adversarial
learning for domain generalization. Advances in Neural
Information Processing Systems, 36, 2024.

[Fang et al., 2013] Chen Fang, Ye Xu, and Daniel N Rock-
more. Unbiased metric learning: On the utilization of mul-

tiple datasets and web images for softening bias. In Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, pages 1657-1664, 2013.

[Ge er al., 2023] Chunjiang Ge, Rui Huang, Mixue Xie, Zi-
hang Lai, Shiji Song, Shuang Li, and Gao Huang. Do-
main adaptation via prompt learning. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[Gokhale et al., 2023] Tejas Gokhale, Rushil Anirudh, Ja-
yaraman J Thiagarajan, Bhavya Kailkhura, Chitta Baral,
and Yezhou Yang. Improving diversity with adversarially
learned transformations for domain generalization. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 434443, 2023.

[Hendrycks et al., 2019] Dan Hendrycks, Norman Mu,
Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji
Lakshminarayanan. Augmix: A simple data processing

method to improve robustness and uncertainty. arXiv
preprint arXiv:1912.02781, 2019.
[Jia and Zhang, 2024] Chen Jia and Yue Zhang. Meta-

learning the invariant representation for domain general-
ization. Machine Learning, 113(4):1661-1681, 2024.

[Koltchinskii, 2011] Vladimir Koltchinskii. Oracle inequal-
ities in empirical risk minimization and sparse recovery
problems: Ecole D’Eté de Probabilités de Saint-Flour
XXXVIII-2008, volume 2033. Springer Science & Busi-
ness Media, 2011.

[Li et al., 2017a] Da Li, Yongxin Yang, Yi-Zhe Song, and
Timothy M Hospedales. Deeper, broader and artier do-
main generalization. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 5542-5550,
2017.

[Li et al., 2017b] Wen Li, Zheng Xu, Dong Xu, Dengxin
Dai, and Luc Van Gool. Domain generalization and adap-
tation using low rank exemplar svms. IEEE transactions

on pattern analysis and machine intelligence, 40(5):1114—
1127, 2017.

[Liu and Wang, 2023] Geng Liu and Yuxi Wang. Tdg:
Text-guided domain generalization. arXiv preprint
arXiv:2308.09931, 2023.

[Liu ef al., 2024a] Chuang Liu, Yichao Cao, Xiu Su, and
Haogang Zhu. Universal frequency domain perturbation
for single-source domain generalization. In Proceedings
of the 32nd ACM International Conference on Multime-
dia, pages 6250-6259, 2024.

[Liu et al., 2024b] Songhua Liu, Xin Jin, Xingyi Yang, Jing-
wen Ye, and Xinchao Wang. Stydesty: Min-max styliza-
tion and destylization for single domain generalization. In

Forty-first International Conference on Machine Learning,
2024.

[Long er al., 2018] Mingsheng Long, Zhangjie Cao, Jianmin
Wang, and Michael I Jordan. Conditional adversarial do-
main adaptation. Advances in neural information process-
ing systems, 31, 2018.

[Luo et al., 2020] Yadan Luo, Zijian Wang, Zi Huang, and
Mahsa Baktashmotlagh. Progressive graph learning for



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

open-set domain adaptation. In International Conference
on Machine Learning, pages 6468—6478. PMLR, 2020.

[Nam et al., 2021] Hyeonseob Nam, HyunJae Lee, Jongchan
Park, Wonjun Yoon, and Donggeun Yoo. Reducing do-
main gap by reducing style bias. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8690-8699, 2021.

[Niu er al., 2022] Hongjing Niu, Hanting Li, Feng Zhao,
and Bin Li. Domain-unified prompt representations

for source-free domain generalization. arXiv preprint
arXiv:2209.14926, 2022.

[Nuriel ef al., 20211 Oren Nuriel, Sagie Benaim, and Lior
Wolf. Permuted adain: Reducing the bias towards global
statistics in image classification. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 9482-9491, 2021.

[Nussbaumer and Nussbaumer, 1982] Henri J Nussbaumer
and Henri J Nussbaumer. The fast Fourier transform.
Springer, 1982.

[Oppenheim et al., 1979] A.  Oppenheim,  Jae  Lim,
G. Kopec, and S. Pohlig. Phase in speech and pic-
tures. In ICASSP °’79. IEEE International Conference
on Acoustics, Speech, and Signal Processing, volume 4,
pages 632-637, 1979.

[Park er al., 2023] Jungwuk Park, Dong-Jun Han, Soyeong
Kim, and Jaekyun Moon. Test-time style shifting: Han-
dling arbitrary styles in domain generalization. In Inter-
national Conference on Machine Learning, pages 27114—
27131. PMLR, 2023.

[Qu et al., 2023] Sanqging Qu, Yingwei Pan, Guang Chen,
Ting Yao, Changjun Jiang, and Tao Mei. Modality-
agnostic debiasing for single domain generalization. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 24142-24151,
2023.

[Schiappa et al., 2022] Madeline Schiappa, Shruti Vyas,
Hamid Palangi, Yogesh Rawat, and Vibhav Vineet. Ro-
bustness analysis of video-language models against visual
and language perturbations. Advances in Neural Informa-
tion Processing Systems, 35:34405-34420, 2022.

[Seo et al., 2020] Seonguk Seo, Yumin Suh, Dongwan Kim,
Geeho Kim, Jongwoo Han, and Bohyung Han. Learning
to optimize domain specific normalization for domain gen-
eralization. In Computer Vision—-ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23-28, 2020, Pro-
ceedings, Part XXII 16, pages 68—83. Springer, 2020.

[Shu ef al., 2021] Yang Shu, Zhangjie Cao, Chenyu Wang,
Jianmin Wang, and Mingsheng Long. Open domain gen-
eralization with domain-augmented meta-learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9624-9633, 2021.

[Venkateswara et al., 2017] Hemanth Venkateswara, Jose
Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised do-
main adaptation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 5018—
5027, 2017.

[Volpi er al., 2018] Riccardo Volpi, Hongseok Namkoong,
Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial
data augmentation. Advances in neural information pro-
cessing systems, 31, 2018.

[Wang et al., 2021] Zijian Wang, Yadan Luo, Ruihong Qiu,
Zi Huang, and Mahsa Baktashmotlagh. Learning to di-
versify for single domain generalization. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 834-843, 2021.

[Xu et al., 2014] Zheng Xu, Wen Li, Li Niu, and Dong Xu.
Exploiting low-rank structure from latent domains for do-
main generalization. In Computer Vision-ECCV 2014:
13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part 11l 13, pages 628—643.
Springer, 2014.

[Xu eral., 2021] Qinwei Xu, Ruipeng Zhang, Ya Zhang,
Yanfeng Wang, and Qi Tian. A fourier-based frame-
work for domain generalization. In Proceedings of the

IEEE/CVF conference on computer vision and pattern
recognition, pages 14383—-14392, 2021.

[Yang and Soatto, 2020] Yanchao Yang and Stefano Soatto.
Fda: Fourier domain adaptation for semantic segmenta-
tion. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 4085-40095,
2020.

[Yang et al., 2023] Qingyue Yang, Hongjing Niu, Pengfei
Xia, Wei Zhang, and Bin Li. Frequency decomposition to
tap the potential of single domain for generalization. arXiv
preprint arXiv:2304.07261, 2023.

[Zhou et al., 2021] Kaiyang Zhou, Yongxin Yang, Yu Qiao,
and Tao Xiang. Domain generalization with mixstyle.
arXiv preprint arXiv:2104.02008, 2021.

[Zhou er al., 2022a] Kaiyang Zhou, Jingkang Yang,
Chen Change Loy, and Ziwei Liu. Learning to prompt
for vision-language models. International Journal of
Computer Vision, 130(9):2337-2348, 2022.

[Zhou et al., 2022b] Kaiyang Zhou, Jingkang Yang,
Chen Change Loy, and Ziwei Liu. Learning to prompt
for vision-language models. International Journal of
Computer Vision, 130(9):2337-2348, 2022.



