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Abstract
Traffic accidents represent a significant concern
due to their devastating consequences. The ability
to predict future traffic accident risks is of key im-
portance to accident prevention activities in trans-
portation systems. Although existing studies have
made substantial efforts to model spatio-temporal
correlations, they fall short when it comes to ad-
dressing the zero-inflated data issue and captur-
ing spatio-temporal heterogeneity, which reduces
their predictive abilities. In addition, improv-
ing efficiency is an urgent requirement for traf-
fic accident forecasting. To overcome these lim-
itations, we propose an efficient Spatio-Temporal
learning framework for Traffic Accident Risk fore-
casting (ST-TAR). Taking long-term and short-term
data as separate inputs, the ST-TAR model inte-
grates hierarchical multi-view GCN and long short-
term cross-attention mechanism to encode spatial
dependencies and temporal patterns. We lever-
age long-term periodicity and short-term proximity
for spatio-temporal contrastive learning to capture
spatio-temporal heterogeneity. A tailored adaptive
risk-level weighted loss function based on efficient
locality-sensitive hashing is introduced to alleviate
the zero-inflated issue. Extensive experiments on
two real-world datasets offer evidence that ST-TAR
is capable of advancing state-of-the-art forecasting
accuracy with improved efficiency. This makes ST-
TAR suitable for applications that require accurate
real-time forecasting.

1 Introduction
Urbanization and the proliferation of vehicles have caused
traffic accidents to become one of the world’s largest public-
health threats. The Global Plan for the Decade of Action for
Road Safety 2021–2030 [Organization and others, 2021] re-
ports nearly 1.3 million avoidable deaths and around 50 mil-
lion injuries worldwide yearly due to road accidents. More-
over, as it stands without intervention measures, there will
be an estimated 13 million deaths and 500 million injuries in

∗Corresponding authors.
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Figure 1: An example of spatio-temporal heterogeneity in traffic ac-
cidents. The figure visualizes the frequency of accidents in two areas
A and B during each hour of the day.

the next decade. In light of these disconcerting statistics, ad-
vanced accident prediction mechanisms are urgently needed
to identify and mitigate risks as early as possible, safeguard-
ing public health and safety.

Traffic accidents are influenced by various spatio-temporal
factors [Bergel-Hayat et al., 2013; Trirat et al., 2023]. Tradi-
tional statistical learning-based methods [Sharma et al., 2016;
Barba et al., 2014] struggle to capture the complex correla-
tions, while deep learning modules such as Graph Convolu-
tional Networks (GCN) [Kipf and Welling, 2017] and Trans-
formers [Vaswani, 2017] have emerged as powerful tools for
modeling spatial dependencies and temporal patterns. Deep
learning-based methods [Wang et al., 2021; An et al., 2022;
Wang et al., 2023; Chen et al., 2024] integrate these modules
with customized designs to achieve better performance. Al-
though existing methods have made great advances in traffic
accident forecasting, they still have three major limitations.

The first limitation is the problem of zero-inflated data.
Traffic accidents are low-probability events in a city, with
most regions and time intervals labeled as 0 due to their infre-
quent occurrence. In the deep learning models, the resulting
excessively imbalanced label distribution tends to lead all pre-
dictions to be 0, reducing their utility [Bao et al., 2019]. Ex-
isting solutions [Wang et al., 2023; Chen et al., 2024] follow
a process where they build multi-level graphs and then aggre-
gate fine-grained features to obtain high-level features with a
smaller proportion of zero labels. In addition, weighted loss
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function [Wang et al., 2021; Chen et al., 2024] is introduced
to assign higher weights to samples with high accident val-
ues. However, the weighted loss function only enhances the
importance of non-zero data but ignores a large amount of
zero-label data that can be further mined.

The second limitation is a lack of modeling of the spatio-
temporal heterogeneity. As illustrated in Figure 1, A and B
are schools and residential areas in New York City with differ-
ent urban functions. We collect and calculate the frequency
of traffic accidents at each hour of the day during February
20131, presenting these data as a heat map. We observe a
significant inconsistency in accident frequency between the
two regions at the same hour of the day. In area A, the peak
hours for traffic accidents are from 4 p.m. to 5 p.m. and
from 6 p.m. to 7 p.m., while in area B, the peak hour of
traffic accidents occurs from 8 a.m. to 9 a.m. Thus, there
are distinct spatial differences between the two areas. Mean-
while, the frequency of accidents in both regions fluctuates
significantly over time, indicating obvious temporal dynam-
ics within each region. Existing methods that model spatial
differences and temporal dynamics through shared parame-
ters without any explicit handling face difficulty in effectively
capturing spatio-temporal heterogeneity.

The third limitation is insufficient efficiency. Traffic ac-
cident forecasting is highly time-sensitive. As the spatial
and temporal granularity of predictions becomes more re-
fined, existing approaches may struggle to meet the de-
mands for timeliness and resource consumption in the future.
Many existing studies [Wang et al., 2021; Wang et al., 2023;
Chen et al., 2024] combine long-term and short-term data into
single sequential input, and simultaneously feed sequence
data into grid-based modules (e.g., CNN) and graph-based
modules (e.g., GCN) to enhance model performance. Al-
though these two types of modules each have unique ad-
vantages, their simultaneous use not only requires additional
hardware resources but also increases the training time, which
may be a bottleneck for large-scale data applications.

To overcome these limitations, we propose a Spatio-
Temporal Learning framework for Traffic Accident Risk
forecasting (ST-TAR). The ST-TAR leverages hierarchical
multi-view GCN and long short-term cross-attention mech-
anism to encode spatio-temporal traffic correlations. More
specifically, ST-TAR models long-term and short-term histor-
ical data respectively for spatio-temporal contrastive learning
to capture spatio-temporal heterogeneity. The zero-inflated
data issue is alleviated through hierarchical structure and
adaptive risk-level weighted loss function. In particular, we
propose an efficient auxiliary label processing algorithm that
exploits locality-sensitive hashing to reduce the label distribu-
tion imbalance. By exploiting contextual spatio-temporal in-
formation, ST-TAR effectively addresses the aforementioned
limitations to improve the effectiveness and efficiency of traf-
fic accident risk forecasting.

The main contributions are summarized as follows:

• We propose a novel spatio-temporal learning framework
named ST-TAR that effectively utilizes short-term prox-
imity and long-term periodicity with hierarchical multi-

1https://opendata.cityofnewyork.us/

view GCN and long short-term cross-attention mecha-
nism for traffic accident risk forecasting.

• We introduce spatio-temporal contrastive learning and
adaptive risk-level weighted loss function with an ef-
ficient auxiliary label processing algorithm that can
capture spatio-temporal heterogeneity and alleviate the
zero-inflated data issue.

• We report on an extensive experimental study on two
real-world datasets. The results demonstrate that our
proposed ST-TAR model outperforms baseline models
while utilizing fewer computational resources and re-
quiring less runtime. This underlines the effectiveness
and efficiency of ST-TAR in forecasting traffic accident
risk from large-scale spatio-temporal data. The source
code of our ST-TAR implementation is publicly avail-
able at https://github.com/wanghyhy/ST-TAR.

2 Related Work
Existing methods can generally be categorized into statisti-
cal learning-based methods and deep learning-based meth-
ods. Statistical learning-based methods such as K-Nearest
Neighbors (KNN) [Lv et al., 2009], decision trees [Lin et
al., 2015], Support Vector Machine (SVM) [Sharma et al.,
2016], and Autoregressive Integrated Moving Average Model
(ARIMA) [Barba et al., 2014] make predictions on small-
scale traffic accident data with limited features, and they are
unable to capture complex spatio-temporal dependencies in
historical data.

To model spatio-temporal correlations in traffic data more
effectively, recent methods utilize deep learning modules
such as graph convolutional networks [Guo et al., 2021;
Luo et al., 2022; Han et al., 2021]. These methods demon-
strate advantages by effectively capturing complex tempo-
ral and spatial dependencies that are inherent to traffic data.
Hetero-ConvLSTM [Yuan et al., 2018] employs an ensem-
ble method with a convolutional long short-term memory
network to handle the spatial heterogeneity, but manually-
selected regions limit the spatial patterns. Therefore, Hint-
Net [An et al., 2022] devises a multi-level risk-based spa-
tial partitioning with a hierarchical knowledge transfer net-
work to capture irregular spatial heterogeneity patterns. To
alleviate the zero-inflated data issue, GSNet [Wang et al.,
2021] presents a geographical and semantic spatio-temporal
network with a weighted loss function. Further, MVMT-
STN [Wang et al., 2023] leverages a multi-task learning
framework to predict fine and coarse-grained traffic accidents
jointly to contend with data sparsity. More recently, MGH-
STN [Chen et al., 2024] introduces multi-level hierarchical
structures with multivariate hierarchical loss function, and in-
corporates remote sensing images to make a comprehensive
traffic accident risk prediction. In addition to efficiency, none
of these studies explicitly consider the challenges of zero-
inflated data issue and spatio-temporal heterogeneity simul-
taneously for traffic accident forecasting.

3 Preliminaries and Definitions
Definition 1 (Grid and Region). A city is partitioned into a
regular grid with I × J cells based on longitude and latitude.
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Figure 2: Architecture of the proposed ST-TAR model.

Since cities typically exhibit irregular shapes, only a subset
R = {r1, r2, . . . , rN} contains road segments (i.e., N ≤ I ×
J), and each ri in the subset R is defined as a region.

Definition 2 (Spatio-temporal Features). Spatio-temporal
features xt

i∈X of region ri in time interval t are categorized
into static and dynamic features. Static features are the POI
distribution, while dynamic features include temporal infor-
mation, weather data, traffic flow, and accident risk values.

Definition 3 (Traffic Accident Risk). Three types of traffic
accidents are defined based on the number of casualties in
traffic accidents, i.e., minor accidents, injured accidents, and
fatal accidents, with corresponding risk values set to be 1, 2,
and 3, respectively [Wang et al., 2021]. The traffic accident
risk yti ∈ Y is equal to the sum of the risk values of accidents
that occurred in region ri in time interval t.

Definition 4 (Hierarchical Multi-view Graph). To capture
spatial dependency at multiple granularities and from various
semantic perspectives, a hierarchical multi-view graph G =
{G(1),G(2), . . . ,G(L)} is constructed, where L represents
the number of layers. Each layer G(i)=(V (i), E(i),X(i)) is
a multi-view graph at a specific granularity level, which con-
sists of three views of graph: road similarity graph G

(i)
D , POI

similarity graph G
(i)
P , and risk similarity graph G

(i)
K . G(1) is

the finest-grained graph for prediction (i.e., X(1) =X where
X is the original feature).

Definition 5 (Traffic Accident Risk Forecasting). Given the
historical features {X1,X2, . . . ,XT }, a hierarchical multi-
view graph G and target time information zT+1, our goal is
to forecast the traffic accident risk ŶT+1 in the time interval
T + 1 with the model f :

ŶT+1 ← f(X1, . . . ,XT , zT+1,G). (1)

4 Methodology
In this section, we present our ST-TAR model for traffic ac-
cident risk forecasting, as illustrated in Figure 2. The com-
plete historical data is composed of long-term and short-term
data. Historical data from the p most recent time intervals is
short-term data, and the same time interval in the previous q
weeks is long-term data (T =p+q). In contrast to most exist-
ing methods that concatenate long-term and short-term data
into a single sequential input, we treat long-term and short-
term data as separate inputs, respectively, to capture spatio-
temporal correlations across different time steps.

4.1 Hierarchical Multi-view GCN
High-level features can significantly reduce the proportion
of zero-label data by aggregating information from multiple
low-level nodes. Moreover, these high-level features enhance
fine-grained predictions by providing rich contextual infor-
mation. The hierarchical multi-view GCN consists of two
main stages: intra-level multi-view GCN and inter-level fea-
ture fusion.
Intra-level Multi-view GCN. To model neighbor interac-
tions with spatial dependencies, we adopt the GCN [Kipf and
Welling, 2017] for each view within a hierarchical level. The
adjacency matrix is augmented with a self-connection to ob-
tain matrix Ã and degree matrix D̃. Then we can get the nor-
malized symmetric adjacency matrix Â = D̃(− 1

2 )ÃD̃(− 1
2 ).

Then the graph convolution operation can be formulated as
follows:

Hl
c = GCN(A,Hl−1

c ) = σ(ÂHl−1
c Wl

c + bl
c), (2)

where Hl
c represents the l-th layer of the hidden features ma-

trix in the GCN, Wl
c and bl

c are learnable parameters of the
l-th graph convolutional layer.
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In general, we employ a two-layer GCN to learn the spatial
features of each view and then aggregate them by summation,
which is formulated as follows:

Hc =
∑

i∈{D,P,K}

GCN(Ai,GCN(Ai,X)), (3)

where X denotes the initial embeddings of regions, and Ai ∈
{AD,AP ,AK} denotes the adjacency matrix of each view.
Inter-level Feature Fusion. For two adjacent k-th and k+1-th
levels, the nodes at the k+1-th layer aggregate multiple nodes
from the k-th layer. The corresponding relationship can be
represented by matrix Bk,k+1, which is represented as:

Bk,k+1(i, j) =

{
1 if r(k)i ∈ r

(k+1)
j

0 otherwise
(4)

By utilizing matrix Bk,k+1 as a bridge to represent the re-
lationships between nodes in adjacent levels, the feature fu-
sion process is executed sequentially from the finest-grained
level to the coarsest-grained level, which is consequently rep-
resented as follows:

H
(k)
f = H(k)

c + λfBk,k+1H
(k+1)
c ,

H
(k+1)
f = H(k+1)

c + (1− λf )B
T
k,k+1H

(k)
f ,

(5)

where H
(k)
f and H

(k+1)
f represent the feature fused from the

k+1-th layer to the k-th layer and from the k-th layer to the
k+1-th layer, respectively. λf is hyperparameters that balance
the weights between low-level and high-level layers.

4.2 Long Short-term Cross-attention Mechanism
To distinguish the output of long-term and short-term data
through hierarchical multi-view GCN module, we use the
Hf,l and Hf,s to represent the embeddings learned from
long-term and short-term data, respectively (we omit the su-
perscripts indicating the level because the attention mecha-
nism is implemented independently within each level). Given
target time information zT+1, we utilize Hf,l and Hf,s as the
keys and values in the attention mechanism, while concate-
nating zT+1 and complementary embeddings as respective
queries, which are represented as follows:

Qs = (Hf,l ∥ zT+1)WQ, Ql = (Hf,s ∥ zT+1)WQ,

Ks = Hf,sWK , Kl = Hf,lWK ,

Vs = Hf,sWV , Vl = Hf,lWV ,

(6)

where WQ,WK and WV are learnable parameters, and ∥
refers to the concatenation operation. We process the above
features through a multi-head attention method:

S=MultiHead(Qs,Ks,Vs),L=MultiHead(Ql,Kl,Vl),

MultiHead(Q,K,V)=Concat(head1, . . . , headh)WO,

headi = Attention (Q,K,V) ,

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V,

(7)

where WO is the learnable linear transformation to merge the
information from various attention heads.

4.3 Feature Fusion and Prediction
In general, short-term proximity and long-term periodicity in-
fluence the target time to different degrees. Consequently,
we employ two trainable weight matrices W(k)

s and W
(k)
l in

each level to dynamically integrate the outputs of long short-
term data and employ a fully-connected (FC) layer to make
the risk prediction at each granularity:

Ŷ(k) = FC
(
W(k)

s S(k) ∥W(k)
l L(k)

)
. (8)

4.4 Spatio-Temporal Contrastive Learning
With the proposed hierarchical multi-view GCN and long
short-term cross-attention mechanism, we obtain two feature
representations of short-term proximity and long-term peri-
odicity as S and L, which contribute to the prediction at the
target time from different perspectives. Therefore, we regard
the short-term embedding and long-term embedding in the
same region for the same target time as positive pairs (sti, l

t
i),

while the embeddings at different regions (i.e., ri ̸= rj) and
for different target time (i.e. t ̸= t′) as spatial-negative pairs
(sti, l

t
j) and temporal-negative pair (sti, l

t′

i ).
Following this criterion, the correlation between short-

term proximity and long-term periodicity is manifested as a
complementary relationship in the contrastive learning pro-
cess, which promotes representations in both views that re-
tain spatio-temporal heterogeneity to match each other. The
spatio-temporal contrastive learning task is optimized with
BCEWithLogitsLoss, which is defined as follows:

Ls=−

[
N∑
i=1

logD
(
sti, l

t
i

)
+

N∑
i=1

log
(
1−D

(
sti, l

t
j

))
+

N∑
i=1

log
(
1−D

(
sti, l

t′

i

))]
.

(9)

Here, D(·) is a discriminator that evaluates the matching
scores between two input embeddings. Specifically, we im-
plement it with a fully connected network fed by the concate-
nation of the input, which is defined as:

D
(
sti, l

t
i

)
= σ

(
Wd

(
sti ∥ lti

)
+ bd

)
, (10)

where Wd and bd are learnable parameters of the discrimi-
nator.

4.5 Adaptive Risk-level Weighted Loss Function
Zero-inflated data causes common loss functions (e.g., mean
squared error) to disproportionately focus on zero-label data,
thereby neglecting non-zero data. To alleviate this issue, we
classify the data labeled as 0 at the finest-grained level (i.e.,
Y(1) = 0, we omit the level superscripts for simplicity) into
high-risk and low-risk based on the feature similarity. The
resulting auxiliary labels serve as soft targets [Hinton et al.,
2015] to implicitly optimize the label distribution to enhance
the discriminative ability of the model.

An intuitive approach is to set a threshold for distin-
guishing high-risk and low-risk labels by calculating pair-
wise feature similarities (e.g., cosine similarity) between the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

accident-occurred and non-accident intervals in a given re-
gion. However, this is extremely time-consuming when pro-
cessing large-scale spatio-temporal data.

To improve efficiency, we utilize the hash collisions of Lo-
cality Sensitive Hashing (LSH) [Indyk and Motwani, 1998]
for approximate similarity search. LSH is an algorithmic
technique that employs hash functions to efficiently map sim-
ilar data points into the same bucket with high probability,
reducing the computational cost of similarity search. Due to
its simplicity and effectiveness, we adopt random projection
hash [Charikar, 2002] as the specific LSH method. Given
the spatio-temporal features xt

i, we obtain a random vector u
from the Gaussian distribution (i.e., each coordinate is drawn
from the 1-dimensional Gaussian distribution). Then the hash
value p(xt

i) is calculated as follows:

p(xt
i) =

{
1 if u · xt

i ≥ 0

0 if u · xt
i < 0

(11)

In our model, we construct a hash table by sampling K
independent random projection hash functions, denoted by
P = {p1, p2, . . . , pK}. As a single random projection hash
function returns a one-bit output (0 or 1), the hash table re-
turns a K-bit output. Given that A and B are represented
as feature vectors, the collision probability in this condition
conforms as follows [Goemans and Williamson, 1995]:

Pr[P (A) = P (B)] =

(
1− θ

π

)K

, where

θ = arccos

(
A ·B√
|A| · |B|

)
.

(12)

Therefore, according to the power law, the collision prob-
ability declines sharply as K increases, ensuring that sim-
ilar embeddings have a high probability of obtaining iden-
tical outputs. In a specific region, we initialize hash buck-
ets and map the accident-occurred hash values into buckets.
For accident-occurred intervals, we label them as accident
(cti = 2). For non-accident intervals, if the K-bit hash val-
ues match a non-empty bucket, we label them as high-risk
(cti=1); otherwise, we label them as low-risk (cti=0). We ob-
tain three types of auxiliary labels, and the relationship with
traffic accident values is as follows:

cti =

{
0 or 1, if yti = 0

2, if yti > 0
(13)

Time complexity. The time complexity of auxiliary label
processing algorithm is O(N×M×K×dh+2×N×M) =
O(N × M × K × dh), where N , M , and K denote the
number of regions, time intervals, and hash functions, re-
spectively, and dh denotes the feature dimensionality. Com-
pared with the intuitive solution, which has a complexity of
O(N ×Ma ×Mn × dh) (Ma and Mn denote the number of
time intervals with and without accident occurrences, which
satisfy M = Ma +Mn), our method has a better complexity.
Moreover, our method is more suitable for online risk predic-
tion due to the O(K×dh) complexity of an update operation,
while the intuitive solution has a complexity of O(M × dh).

Finally, the adaptive risk-level weighted loss function
based on Mean Squared Error (MSE) can be divided into two
parts: zero-label data and non-zero data. For non-zero data,
we classify them into three levels according to the accident
risk value Inz = {Y=1,Y=2,Y≥3} and assign them differ-
ent weights, which are expressed as:

Lnz =
1

Nnz

∑
k∈Inz

λnz
k · (Y(k)− Ŷ(k))2, (14)

where Nnz is the number of non-zero samples, λnz
k are hy-

perparameter weights of three risk value levels.
For zero-label data, we classify them into two levels ac-

cording to the auxiliary labels Iz = {C=0,C=1} and assign
them different weights, which are expressed as:

Lz =
1

Nz

∑
k∈Iz

λz
k · (Y(k)− Ŷ(k))2, (15)

where Nz is the number of zero-label samples, λz
k are hyper-

parameter weights of high-risk and low-risk data.
The overall adaptive risk-level weighted loss function is

defined as follows:

Lr = Lz + Lnz. (16)

4.6 Model Optimization
In the training process, adaptive risk-level weighted loss and
spatio-temporal contrastive loss are jointly optimized with the
hierarchical loss. Therefore, the total loss of multi-task learn-
ing is represented as follows:

L = λrLr + λcLc + λhLh, (17)

where Lh represents the hierarchical loss following existing
hierarchical studies [Wang et al., 2023; Chen et al., 2024].
λr, λc and λh are the hyperparameters of the loss function to
balance the importance of the different tasks.

5 Experimental Study
We conduct extensive experiments on real-world datasets
to evaluate the effectiveness and efficiency of the proposed
model. Moreover, we conduct the ablation study and create
visualizations to assess and illustrate the impact of the differ-
ent components on the model.

5.1 Experimental Settings
Datasets. Experiments are conducted on two public real-
world traffic accident datasets collected from New York City

Dataset NYC Chicago

Time span 1/1/2013 - 12/31/2013 2/1/2016 - 9/30/2016
Traffic accidents 147k 44k

Taxi trips 173,179k 1,744k
POIs 15,625 None

Hours of weather 8,760 5,832
Road segments 103k 56k

Table 1: Statistics of datasets.
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Models
NYC Chicago

RMSE/RMSE* RECALL/RECALL* MAP/MAP* RMSE/RMSE* RECALL/RECALL* MAP/MAP*

ARIMA 10.4025/9.4632 26.84%/28.56% 0.1094/0.1187 13.7652/10.6935 16.27%/18.45% 0.0579/0.0637
MLP 8.6526/7.8175 27.25%/29.17% 0.1212/0.1269 12.6740/8.5328 17.12%/19.84% 0.0684/0.0735

ConvLSTM 7.6919/7.3402 30.88%/31.33% 0.1557/0.1629 11.2145/8.4636 18.49%/20.14% 0.0759/0.0823
Hetero-ConvLSTM 7.7904/7.3988 29.74%/30.76% 0.1504/0.1567 11.3112/8.5107 18.72%/19.20% 0.0712/0.0746

GSNet 7.5842/6.7335 33.29%/34.15% 0.1820/0.1788 11.1605/8.5616 20.16%/21.45% 0.0869/0.1021
HintNet 8.0867/7.1372 32.56%/33.40% 0.1702/0.1734 11.3792/8.7764 19.21%/20.53% 0.0806/0.0924

MVMT-STN 10.1781/9.4540 33.56%/34.25% 0.1862/0.1807 13.0438/10.2517 20.27%/21.65% 0.0898/0.1062
MGHSTN 6.8083/6.4137 34.13%/34.54% 0.1932/0.1853 7.7628/6.0792 20.87%/22.06% 0.0912/0.1128
ST-TAR 6.6738/6.2040 34.37%/35.11% 0.1921/0.1884 7.5044/5.5936 21.12%/22.39% 0.0951/0.1187

Table 2: Performance comparison of different methods on the NYC and Chicago datasets. RMSE*/RECALL*/MAP* represents the perfor-
mance during rush hours (7:00–9:00 and 16:00–19:00). We denote the best results in boldface and the second best results in underline. To
ensure a fair comparison, we modify the MGHSTN model by removing the remote sensing data, which is not available in other models.

(NYC)2 and Chicago3. Statistics of the datasets are presented
in Table 1. The POI data includes seven categories: residence,
school, culture facility, recreation, social service, transporta-
tion, and commercial area. Due to the absence of POI data in
the Chicago dataset, we only constructed neighborhood, risk
similarity, and road similarity graphs for this dataset. The
weather data includes temperature and weather conditions,
including sunny, rainy, cloudy, snowy, and misty days. We
employ the taxi trip data to calculate the inflow and outflow
of each region as the human mobility data.
Experimental Setup. Following existing studies of traffic
accident forecasting [Wang et al., 2021; Wang et al., 2023],
we divide the data on the timeline into training, validation,
and test sets in a ratio of 6:2:2. A city is partitioned into
grid cells of size about 2km × 2km. The length of short-term
input data p and of long-term input data q are set to 3 and 4,
respectively. The time interval length is set to 1 hour.
Baselines. We compare ST-TAR with eight baselines for
traffic accident risk forecasting: (1) statistical methods:
ARIMA, (2) grid-based learning methods: MLP, ConvL-
STM [Shi et al., 2015], Hetero-ConvLSTM [Yuan et al.,
2018] (3) graph-based learning methods: GSNet [Wang et
al., 2021], HintNet [An et al., 2022], MVMT-STN [Wang et
al., 2023], MGHSTN [Chen et al., 2024].
Evaluation Metrics. We adopt Root Mean Square Error
(RMSE), Recall, and Mean Average Precision (MAP) to as-
sess the performance. Due to the high frequency of traffic ac-
cidents during rush hours (i.e., 7:00–9:00 and 16:00–19:00),
we independently use RMSE*, Recall*, and MAP* to evalu-
ate the performance during these periods to evaluate the per-
formance of our model more comprehensively.

5.2 Effectiveness Comparison
Table 2 presents the performance comparison of all methods
on the two datasets. Our model achieves the best perfor-
mance in most metrics on all datasets, which demonstrates
the superiority of ST-TAR. We attribute the performance im-
provement to spatio-temporal contrastive learning and adap-

2https://opendata.cityofnewyork.us/
3https://data.cityofchicago.org/

tive risk-level weighted loss function for capturing spatio-
temporal heterogeneity and alleviating the zero-inflated data
issue simultaneously. More specifically, the ST-TAR model
performs well both throughout the entire day and during rush
hours, demonstrating its robustness under diverse conditions.

Furthermore, the statistical learning method ARIMA has
the worst performance, which is due to its limited capabil-
ity in capturing complex spatial and temporal correlations.
Among the deep learning models, the performance of ba-
sic MLP is inferior to ConvLSTM and Hetero-ConvLSTM,
which utilize convolutional networks and LSTMs to cap-
ture spatial and temporal dependencies. The graph-based
models (GSNet, HintNet, MVMT-STN, MGHSTN, and ST-
TAR) perform better than grid-based models (ConvLSTM
and Hetero-ConvLSTM), indicating the effectiveness of mod-
eling non-Euclidean spatial structure for traffic accident fore-
casting. However, these baseline methods do not simultane-
ously address the zero-inflated data issue and capture spatio-
temporal heterogeneity. Therefore, ST-TAR achieves supe-
rior performance compared to baselines.

5.3 Ablation Study
To validate the effectiveness of the different components
in ST-TAR, we conduct an ablation study with three vari-
ants: (1) ST-TAR-LS combines long-term and short-term
data into a single sequential input. (2) ST-TAR-CL removes
the spatio-temporal contrastive learning. (3) ST-TAR-WL
replaces the adaptive risk-level weighted loss function with
a classic MSE loss function. Figure 3 shows the experi-
mental results between ST-TAR and these variants. We ob-
serve that ST-TAR outperforms the three variants across all
metrics, indicating that each component contributes to the
model. Specifically, the deteriorated RMSE and MAP of both
datasets in ST-TAR-CL suggest that separately considering
long-term and short-term data benefits long-term periodicity
and short-term proximity modeling. Furthermore, ST-TAR-
CL outperforms ST-TAR-WL in regression prediction on the
NYC dataset while the converse is observed on the Chicago
dataset, proving both capturing spatio-temporal heterogeneity
and alleviating the zero-inflated data issue can enhance model
performance across different scenarios.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

NYC-RMSE
6.5

6.7

6.9

7.1

7.3

NYC-MAP
0.180

0.185

0.190

0.195

0.200

Chicago-RMSE
7.4

7.6

7.8

8.0

8.2

Chicago-MAP
0.084

0.088

0.092

0.096

0.100

ST-TAR-LS ST-TAR-CL ST-TAR-WL ST-TAR

Figure 3: Performance of the ST-TAR model and variants.

Models
NYC Chicago

Training
(s/epoch)

Inference
(s)

Training
(s/epoch)

Inference
(s)

GSNet 14.90 1.28 8.95 0.82
MVMT-STN 23.62 2.15 12.40 0.96

MGHSTN 18.33 1.56 16.13 1.02
ST-TAR 10.64 0.87 5.42 0.45

Improvement 28.59% 32.03% 39.44% 45.12%

Table 3: Running time on NYC and Chicago datasets.

5.4 Efficiency Comparison
We compare the training time per epoch and the inference
time of our ST-TAR model and the three best prediction per-
forming baselines: GSNet, MVMT-STN, and MGHSTN. We
also record the GPU memory usage of these models for train-
ing. The results are shown in Table 3 and Figure 4. Moreover,
the auxiliary label processing procedure takes 10.8 seconds
and 5.2 seconds on NYC and Chicago datasets respectively,
roughly equivalent to one training epoch time, indicating that
the pre-processing does not impose a significant overhead.
Compared to the baselines, ST-TAR saves more than 25% of
running time with minimal GPU usage. Different from the
baselines that handle long-term and short-term data as a con-
catenated input and predict their results by fusing the outputs
of their respective grid-based and graph-based modules, ST-
TAR processes long-term and short-term data separately and
performs risk prediction solely based on graph-based feature
learning, thus significantly improving the efficiency.

5.5 Visualization
To illustrate the impact of auxiliary labels on the zero-inflated
data issue intuitively, we visualize the spatial label distribu-
tion before and after processing on the NYC dataset from
10 p.m. to 11 p.m. on February 2, 2013. As presented
in Figure 5, accidents only occurred in a small fraction of
regions. Our auxiliary label processing algorithm classifies
non-accident regions as high-risk and low-risk, resulting in a
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Figure 4: GPU memory usage on NYC and Chicago datasets.

(a) Map before auxiliary labeling (b) Map after auxiliary labeling

Figure 5: Visualization of label distribution of the city before and
after the auxiliary label processing procedure on the NYC dataset.

more balanced label distribution. Notably, high-risk regions
are mainly concentrated near the accident-occurred regions,
which aligns with Tobler’s first law of geography [Tobler,
1970] as geographically close regions tend to have similar
characteristics in terms of traffic flow, weather, and other fac-
tors, making accidents more likely to occur near the accident-
occurred regions.

6 Conclusion
We propose an efficient spatio-temporal learning framework,
called ST-TAR, for traffic accident risk forecasting. We intro-
duce hierarchical multi-view GCN and long short-term cross-
attention mechanism to capture spatio-temporal correlation
by considering long-term periodicity and short-term prox-
imity separately. To capture spatio-temporal heterogeneity
and contend with the zero-inflated data issue, spatio-temporal
contrastive learning and adaptive risk-level weighted loss
function are devised to achieve a multi-task framework.
Extensive experimental studies on two real-world datasets
demonstrate that ST-TAR achieves superior performance with
improved efficiency.
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