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Textual- and Agent-Based Diffusion Model
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Abstract
Misinformation has experienced increased online
diffusion, leveraging strategies, such as emotional
manipulation, to influence users’ opinions. Efforts
are underway to develop tools to mitigate its ef-
fects, such as misinformation propagation models
used to simulate the diffusion of information. There
are different approaches within these models, al-
though, they show a significant limitation by disre-
garding the content of the information shared, cru-
cial to the diffusion. We consider it the central
aspect of modeling information dissemination. To
this end, we focus on Agent-Based Modeling due to
its suitability to simulate the complex interactions
and heterogeneous behaviors observed on social
media. We base our approach on a state-of-the-art
Agent-Based Model that we modify and extend to
account for the texts of the messages shared, focus-
ing on two aspects that influence agents’ decisions:
i) the novelty of the content and; ii) its diffusion
and behavior over time. To determine whether this
content proves informative, we conduct an empiri-
cal evaluation using social media data from Twitter.
Based on our experimental results, we observe that
our textual-based approach reflects information dif-
fusion more realistically than the state of the art,
reducing the error regarding real diffusion.

1 Introduction
Fake news and misinformation have interfered with funda-
mental foreign affairs or spread dangerous health-related ad-
vice [Cuan-Baltazar et al., 2020]. Detecting the diffusion
of this content proves a significant challenge to mitigate its
spread [Raza and Ding, 2022]. From current efforts, we no-
tice a general absence of a holistic perspective, studying mis-
information through separate components, from a local [Hu
et al., 2024] to a global perspective [Caldarelli et al., 2020].

Evaluating detection models or mitigation strategies be-
fore implementation is also relevant to these efforts, which
rely on understanding information diffusion processes. In
these terms, propagation diffusion models are a powerful tool
to study information cascades [Lotito et al., 2021]. While
not the only approaches, epidemiology-based models are the

most widespread [Muhammad and Kasahara, 2024], mainly
focused on user behavior without considering shared content.
Whenever textual content is included [Kumar et al., 2021;
Milli, 2021], it is limited to user profiling, not as part of the
communicative device. As such, texts with distinct character-
istics (e.g. empty string, emotionally manipulative, or unin-
telligible) would have the same diffusion, not addressing why
fake and real information differ [Vosoughi et al., 2018].

Contrary to these models, we consider content a relevant
aspect of information diffusion modeling. In this area of
epidemiology-based models, we base our approach on a state-
of-the-art agent-based model [Serrano and Iglesias, 2016],
that we modify and extend to propose the Textual Content-
based Neutral-Vaccinated-Infected (CoNVaI) model to sim-
ulate the diffusion of textual content on social media. We
exploit textual characteristics from two perspectives: the
novelty of the content; and the diffusion and behavior over
time. We empirically validate and compare our approach
to the base state-of-the-art agent-based model [Serrano and
Iglesias, 2016] that we considered representative of similar
epidemiology-based models that ignore textual content.

We also correct another standard limitation in evaluation
processes: the lack of realistic evaluation environments. Cur-
rent approaches rely on synthetic networks [Coates et al.,
2021] or real topologies that do not match the information
being propagated [Zehmakan et al., 2023], disregarding their
impact on engagement [Karnstedt et al., 2011].

With this paper, we make the following three contributions:
i) We propose the CoNVaI model1, where each agent is char-
acterized based on a unique user and provided with a decision
mechanism to determine when and how to disseminate infor-
mation. ii) We consider the textual content of the information
shared, mainly ignored in epidemiology-based models, from
different perspectives. iii) We validate our model with data
from real scenarios and compare it to a state-of-the-art model,
highlighting the importance of modeling the content.

The paper is structured as follows: Section 2 reviews re-
lated work. Section 3 presents the fundamentals of CoNVaI.
Section 4 covers the components of our model and its be-
havior. Experimental results are discussed in Section 5, and
Section 6 details our findings and future work.

1The code, supplementary material, and experimentation results
are available in https://github.com/Kasdeyael/ABSS CoNVaI
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2 Related Work
Many research efforts have been dedicated to studying in-
formation cascades and predicting their spread [Zhong et
al., 2023]. These approaches exploit various characteris-
tics, from network topologies to temporal dynamics or the
content of the messages [Liu et al., 2023; Sun et al., 2023;
Zhong et al., 2023], with a focus on deep learning. Related to
these efforts, we have propagation diffusion models. Besides
the potential prediction of the information cascades, the focus
veers to modeling the users affected by the information and
its diffusion, where the emphasis is placed on their decision-
making abilities and behaviors [Coates et al., 2021].

Propagation models originate in deterministic compart-
mental epidemiological models for viral contagion [Ker-
mack and McKendrick, 1927], which use ordinary differen-
tial equations to reflect transition rates. Infected individuals
are introduced into a group, and the virus spreads to suscep-
tible individuals until they get removed. Individuals are com-
partmentalized into Susceptible, Infected, or Removed, creat-
ing the SIR model. An early application to information prop-
agation considers it an “intellectual epidemic” [Goffman and
Newill, 1964], where the virus is the information. Other ini-
tial variations, such as the Daley-Kendall model [Daley and
Kendall, 1964], adopted elements from information diffusion.

The limitations of epidemic models applied to information
diffusion eventually become apparent, such as assuming ho-
mogeneous behaviors [Nekovee et al., 2007]. Some models
include behaviors from social media, reflecting a belief sys-
tem and a hesitancy stage [Xia et al., 2015]. The Emotion-
based SIS (ESIS) [Wang et al., 2015] introduces the concepts
of emotion within the information by categorizing them, mak-
ing some emotions more effective for propagation. These
models still present limitations, such as compartmentaliza-
tion, to compensate for the lack of individual behavior [Zhang
et al., 2018]. Other approaches have been inspired by phys-
ical phenomena, such as the Forest Fire Model [Kumar et
al., 2021], influenced by a fire spreading in a forest, which
also introduces user-based similarity leveraging shared top-
ics. Still, these textual characteristics only model users’ rela-
tionships without giving relevance to the information itself.

Agent-based simulation has been used to overcome
limitations regarding user and topology homogeneity.
Epidemiology-based models have been implemented [Ser-
rano and Iglesias, 2016] while differentiating user behav-
ior [Gausen et al., 2021]. Social theories have also been re-
searched through skepticism and gullibility [Tambuscio et al.,
2018], or user-based similarity [Li et al., 2019]. The Big Five
Personality traits model has been proposed to study the effect
of political beliefs [Coates et al., 2021] or to model agent-
based trust [Muhammad and Kasahara, 2024]. Once again,
the content is ignored in favor of the users, sometimes char-
acterized based on psychological models, without consider-
ing specific social media behavior and personality traits may
lack correlation [Azucar et al., 2018] or be time-dependent.

3 Preliminaries
This section defines and formalizes the fundamental compo-
nents of our proposal.

3.1 Information Diffusion Fundamentals
To model information diffusion, we first introduce the formal
definitions of the elements that shape it from the standpoint
of our agent-based framework.

We adopt and extend the definition of a multi-agent system
(MAS) provided by Centeno et al. [2009]. Thus, we define
an Agent-based Simulation Diffusion System as follows:

Definition 1. An Agent-based Simulation Diffusion System is
a tuple ⟨U,X ,A,Φ, x0, φ, t⟩, where:

• U is a set of social agents, where |U | denotes the total
number of social agents within the system.

• X is the environmental state space. As an attribute of X ,
we consider the set of conversations C the social agents
create, where |C| denotes the number of conversations.

• A is the action space formed by the 3 actions that agents
can perform. In our system, these are: starting a new
conversation as anew, replying to a conversation as
areply(c), or doing nothing as askip, where c ∈ C.

• Φ : X × A|U | × X → [0..1] is the system’s transition
probability distribution, reflecting how X evolves with
the agents’ actions.

• x0 ∈ X establishes the initial state of the system.

• φ : U ×X ×A → {0, 1} is the agent’s capability func-
tion, which determines whether an agent can perform an
action at a given environmental state.

• t reflects the time, discretized in steps, which represents
the execution time of the system.

We have extended the MAS definition to consider conver-
sations a part of X . We deem the time an explicit part of the
system, enabling the agents to perform actions that affect the
environment within each time unit.

Following the definition of an agent provided by Centeno
et al. [2009], we define a social agent as follows:

Definition 2. A Social Agent is a tuple
⟨S,O, Uin, g, f, per, s0⟩, where:

• S defines the set of internal states of an agent.

• O is the set of observations the agent perceives from its
environment. As part of O, the agent has a set of con-
versations C that they perceive.

• Uin is a subset of social agents such that the agent can
read their conversations (their followees).

• g : O × S → S is the transition function of the agent’s
states.

• f : S → A is the decision function, representing the
agent’s diffusion model.

• per : C ×X → O is a perception function of the agents,
allowing them to assign an observation in an environ-
mental state. For an agent ui, O is composed of con-
versations Ci ⊆ C such that ui is already part of a con-
versation or ∃uj ∈ U where ui ∈ Uin(uj) and uj has
participated in a conversation.

• s0 is the initial internal state of the agent.
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We have extended the definition to reflect the social setting
of the agent, introducing Uin, such that Uin(ui) = {uj ∈ U |
(uj , ui) ∈ E}, where E is a set of connections between the
agents such that E ⊆ {(x, y) | x, y ∈ U2 and x ̸= y}. We
also consider the conversations to be part of the observations
of an agent, which affect the perception function. From this
definition, social agents can participate in the conversations
they perceive. These conversations are defined as follows:
Definition 3. A conversation is a tuple ⟨m0, p,M⟩, where:

• m0 is the initial message that starts a conversation.
• p is the textual content that is being discussed.
• M is a set of messages that reply to the conversation.
A conversation is a diffusion process that encapsulates

other messages, allowing agents to maintain discussions
about some information2 p ∈ P . Messages are defined as:
Definition 4. A message is a tuple ⟨ui, tj , sk⟩, where:

• ui is the agent that sent the message.
• tj is the time step at which the message was sent.
• sk is the message’s state, reflecting the agent’s opinion.

It can manifest their agreement or disagreement.
Through their actions, agents create conversations and

messages to interact with each other. These interactions are
determined by the actions A = {anew, areply(c), askip} they
can take. Formally, their behavior involves:

• anew starts a conversation c about a content p with a
message m0 and includes c in the conversations of the
system C ← C ∪ {c}.

• areply(c) replies to a conversation c with a message mi,
such thatM←M∪ {mi}, whereM∈ c.

• askip does nothing.3

3.2 Base AB-SIR Model
Most widespread information diffusion simulation models are
designed based on epidemiological principles and employ mi-
nor to no textual features. Since our contribution focuses on
these approaches, we chose a sophisticated MAS proposed
by Serrano and Iglesias [2016] for our base model, which
leverages epidemiological concepts for information diffusion.
Thus, we consider it to represent these models, posing an op-
tion to simulate diffusion processes while being complex and
validated with empirical data, guaranteeing it reflects reality.

This model, which we refer to as Agent-Based SIR (AB-
SIR) for this paper, extends the definition of social agent as:
Definition 5. A SIR-agent is a tuple ⟨S,O, Uin, g, f, per, s0⟩,
where:

• O, Uin, f, s0 are defined as in Definition 2.
• S has an attribute that labels the agent as one

of four states regarding c ∈ C, such that S =
{Neu, Inf, V ac, Cu}. A Neutral (Neu) agent is un-
aware of c. Infected (Inf ) and Vaccinated (V ac) agents

2In this work, we focus only on textual information, leaving mul-
timedia information such as images or videos.

3It allows us to model and simulate asynchronous simulations.

Algorithm 1 AB-SIR Transition function g

Input: oj , si, PTR = {PINF , PMD, PAD}

1: ⟨m0, p,Mi⟩ ← ExtractConversation(oj)
2: sj ← si
3: for m = ⟨u, t, sk⟩ in Mi do
4: Let U1, U2, U3, U4 ← U(0, 1) be random values
5: if sk = V ac ∧ si = Inf ∧ U1 ≤ PAD then
6: sj ← Cu
7: else if sk = V ac ∧ si = Neu ∧ U2 ≤ PAD then
8: sj ← V ac
9: else if sk = Inf ∧ si = Neu then

10: if U3 ≤ PINF then
11: sj ← Inf
12: else if U4 ≤ PMD then
13: sj ← V ac
14: end if
15: end if
16: end for
17: return sj

spread it by agreeing or disagreeing, respectively. A
Cured (Cu) agent was Infected stops spreading.

• the transition function g : O × S × PTR → S is also
dependent on a set of transition parameters PTR =
{PINF , PMD, PAD}, that determine the infection, vac-
cination and cure rates.

• per : C×X → O limits the conversations they perceive.
For each agent ui such that ∃uj ∈ U, ui ∈ Uin(uj),
and ∀⟨m0, p,M⟩ ∈ C, they perceive a conversation
⟨m0, p,Mk⟩ whereMk ← {m ∈M | uj ∈Mk}.

The g function is detailed in Algorithm 1. Let u1 =
⟨S,O, Uin, g, f, per, s0⟩ represent an AB-SIR agent, and let
xj represent the current environmental state, where oj =
per(xi) is its current observation space, and si is its current
state. Transitions are probabilistic and depend on random val-
ues drawn from uniform distributions U and the configurable
probabilities PTR. When reading a message sk = Inf from a
perceived conversation (ExtractConversation(oj)), a Neutral
agent might get infected with a probability PINF , or vac-
cinated with a probability (1 − PINF ) · PAD. An Infected
agent might turn Cured with a probability PAD from reading
a message sk = V ac. In contrast, a Neutral agent would turn
Vaccinated with the same probability.

After updating the state sj according to the changes in the
environment, an agent-SIR would determine its action based
on f , which can be defined as follows:

f(sj) =


anew if sj ∈ {Inf, V ac} ∧ ∄c
areply(c) if sj ∈ {Inf, V ac} ∧ ∃c
askip otherwise

An agent-SIR would start a conversation (anew) or reply to
the one that updated its state (areply(c)) if sj ∈ {Inf, V ac},
otherwise they would do nothing (askip). This cycle would
repeat until the maximum time limit for the simulation is
reached at T , or the users stop spreading the information

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

after a time X . For this last condition, let t denote the
current time in the simulation and tl(ui) the last time the
agent ui modified si, ∀c ∈ C. The simulation stops when
∀ui ∈ U, t− tl(ui) > X .

4 CoNVaI: Textual Content-Based
Neutral-Vaccinated-Infected

To correct the shortcomings of most epidemiology-based
models where the textual component is disregarded, we in-
troduce the CoNVaI model following the fundamentals intro-
duced in Section 3.1. We propose an extension of a SIR-
agent where the f decision and g transition functions rely
on two additional components (compared to AB-SIR): i) user
profiles with individual characteristics, which are common in
state-of-the-art approaches; and ii) the textual content shared
through two approaches: the novelty; and the influence and
engagement.

4.1 User Characteristics
In terms of the characterization of the users, we determine
their influence over others. Previous approaches exploit user
similarity measures and metrics based on the user profile [Ku-
mar et al., 2021; Milli, 2021]. To this end, we decided to em-
ploy the social-based information from their profiles for our
study. We extract three of the most relevant measures: the
follower count (followers), the number of listed posts (posts),
and the verified status (verified). These values have previ-
ously been utilized to characterize users and indicate a user’s
influence. We also consider one that has not yet been fully ex-
plored: the number of followees (followees). When studied
with the number of followers, this value has been positively
associated with engagement [Peng and Lu, 2024].

Based on the previous information, we set the probability
of a user u ∈ U to influence others with the formula:

Pusr(u) = FINFL ∗ Infl(u)

where FINFL is a configurable parameter to set the relevance
of Infl(u) to sway opinions, and Infl(u) is the influence of
a user, calculated with the previous four factors as follows:

Infl(u) = 0.4 · sc(followers
followees

) + 0.4 · sc(posts) + 0.2 · verified

where:
• sc(X) represents a logarithmic scaling function that al-

lows us to normalize the factor X as follows:

sc(X) = 1− e−α·X (1)

where α sets the middle value of the scaling function.
For each metric, we select α based on the mean.

• The weights (0.4; 0.4; and 0.2) have been adjusted to
assign higher importance to graded metrics since they
provide more information about a user.

4.2 News Novelty
Regarding the shared textual content, we introduce the nov-
elty of a piece of information p ∈ P . Following works where
the novelty of a news piece has proven relevant to the spread

of information [Photiou et al., 2021; Ulloa et al., 2023], we
decided to model its effects using Gaussian distributions. Let
ini ∈ T be the initial time when p was sent within a conver-
sation c ∈ C, and t ∈ T be the current time. The novelty of p
is obtained as:

Pnov(p, t) = FNOV · (Nov(p) · e
−(t−ini)2

2∗102 )

where FNOV is a configurable parameter to set the rele-
vance of the novelty Nov(p). We consider two processes for
Nov(p). The first one would be for users to be cognizant of
the information. It would take some time for any information
to reach them. The second one would be the increase of the
novelty, as the forgetting and the need to keep up with the in-
formation starts acting again. To model the novelty of each
content p, we use the following formula:

Nov(p) =

{
(1− e

−(tm−60)2

2∗20 ) · Entr(p) if tm ≤ 60

(1− e
−(tm−60)2

2∗110 ) · Entr(p) otherwise

where:

• tm refers to the time in minutes when the last informa-
tion related to p was sent.

• Entr represents the Entropy obtained through the
Kullback-Leibler Divergence (KLD) to evaluate the in-
formation gain. We consider an initial window of the six
previous hours before the content was sent for the for-
getting mechanism. We explored intervals from two to
24 hours to account for different speeds in information
diffusion and time zones, and settled on six to favor the
fast-paced news environment. Since KLD measures the
probability of an event, we obtain the probability of each
word as the relationship between its frequency in a text
and the rest of the frequencies for the other words. We
use the formula:

Entr(p) = sc(
∑
k

sk · ln(
sk
qk

))

where sk = [sk1, sk2, . . . , skn] is the vector of the prob-
abilities of the k words in the content p for a time t,
and qk = [qk1, qk2, . . . , qkn] is the vector of the prob-
abilities for t − 1. We perform a previous smoothing
step, introducing a small ϵ when probabilities are zero
to avoid indeterminations, and adjust the others accord-
ingly. A higher entropy corresponds with new informa-
tion, while a value of 0 would indicate the information
has been seen before. To keep Entr(p) normalized, we
have applied Equation 1, with α being the median of the
values.

4.3 News Influence and Engagement
For the second textual dimension, we study the influence of
news and its engagement over time with two variables. One is
the cumulative engagement a piece of information has (News
Influence), and the other is the distribution of that engage-
ment over time (Engagement Over Time). Our model consid-
ers both, since two pieces of information could have the same
total engagement with different temporal dynamics.
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For these components, we used two regression models to
predict engagement of p ∈ P , represented as ŷp = fr(p),
where ŷp is the prediction and fr(p) represents the function
used by the regression model. Since the predicted ŷp differs
depending on the component, we cover them individually:

• News Influence. For this component, the prediction ŷp
would be a scalar value ŷp ∈ R, as the prediction of the
aggregated engagement of p. To use within the decision
mechanism of our model, we apply Equation 1 to scale
the value, producing:

Pnw(p) = sc(ŷp)

• Engagement Over Time. This model would predict
the timeline of the diffusion per time unit, and it
is represented by a one-dimensional vector ŷp =
(ŷp1

, ŷp2
, . . . , ŷpn

). For the model, we turn the predic-
tion into a distribution as follows:

Prpl(p) =

∑i+w−1
j=i ŷ∗pj∑

j ŷpj

(2)

where ŷ∗p is a repeated array from the second element
onward of ŷp = (ŷp1 , . . . , ŷpn), to disregard the initial
comment that started the conversation, for w times:

ŷ∗p = (ŷp2 , . . . , ŷp2︸ ︷︷ ︸
w times

, . . . , ŷpL
, . . . , ŷpL︸ ︷︷ ︸
w times

)

and L is the maximum output size, determined by the
99th percentile of the real diffusion during training. For
each index i = 1, . . . ,M , where M = len(ŷ∗p)−w + 1
in Equation 2, we have computed a rolling window and
scaled the values, obtaining the one-dimensional vector
Prpl(p) to reflect likelihood intervals for sent messages.

For these regressor models, we employ some standard al-
gorithms for the News Influence component: Random Forest,
AdaBoost, and Gradient Boosting, with the Scikit-learn li-
brary4. For the Engagement Over Time, we selected KNeigh-
bors and Decision Trees since they support multiple outputs
natively. In terms of the input, we explored a selection of
characteristics through a set of tools: MultiAzterTest [Ben-
goetxea, 2021] and Empath [Fast et al., 2016], to explore
syntactic and semantic measures (lexical diversity, readabil-
ity, polysemic index, verbs in passive voice...), as well as the
emotional dimensions, such as joy or anger. We considered
three approaches: using only the characteristics from Multi-
AzterTest and Empath, using the texts directly with two bag-
of-words representations: frequency-based and TF-IDF, or
combining both texts and characteristics. We select the more
significant categories through Recursive Feature Elimination
(RFE) since they cannot be generalized due to being dataset
and social media-dependent [Aldous et al., 2019].

4.4 Runtime Behavior
We conclude the section by defining a ConVaI-agent, which
extends Definition 2 as follows:

4https://scikit-learn.org/

Algorithm 2 CoNVaI Transition function g

Input: oj , si, t1, PTR = {PINF , PMD, PAD, PRD, POPI}
PTX = {Pnov, Prpl, Pnw}, Pusr

1: t← current time
2: Let U1 ← U(0, 1)
3: if U1 ≤ Pread(ui, t) then
4: ⟨m0, p,Mi⟩ ← ExtractConversation(oj)
5: m = ⟨u, t, sk⟩ ← ExtractMessage(Mi)
6: if UnknownConversation(c) then
7: sj ← ReadSc(m0, p, t, PTX , PINF , PMD, Pusr)
8: else
9: sj ← ReadMs(m, si, p, t, PTX , PAD, POPI , Pusr)

10: end if
11: end if
12: return sj

Definition 6. A CoNVaI-agent is a tuple
⟨S,O, Uin, g, f, per, s0⟩, where:

• O, Uin, f, per, s0 are defined as in Definition 2.

• S considers three labels S = {Neu, Inf, V ac}, similar
to the SIR-agent. In AB-SIR, Cu is introduced as a sink
state to limit diffusion. A CoNVaI-agent only interacts in
response to a message, and would merely stop engaging.

• the transition function g : O × S × t × PTR × PTX ×
Pusr → S is dependent on a set of transition pa-
rameters PTR, as well as the parameters from the tex-
tual PTX = {Pnov, Prpl, Pnw} and user characteristics
Pusr, as well as the time t.

The transition function of a CoNVaI-agent is conditioned
by a set of PTR = {PINF , PAD, PMD, PRD, POPI} where
we consider a rate to read messages per time unit (PRD) and
to share an opinion (POPI ), besides the parameters from AB-
SIR. We also include the previously defined textual PTX =
{Pnov, Prpl, Pnw} and user-based characteristics Pusr.

The transition function g would behave as in Algorithm
2. Let u1 = ⟨S,O, Uin, g, f, per, s0⟩ represent a CoNVaI-
agent, and let xj represent the current environmental state,
where oj = per(xi) is its observation space, and si is its state.
After determining whether they can read a message based on
a probability Pread(ui, t) = PRD/mr(ui, t) where mr(ui, t)
reflect the messages a user ui has read at the current t, they
extract a message (ExtractMessage(Mi)) from a conversation
they perceive. Their actions depend on whether they know
said information (UnknownConversation(c)).

If the information is new, their behavior follows Algorithm
3. They would reply to c based on whether the information
is relevant, determined by PTX , and turn Infected or Vacci-
nated based on the poster’s influence (Pusr), and the rates to
infect (PINF ) or vaccinate (PMD). If the information is not
new, their behavior follows Algorithm 4. In this case, agents
determine whether p is relevant based on PTX and Pusr, and
their state is conditioned to their previous si and that of the
message. If they both agree, agents might feel validated and
affirm their posture [Ballara, 2023]. If they disagree, they
could change their mind and share the other agent’s state or
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Algorithm 3 ReadSc
Input: m0 = ⟨uk, t0, sk⟩, p, t, PTX = {Pnov, Prpl, Pnw}
PINF , PMD, Pusr

1: sj ← Neu
2: Let U1 ← U(0, 1− Pnov(p, t))
3: if U1 ≤ Prpl(p)[t] then
4: Replying()
5: Let U2, U3 ← U(0, 1− Pusr(uk)− Pnw(p))
6: if U2 ≤ PINF then
7: sj ← Inf
8: else if U3 ≤ PMD then
9: sj ← V ac

10: end if
11: end if
12: return sj

trigger a confirmation bias or a “backfire effect,” making the
agent defend and reinforce their opinion [O’Boyle, 2022].

Finally, the diffusion function f is defined as follows:

f(sj) =


anew if sj ∈ {Inf, V ac} ∧ ∄c
areply(c) if sj ∈ {Inf, V ac} ∧Replying ∧ ∃c
askip otherwise

(3)
Our model considers real-time dynamics, social behavior, and
the message’s content as part of the decision-making. The
diffusion is now conditional on a desire to reply (Replying),
contrary to AB-SIR, which assumes agents always engage.

5 Experimental Evaluation
After presenting the model, we proceed with the evaluation to
establish its ability to reflect information diffusion processes.

5.1 Selected Dataset
For the empirical evaluation, we aim to recreate the observed
scenarios of a news piece’s diffusion on social media, so we
prioritized realistic scenarios. After evaluating the most com-
monly used datasets, we selected PHEME-9 [Zubiaga et al.,
2016]. As far as we know, this is the only readily available
dataset that contains the information to recreate those scenar-
ios: textual data of the shared news, temporal information,
user characteristics and their topology, and the stance of the
messages, which we use to evaluate diffusion. We avoided
synthetic data, such as the network topology, because it would
add noise or biases.

PHEME-9 centers around nine 2014/2015 events, with 66k
tweets and retweets organized into 297 threads for 55k users,
containing their ego-networks and the HTML of external
links. We employed the Wayback Machine to extract unre-
covered articles. We decided on an 80:20 ratio for the train
and test partitions for the evaluation, choosing the Ottawa
shooting event for testing. We employ the train partition to
tune the News Influence and Engagement Over Time compo-
nents. Since the information these components exploit for
this tuning differs from the one for the evaluation, data leak-
age is not a concern.

Algorithm 4 ReadMs
Input: m = ⟨uk, ti, sk⟩, si, p, t, PTX = {Pnov, Prpl, Pnw}
PAD, POPI , Pusr

1: sj ← si
2: Let U1 ← U(0, 1− Pnov(p, t)− Pusr(uk))
3: if U1 ≤ Prpl(p)[t] then
4: Let U2, U3, U4 ← U(0, 1)
5: if si = sk ∧ U2 ≤ POPI then
6: Replying()
7: sj ← si
8: else if si ̸= sk then
9: if U3 ≤ PAD then

10: Replying()
11: sj ← sk
12: else if U4 ≤ POPI then
13: Replying()
14: sj ← si
15: end if
16: end if
17: end if
18: return sj

5.2 Metrics
For the evaluation, we follow the methodology used to val-
idate AB-SIR, where the accumulated real diffusion is com-
pared to the model’s output [Serrano and Iglesias, 2016]. The
message’s stance is used to establish the user’s state. We as-
sume a retweet or comment supporting reflects their Infected
state. If users are denying, they would be Vaccinated. We also
assume underspecified comments are supporting.

We selected RMSE to express our results. Based on
the stances of the users, we have both Vaccinated and In-
fected states. We generate two metrics, RMSEdeb and
RMSEspr, for the users denying and spreading infor-
mation, respectively. We use the formula RMSE =√

1
T

∑T
i=1(ystatei − ŷstatei)

2 where:

• T reflects the total number of time units per test instance,
which we set as one-minute intervals. T is set based on
the lack of engagement after 60 minutes.

• ystatei is the number of users in the dataset with state ∈
{V ac, Inf} for RMSEdeb or RMSEspr, respectively.

• ŷstatei is the number of agents in the simulation, with
state ∈ {V ac, Inf}, at each given time.

We linearly combine and normalize the metrics as follows:

NRMSEst =
RMSEspr +RMSEdeb

statemax − statemin
(4)

where statemin and statemax are the minimum and maxi-
mum diffusion values, respectively. Similarly, we normalize
RMSEspr and RMSEdeb with their cumulative values.

5.3 Experimental Setup
CoNVaI and AB-SIR were implemented with Repast Sim-
phony5. It is extensible, scalable, open source, and allows

5https://repast.github.io/
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Metric CoNVaI AB-SIR

Average NRMSEspr 1.7318 91.8037
SD NRMSEspr 11.1759 599.9526
Median NRMSEspr 0.1081 6.5244

Average NRMSEdeb 15.5952 29566.0260
SD NRMSEdeb 25.5216 13328.4132
Median NRMSEdeb 2.9861 35406.1663

Average NRMSEst 1.5669 392.5724
SD NRMSEst 9.4302 1348.8904
Median NRMSEst 0.1832 188.5129

Average NRMSEst 90th percentile 0.2147 176.8263
SD NRMSEst 90th percentile 0.1427 119.5583
Median NRMSEst 90th percentile 0.1741 178.7382

Table 1: NRMSE metrics (Average, SD, and Median) for the CoN-
VaI and AB-SIR models

for complex behavior. For the components of CoNVaI, we
used the training partition with a validation set to tune the
regressor models and choose the best-performing ones. We
observed differences depending on the text sources when ap-
plying RFE. Most features focus on the tweets for the News
Influence component, while it is evenly split for the Engage-
ment Over Time. For the first component, only 20% re-
late to the emotional aspect, while that percentage goes over
60% for the second one. Some of the common characteris-
tics, such as readability, A1-C1 incidence, or passive voice,
relate to the linguistic differences between real and fake
news [Kasseropoulos and Tjortjis, 2021; Zhou et al., 2020;
Manikonda et al., 2022], indicating that there are similarities
despite the differences in intent.

Regarding the test set, we start by setting the simulator to
create the agents depending on the model and the connections
based on the ego-networks from the dataset. The user who
started the conversation introduces the content in t1 = 0. In
each consecutive discretized step, agents that receive the in-
formation will choose how to act. The combinations for the
adjustable parameters for each model are covered in the sup-
plementary material and repeated for each test instance. We
report the results for the best-performing combinations.

5.4 Experimental Results and Discussion
Table 1 covers the results for the test set. We include the aver-
age, standard deviation (SD), and median of NRMSEst and
the normalized versions of NRMSEspr and NRMSEdeb.
CoNVaI is more accurate at describing reality, where most
differences are in lower orders of magnitude. The most strik-
ing variations are observed for NRMSEdeb. After analyz-
ing the debunkers in the test set, we observed that the high-
est value for a test instance was under ten. These errors
are smoothed in CoNVaI for NRMSEst, indicating that de-
bunkers are not a big concern in the overall diffusion.

We observed some outliers when comparing the SD and av-
erages. Selecting the 90th percentile of NRMSEst shows a
significant decrease for CoNVaI and AB-SIR, although the er-
rors remain orders of magnitude over CoNVaI. To determine
the reason behind the performance of AB-SIR, we further ad-
justed the parameters for a representative set of test instances.

From these additional experiments, we observed some in-
teresting trends. Firstly, run time increased by several hours
per run. Secondly, although the simulation was closer to the
real diffusion, information still reached most of the network.
It showed a linear growth, only modifying the curve gradient,
affecting the whole population without reflecting real diffu-
sion: fast in the beginning, and slowly losing momentum.
Agent-SIR behavior determines that, to control diffusion, we
need Infected agents to turn Cured. It requires Vaccinated
users, which are uncommon and rarely engage [Zubiaga et
al., 2016; Vosoughi et al., 2018]. Even limiting infection
rates, Vaccinated users will continue spreading. This would
be consistent with epidemiological models since the popula-
tion is expected to recover, but not with information diffusion.

From previous experiments with AB-SIR, we considered
how it was validated through empirical evaluation since in-
formation would affect the entire network. We theorize that
a part of this could be due to the population and the evalua-
tion framework. Typically, simulations are compared to the
diffusion in a real dataset, which means it is being compared
to actual engagement. We might see the distinction between
the possible states (Infected or Vaccinated), but those users
have engaged somehow. Our study has considered other non-
affected users by employing ego-networks instead of syn-
thetic [Serrano and Iglesias, 2016]. These evaluation scenar-
ios would be biased by disregarding other users who decided
not to engage. Another possible cause is how results are mea-
sured, comparing only spreaders [Gausen et al., 2021], ignor-
ing the rest. Our experiments show that this benefits the AB-
SIR model without accurately reflecting diffusion. The state-
based metric is also bounded by the population, limiting the
evaluation scenario. Despite the popularity of epidemiologi-
cal models, these effects have not been reported to the best of
our knowledge. However, to study users’ behavior, we need
realistic scenarios with interacting and non-interacting users.

6 Conclusions and Future Work

We propose CoNVaI in the scope of epidemiology-based
models, which are the most widespread in simulating infor-
mation diffusion. Our contribution shows how information
diffusion can be approached holistically. From a local per-
spective, we incorporate the textual content of the messages,
which had been mainly ignored. From a global perspective,
agents interact with each other based on their ego-networks.

From our experiments, we determined that incorporating
textual content positively affected our simulations. AB-SIR,
a representative model, overestimates how many users the in-
formation reaches. It highlights the need for models focused
on online diffusion with realistic evaluation scenarios. We
have also shown how the evaluation is bounded by the total
users and does not reflect engagement. This simplification
could be problematic when applying social science concepts
to user behaviors, such as gullible or skeptical users.

In future work, we plan to study unbounded evaluation
methodologies centered around messages. We also plan to
enhance CoNVaI by considering how often users continue
conversing and incorporating in-depth user profiling.
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