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Abstract

Graph similarity computation plays a crucial role
in a variety of fields such as chemical molecu-
lar structure comparison, social network analysis
and code clone detection. However, due to in-
adequate feature representation, existing methods
often struggle to cope with complex graph struc-
tures, which in turn limits the feature fusion ca-
pability and leads to low accuracy of similarity
computation. To address these issues, this pa-
per introduces an Adaptive Multi-scale Feature Fu-
sion(AMFF) framework. AMFF firstly enhances
feature extraction through a residual graph neu-
ral network, which robustly captures key informa-
tion in complex graph structures. Based on this,
a multi-pooled attention network is used to ag-
gregate multi-scale features and accurately extract
key node features while minimizing information
loss. Finally, the adaptive multi-scale feature fu-
sion mechanism dynamically adjusts the feature fu-
sion weights according to the interactions between
nodes and graph embeddings, thus improving the
accuracy and sensitivity of similarity computation.
Extensive experiments on benchmark datasets in-
cluding AIDS700nef, LINUX, IMDBMulti, and
PTC show that AMFF significantly outperforms ex-
isting methods on several metrics. These results
confirm the efficiency and robustness of AMFF in
graph similarity computation, providing a promis-
ing solution for assessing the similarity of complex
graph data.

1 Introduction
Graph similarity computation is a fundamental task with di-
verse applications, including chemical molecular structure
comparison, social network analysis, and code clone detec-
tion. In the chemical field, it aids in tasks like molecular
activity prediction, drug discovery, and compound screening
[Reiser et al., 2022; Herrera et al., 2024]. Social network

∗ Corresponding author

analysis understands social dynamics and improves recom-
mendation systems by comparing network structures [Wu et
al., 2022; Du et al., 2020]. In the field of software engineer-
ing, it facilitates code optimization and maintenance by effi-
ciently detecting code clones [Liu et al., 2023b; Zhang and
Saber, 2024]. Its performance directly impacts downstream
tasks such as molecular activity prediction, community dy-
namics analysis, and software optimization. However, the
irregularity and complexity of graph data—characterized by
diverse node and edge features as well as multi-scale struc-
tural dependencies—pose significant challenges for accurate
and efficient similarity computation. Traditional methods and
deep learning approaches each face unique limitations in this
domain, motivating the need for novel solutions.

Traditional methods, such as graph isomorphism algo-
rithms (e.g., VF2)[Wu et al., 2023] and approximate heuris-
tic approaches (e.g., Graph Edit Distance, GED)[Blumenthal
and Gamper, 2020], compute similarity based on graph struc-
ture. While graph isomorphism algorithms excel at exact
matching, they suffer from high computational complexity
and poor scalability to large-scale or attribute-rich graphs.
Approximate methods like GED improve efficiency by es-
timating similarity via edit costs but struggle with noisy or
heterogeneous graph data. Furthermore, these methods are
often computationally prohibitive for large datasets and fail
to capture subtle differences in complex graph structures due
to their reliance on rigid matching criteria.

Deep learning-based methods, such as GCN[Bhatti et al.,
2023], GAT[Dong et al., 2022], and GraphSAGE[Ding et al.,
2021], have introduced a paradigm shift in graph similarity
computation. These methods leverage the power of auto-
matic feature learning to extract graph embeddings and cap-
ture complex associations between graph structures and node
features. GCNs aggregate local information through convo-
lutional operations, while GATs introduce attention mecha-
nisms to adaptively assign weights to neighboring nodes. De-
spite these advances, existing deep learning methods still face
three core challenges: (1)Inadequate multi-level feature fu-
sion: Current methods often fail to integrate local and global
structural features, leading to incomplete graph representa-
tions. (2)Limited robustness: Many models exhibit perfor-
mance degradation when handling noisy, heterogeneous, or
large-scale graphs[Liu et al., 2023c]. (3)Static fusion strate-
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gies: Methods relying on fixed feature fusion techniques
(e.g., simple concatenation or weighted averaging) lack the
adaptability needed to address the diverse characteristics of
graph data[Ju et al., 2024].

To address these challenges, this paper proposes the Adap-
tive Multi-scale Feature Fusion (AMFF), a novel solution de-
signed to enhance feature extraction, fusion, and similarity
computation for complex graph data. The framework intro-
duces three key components, each tailored to tackle a specific
limitation:

(1)Residual Graph Neural Networks (R-GIN): By incor-
porating a residual mechanism, this module enhances multi-
layer feature representation, enabling the model to robustly
capture both local and global structural dependencies while
addressing gradient vanishing and over-smoothing issues.

(2)Multi-Pooling Attention Network: This module com-
bines multi-scale feature aggregation with an attention mech-
anism to retain critical node information while minimizing
information loss, ensuring a comprehensive representation of
graph features.

(3)Adaptive Multi-scale Feature Fusion: A novel mecha-
nism that dynamically adjusts attention weights based on in-
teractions between node embeddings and graph embeddings,
allowing for flexible and precise feature fusion. This ap-
proach improves the model’s sensitivity and accuracy in sim-
ilarity computation.

The proposed framework effectively bridges the gap be-
tween local and global information while ensuring robustness
to complex graph data. Extensive experiments on benchmark
datasets, including AIDS700nef, LINUX, IMDBMulti, and
PTC, demonstrate that AMFF significantly outperforms ex-
isting methods across multiple metrics. These results high-
light the efficiency and scalability of AMFF, establishing it as
a promising solution for graph similarity computation tasks
in diverse domains.

2 Related Work
2.1 Graph Representation Learning
Graph representation learning transforms the nodes, edges,
and structures of a graph into low-dimensional embeddings
that capture both structural and node-level features, support-
ing tasks such as node classification, graph classification, and
graph similarity computation[Dong et al., 2020]. To han-
dle large-scale graph data, graph embedding methods reduce
computational complexity and enhance efficiency by auto-
matically learning effective low-dimensional representations.
These techniques can be broadly categorized into methods
based on matrix decomposition, such as DeepWalk[Perozzi
et al., 2014] and Metapath2Vec[Chen et al., 2023], and those
based on deep neural networks, including GCN and GAT. In
recent years, graph neural networks (GNNs), such as GCN,
GAT, and GraphSAGE, have leveraged the message-passing
mechanism to effectively capture local structural features of
graphs, driving advancements in graph similarity computa-
tion. GNN-based methods evaluate inter-graph similarity by
employing metrics like Euclidean distance or cosine similar-
ity through graph embeddings that map node features into
low-dimensional spaces. Additionally, models such as graph

autoencoders (GAE)[Li et al., 2022a] and variational graph
autoencoders (VGAE)[Kipf and Welling, 2016] further im-
prove the efficiency of complex graph similarity evaluation
through unsupervised learning.

2.2 Feature Fusion
Graph data contains a variety of complex features, and a sin-
gle feature cannot fully describe the graph similarity[Wu et
al., 2020]. Therefore, feature fusion is crucial in improving
the accuracy and robustness of graph similarity computation.
Graph data usually has node-level and graph-level features,
and multi-scale feature fusion can generate a more compre-
hensive graph representation. Traditional GCNs mainly ag-
gregate local information and tend to ignore the global struc-
ture. To enhance global perception, commonly employed
feature fusion methods include weighted summation, con-
catenation and attention mechanism. Notably, models lever-
aging the attention mechanism can dynamically adjust fea-
ture weights, thereby optimizing the fusion effect. In recent
years, methods such as multimodal graph embedding [Islam
et al., 2023] and graph self-attention mechanism [Wu and
Zhou, 2025] have further enhanced the feature fusion capa-
bility. However, feature fusion still faces challenges, such as
information distortion due to differences in feature size and
distribution, as well as computational efficiency and memory
issues in large-scale graph data processing.

3 Problem Formulation
Graph similarity computation aims to quantify the similarity
between two graphs based on their structural and feature-level
characteristics. A graph is defined as G = (V,E), where V
is the set of nodes, E is the set of edges, and n = |V | is
the number of nodes. We focus on undirected, unweighted
graphs. The structural information is represented by the adja-
cency matrix A ∈ Rn×n, and the node features by the feature
matrix X ∈ Rn×d, where d is the feature dimensionality.

Given a reference dataset D = {G1, G2, . . . , Gm} and a
query set Q = {Q1, Q2, . . . , Qk}, the goal is to define a sim-
ilarity function s that assigns a normalized score Sij ∈ [0, 1]
to each graph pair (Gi, Qj):

Sij = s(Gi, Qj), s : D ×Q → [0, 1] (1)
Here, the function s takes as input the Cartesian product

D×Q of sets D and Q, which represents pairs of graphs from
the datasets D and Q. It outputs a score within the range [0,1],
where a score closer to 1 indicates high similarity between the
graphs, and a score closer to 0 indicates dissimilarity.

4 Adaptive Multi-scale Feature Fusion for
Graph Similarity Learning

To overcome the limitations existing in the current graph sim-
ilarity computation, this paper proposes the AMFF frame-
work shown in Fig. 1. The framework aims to achieve more
efficient and accurate graph similarity assessment through
deep feature extraction and adaptive multi-scale feature fu-
sion techniques. In the following, the implementation details
of the AMFF model are described in detail, including three
parts: node feature extraction, multi-pooling attention net-
work, and adaptive multi-scale feature fusion module.
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Figure 1: The framework of the AMFF model. The model takes adjacency matrices and one-hot encoded feature matrices of graph pairs
as input. The Node Feature Extraction module generates node-level feature matrices for each graph. These are then processed by the
Multi-Pooling Attention Network to obtain graph-level features. Both node-level and graph-level features are fused through the Node-Graph
Fusion module and the Graph-Level Fusion module, respectively. The resulting similarity scores are concatenated and passed through a fully
connected layer to compute the predicted similarity score.

4.1 Node Feature Extraction
In the AMFF framework, node feature extraction is a fun-
damental step in computing graph similarity. Inspired by
the residual connectivity mechanism in Residual Neural
Networks[Li et al., 2022b; Amelio et al., 2023], we design
a novel Residual Graph Neural Network (R-GIN) for effi-
ciently extracting node features and enhancing the stability
of the model in complex graph structures. The input of the
module consists of an adjacency matrix A and a node feature
matrix X , where X uses a unique thermally encoded vector
to represent the features of each node. The R-GIN enhances
the model’s learning capability by adapting the residual con-
nectivity mechanism to graph convolutional layers. The out-
put dimensions of the three R-GIN layers are 64, 32 and 16,
respectively.

The first two layers aggregate the features of neighbouring
nodes through graph convolution operations:

H(1) = relu(GINConv1(X,A))

H(2) = relu(GINConv2(H
(1), A))

(2)

where X is the input node feature matrix, and A represents
the adjacency matrix (or edge index). To effectively combine
information from multiple layers, the output of the first layer
(H(1)) is transformed using a linear operation and fused with
the output of the second layer (H(2)) via residual joins:

H (dense) = Linear(H(1)) +H(2) (3)

where Linear(·) is a linear transformation. This feature fu-
sion strategy preserves the information from earlier layers and
seamlessly integrates it into deeper features.

Finally, the fused features are passed through the third
layer of the graph isomorphism network to generate the final
node embeddings:

un = H(3) = GINConv3(H(dense), A) (4)

where un denotes the embedding vector of the n-th node.
With this multi-layer design, the model is able to effectively

capture shallow and deep node representations, while residual
joins alleviate problems such as over-smoothing or gradient
vanishing, and improve feature quality. These high-quality
node features are subsequently used in downstream similar-
ity assessment tasks.

4.2 Multi-Pooling Attention Network
Traditional pooling methods, such as average pooling (Pavg)
and maximum pooling (Pmax), generate graph-level represen-
tations by aggregating node features, but may lose important
information or pay excessive attention to extreme values[Woo
et al., 2018; Liu et al., 2023a]. To address these issues, we
design the Multi-Pooling Attention Network (MPA), which
combines multi-pooling and attention mechanisms to dynam-
ically adjust node contributions to the graph-level representa-
tion.

First, the module extracts global features and locally salient
features of the graph through average pooling and maximum
pooling:

Pmulti = Pavg ⊕ Pmax (5)

where Pavg and Pmax are defined as:

Pavg =
1

N

N∑
i=1

u(i)
n (6)

Pmax =
N

max
i=1

u(i)
n (7)

Here, Pavg captures the overall distribution of features, and
Pmax identifies the most salient features. u(i)

n denotes the fea-
ture vector of the i-th node of graph g, N is the total num-
ber of nodes, and ⊕ represents the concatenation operation,
which combines the results of the two pooling strategies.

The pooling results are then nonlinearly transformed by a
multilayer perceptron (MLP)[Gardner and Dorling, 1998] to
generate a more expressive global feature representation:

Pmulti = σ(MLP(Pmulti)) (8)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Next, the attention weights are computed, the global fea-
tures are interacted with each node feature, and the node fea-
tures are adjusted by weighting to finally generate a graph-
level representation, see Eq.9:

hg =
N∑

n=1

σ
(
uT
n c

)
un,

hg =
N∑

n=1

σ
(
uT
n tanh (Pmulti ×W )

)
un

(9)

where σ is an activation function, W denotes a learnable
weight matrix.

MPA combines global pooling with a local attention mech-
anism to enhance the robustness of graph-level representa-
tions, which plays an important role in graph similarity com-
putation in the AMFF framework.

4.3 Adaptive Multi-scale Feature Fusion Module
In order to further enhance the model’s ability to assess
graph similarity, the AMFF framework introduces an adap-
tive multi-scale feature fusion module. This module is di-
vided into two parts: node-graph feature interaction and
graph-level feature interaction.

Node-Graph Adaptive Feature Fusion(NGFusion)
The node-graph adaptive feature fusion module aims at the
weighted fusion of node embedding and graph embedding in-
formation by means of an adaptive attention mechanism and
generates a comprehensive representation for calculating sim-
ilarity. This module mainly consists of the following steps:

For the input node embedding un and batch index, each
batch of nodes is embedded into a graph-level node represen-
tation using a weighted aggregation operation.

u(i)
m = f(u(i)

n , batch) (10)
where f is an aggregation function used to summarise dis-
persed node information into a graph-level representation by
batch index. After splicing the node embeddings with the
graph embeddings, the attention weights are generated by a
linear transformation.

α(i) = σ(W (u(i)
m ⊕ h(i)

g )) (11)
The node features are weighted using the attention weights

α(i) to obtain an updated node representation. After splic-
ing the weighted node embeddings with the graph embed-
dings again, the integrated graph-level features are generated
by MLP:

h
(i)
fusion = MLP((α(i) ⊙ u(i)

m )⊕ h(i)
g ) (12)

where ⊙ is element-wise Multiplication.
Ultimately, the similarity of the composite features h(i)

fusion

and h
(j)
fusion of a graph pair is quantified by the Euclidean

distance metric in the pairwise distance function, see Eq.13:

sNG = exp
(
∥h(i)

fusion − h
(j)
fusion∥2

)
∥h(i)

fusion − h
(j)
fusion∥2 =

√√√√ d∑
k=1

(
h
(i)
fusion,k − h

(j)
fusion,k

)2

(13)

where d denotes the dimension of the embedding vector,
and h

(i)
fusion,k and h

(j)
fusion,k are the components of the fusion

features of the graphs gi and gj in the k-th dimension, respec-
tively.

NGFusion enables the capture of global interaction fea-
tures of nodes with the graph and weights and integrates them
to make the generated graph-level representation more robust
and informative, thus improving the accuracy of similarity
computation.

Graph-Level Adaptive Feature Fusion (GLFusion)
The graph-level adaptive feature fusion module combines
weighted differences and cosine similarities of graph embed-
dings to capture key relationships between graph pairs. This
design, based on GSLSim [Zou et al., 2025], enhances the
feature representation of graph embeddings for a more thor-
ough understanding of graph relationships.

GLFusion first computes the weighted differences between
the graph pair embeddings:

∆h = (h(j)
g − h(i)

g )TW (h(j)
g − h(i)

g ) (14)

where ∆h represents the weighted feature differences that
highlight dissimilarities between graph embeddings, h(i)

g and
h
(j)
g are the graph-level embeddings of the input graphs, and

W is a learnable tensor weight matrix used to enhance feature
interactions.

The cosine similarity is then computed to evaluate the di-
rectional alignment between the two graph embeddings in a
normalized vector space:

Distance =
h
(i)
g • (h(j)

g )T

∥ h
(i)
g ∥∥ h

(j)
g ∥

(15)

Finally, the graph similarity score is obtained by integrat-
ing the weighted differences and cosine similarity:

sGL = σ (∆h⊙ Distance + b) (16)

where σ is the relu activation function, ⊙ denotes element-
wise multiplication, and b is a bias vector.

By combining graph embedding disparities and align-
ments, GLFusion effectively captures both differences and
similarities between graph pairs, thereby improving the ac-
curacy and robustness of graph similarity computation.

4.4 Similarity Score Calculation
The model combines node-graph and graph-level adaptive in-
formation to derive representative similarity features. First,
the node-graph adaptive fusion score sNG and the graph-level
adaptive fusion score sGL are concatenated to form a uni-
fied feature representation. These features are then passed
through a fully connected layer to compute the final similar-
ity score:

p(gi, gj) = FC(sNG(gi, gj)⊕ sGL(gi, gj)) (17)

where p(gi, gj) is the predicted similarity score, ⊕ denotes
the concatenation operation, and FC represents the fully con-
nected layer.
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Algorithm 1 The Algorithm of AMFF.
Input: Node features X , adjacency matrix A
Output: Graph similarity score p(gi, gj)

1: Step 1: Node embedding generation
2: for l = 1, 2 do
3: Update node embeddings using Eq.(2).
4: end for
5: Perform dense feature fusion H (dense) using Eq.(3).
6: Generate final node embeddings un using Eq. (4).
7: Step 2: Graph-level embedding generation
8: Perform multi-pooling using Eq.(5-8).
9: Generate graph embeddings hg using Eq.(9).

10: Step 3: Adaptive multi-scale feature fusion
11: for Each graph pair (gi, gj) do
12: Enter u(i)

n , u(j)
n , h(i)

g and h
(j)
g into NGFusion and cal-

culate score sNG using Eq. (13).
13: Input h(i)

g , h
(j)
g into GLFusion and compute score sGL

by Eq.(16).
14: end for
15: Step 4: Similarity score calculation
16: Final prediction score p(gi, gj) using Eq.(17).
17: Step 5: Loss calculation
18: Compute loss L using Eq.(18).
19: Ground truth similarity t(gi, gj) using Eq.(19).

To optimize the model, the error between the predicted
similarity score and the true similarity score is minimized us-
ing the Mean Squared Error (MSE) loss function:

L =
1

N

∑
(i,j)∈N

(p(gi, gj)− t(gi, gj))
2 (18)

where N is the total number of graph pairs in the training set.
The true similarity score t(gi, gj) is computed based on the

normalized Graph Edit Distance (GED) as follows:

t(gi, gj) = λ

(
dGED(gi, gj)

(|gi|+ |gj |)/2

)
(19)

Here, λ represents an exponential function, dGED(·) is the
Graph Edit Distance function [Riesen et al., 2013], and
|gi|, |gj | are the number of nodes in graph gi and gj , respec-
tively. The comprehensive training methodology for the in-
troduced approach is outlined in Algorithm 1.

5 Experiment
5.1 Datasets
AIDS700nef, 700 chemical graphs with 2-10 atoms (C, O,
H) and bonds, suitable for small-scale molecular similarity
tasks. LINUX, 1000 hierarchical file system graphs with 4-
10 nodes (files/folders) and parent-child edges, ideal for test-
ing tree-structured GNNs. IMDBMulti, 1500 movie social
networks with 4-89 actor nodes and co-occurrence edges, la-
beled with 29 genres (e.g., action, comedy) for graph similar-
ity and classification. PTC, 344 chemical graphs with 2-109
atoms and bonds, labeled with 19 toxicity or chemical prop-
erties, benchmark for complex molecular graph processing.

5.2 Baselines
We compare our model with traditional GED meth-
ods (A*-beam search[Neuhaus et al., 2006], Hungarian
algorithm[Kuhn, 1955], VJ algorithm[Fankhauser et al.,
2011]) and neural network baseline methods: SimGNN[Bai
et al., 2019], combines graph-level embeddings and node-
level attention for similarity computation. GraphSim[Bai
et al., 2020], directly matches two sets of node embed-
dings without relying on fixed graph-level representations.
GENN[Wang et al., 2021], combines traditional search with
learned embeddings to efficiently solve GED. MGMN[Ling
et al., 2021], integrates node-graph and global graph interac-
tions to enhance performance and robustness. H2MN[Zhang
et al., 2021], transforms graphs into hypergraphs, enabling
high-order representations and multi-perspective subgraph
matching. NA-GSL[Tan et al., 2023], uses multiple attention
mechanisms for node embeddings, interaction modeling, and
similarity prediction. CLSim[Zou et al., 2025], aligns graph
pair features via attention, aggregates node features, and in-
tegrates node-level and graph-level embeddings for detailed
interaction modeling.

5.3 Evaluation Metrics
To comprehensively measure the model’s performance, we
employ the following evaluation metrics: (1) Mean Squared
Error (MSE) quantifies the deviation between predicted and
ground truth values, providing an intuitive measure of predic-
tion accuracy. (2) Spearman’s Rank Correlation Coefficient
(ρ)[Spearman, 1961] and Kendall’s Rank Correlation Co-
efficient (τ )[Kendall, 1938] assess the consistency between
predicted and true rankings. These metrics are crucial for
evaluating the model’s performance on ranking tasks. (3) k-
Accuracy (p@k) evaluates the overlap between the top-k pre-
dicted results and the top-k ground truth results, reflecting the
model’s ability to identify relevant items in recommendation
or retrieval tasks. These formulas are calculated as follows:

• MSE = 1
n

∑n
i=1(ŷi − yi)

2

• ρ = 1− 6
∑n

i=1 d2
i

n(n2−1)

• τ = (C −D)/n(n−1)
2

• p@k = |Top-k(ŷ)∩Top-k(y)|
k

where n is the total number of samples, ŷi and yi are the
predicted and true values for the i-th sample, and di is the
difference between their ranks. C and D denote concordant
and discordant pairs, and

(
n
2

)
is the total number of pairwise

comparisons. Top-k(ŷ) and Top-k(y) are the top-k predicted
and ground truth results, respectively, with k set to 10 and 20
in this study.

5.4 Effectiveness
We conducted experiments on simple (AIDS700nef, LINUX)
and complex (IMDBMulti, PTC) graph-structured datasets to
validate the model. The experimental results are clearly pre-
sented in Table 1, showing that AMFF performs well on all
datasets. Specifically, it outperforms traditional GED meth-
ods and deep learning methods in terms of accuracy and
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AIDS700nef LINUX

Method mse(10−3) ρ τ p@10 p@20 mse(10−3) ρ τ p@10 p@20

Beam[Neuhaus et al., 2006] 12.090 0.609 0.463 0.481 0.493 9.268 0.827 0.714 0.973 0.924
Hungarian[Kuhn, 1955] 25.296 0.510 0.378 0.360 0.392 29.810 0.638 0.517 0.913 0.836
VJ[Fankhauser et al., 2011] 29.157 0.517 0.383 0.310 0.345 63.860 0.581 0.450 0.287 0.251
SimGNN[Bai et al., 2019] 2.158 0.861 0.689 0.464 0.538 0.465 0.979 0.881 0.954 0.948
GraphSim[Bai et al., 2020] 2.417 0.512 0.672 0.255 0.329 3.173 0.878 0.739 0.200 0.320
GENN[Wang et al., 2021] 2.071 0.877 0.711 0.379 0.481 1.357 0.964 0.842 0.344 0.583
MGMN[Ling et al., 2021] 2.368 0.902 0.746 0.461 0.535 2.020 0.964 0.852 0.915 0.892
H2MN[Zhang et al., 2021] 1.017 0.869 0.717 0.469 0.553 0.334 0.980 0.906 0.940 0.938
NA-GSL[Tan et al., 2023] 2.261 0.877 0.729 0.487 0.569 0.258 0.991 0.957 0.983 0.974
CLSim[Zou et al., 2025] 1.950 0.875 0.705 0.527 0.593 0.290 0.983 0.892 0.981 0.966
AMFF(ours) 1.538 0.898 0.735 0.590 0.655 0.130 0.988 0.908 0.988 0.981

IMDBMulti PTC

Method mse(10−3) ρ τ p@10 p@20 mse(10−3) ρ τ p@10 p@20

SimGNN[Bai et al., 2019] 0.949 0.846 0.734 0.810 0.809 2.281 0.924 0.781 0.498 0.587
GraphSim[Bai et al., 2020] 15.980 0.515 0.644 0.149 0.562 2.816 0.921 0.776 0.402 0.510
GENN[Wang et al., 2021] 2.565 0.810 0.690 0.407 0.494 - - - - -
MGMN[Ling et al., 2021] 26.064 0.732 0.542 0.295 0.503 1.763 0.950 0.810 0.478 0.591
H2MN[Zhang et al., 2021] 0.556 0.832 0.729 0.842 0.854 1.287 0.912 0.762 0.468 0.587
NA-GSL[Tan et al., 2023] 0.988 0.852 0.769 0.812 0.828 - - - - -
CLSim[Zou et al., 2025] 0.574 0.929 0.811 0.852 0.848 1.608 0.939 0.802 0.528 0.612
AMFF(ours) 0.515 0.941 0.834 0.863 0.875 1.334 0.953 0.828 0.542 0.627

Table 1: Performance comparison. The best is indicated by bolding, and the second best is underlined. The lower the mse, the better, while
the higher the ρ, τ , p@10, p@20, the better. ‘-’ indicates that the method was unable to produce results on the corresponding dataset.

AIDS LINUX IMDBMulti PTC
Datasets
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Figure 2: Model runtime comparison.

error metrics. On simple graph-structured datasets, AMFF
shows excellent adaptability and efficiency. For complex
graph-structured datasets, the model maintains leading per-
formance, fully demonstrating its ability to handle complex
graph structures. It is worth noting that some baseline meth-
ods (e.g., GENN and NA-GSL) fail to run due to excessive
memory when processing complex datasets, while AMFF
runs smoothly, which further highlights its storage efficiency
and computational stability. In conclusion, the robust per-
formance of AMFF on both simple and complex graph-
structured datasets confirms its wide applicability. The model
has made great strides in balancing complexity and computa-
tional efficiency, highlighting its potential and advantages in
graph similarity computation tasks.

5.5 Efficiency
As shown in Fig. 2, AMFF shows strong performance on var-
ious datasets in the efficiency analysis. On simple datasets
(Linux, AIDS700nef), its running time is comparable to
SimGNN and GraphSim, and better than GENN and MGMN.
on complex datasets (IMDBMulti, PTC), AMFF outperforms
GENN and NA-GSL, and is more efficient than H2MN on
PTC, and comparable to CLSim. It is worth noting that
AMFF successfully handles all datasets, while some do not,
highlighting its stability and reliability in handling graphs of
varying complexity.

5.6 Ablation Study
GNN selection in node feature extraction module
Node feature extraction is crucial for improving model per-
formance. To this end, we compare the performance of sev-
eral mainstream GNN models (GCN [Bhatti et al., 2023],
GAT [Vrahatis et al., 2024], GraphSAGE [Bhatkar et al.,
2023] and GIN [Liao et al., 2024]) on the same benchmark
dataset (see Table 2). The experimental results show that R-
GIN performs best on the AIDS700nef and LINUX datasets,
especially on the MSE and ρ metrics, demonstrating strong
feature extraction capabilities. While on the IMDBMulti and
PTC datasets, GCN and two-layer GIN slightly dominate in
some metrics (e.g., MSE and p@10). Overall, R-GIN and
GIN family perform particularly well in graph structure learn-
ing and ranking accuracy.

Impact of individual modules on overall performance
This experiment evaluates the impact of each component in
the AMFF framework on model performance, and observes
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AIDS700nef LINUX IMDBMulti PTC

GNN mse(10−3) ρ p@10 mse(10−3) ρ p@10 mse(10−3) ρ p@10 mse(10−3) ρ p@10
gcn 1.836 0.882 0.530 0.229 0.986 0.987 0.462 0.943 0.869 1.342 0.949 0.536
gat 2.449 0.854 0.444 0.341 0.982 0.976 0.512 0.940 0.864 1.320 0.951 0.516
graphsage 1.973 0.878 0.518 0.150 0.987 0.981 0.528 0.938 0.849 1.603 0.950 0.528
gin(1 layer) 1.647 0.891 0.558 0.219 0.987 0.985 0.468 0.940 0.869 1.365 0.950 0.542
gin(2 layers) 1.584 0.897 0.579 0.130 0.988 0.983 0.500 0.945 0.863 1.332 0.951 0.520
gin(3 layers) 1.593 0.895 0.571 0.191 0.987 0.985 0.545 0.939 0.855 1.424 0.950 0.528
r-gin 1.538 0.898 0.590 0.130 0.988 0.988 0.515 0.941 0.863 1.334 0.953 0.627

Table 2: Performance comparison of different graph neural networks in node feature extraction module.

Components Metrics
R MP GL NG Dis mse ρ τ p@10 p@20
×

√ √ √ √
0.191 0.987 0.904 0.985 0.972√

×
√ √ √

0.137 0.987 0.907 0.986 0.976√ √
×

√ √
0.555 0.976 0.874 0.967 0.957√ √ √

×
√

0.183 0.986 0.904 0.983 0.973√ √ √ √
× 0.134 0.987 0.906 0.987 0.980√ √ √ √ √

0.130 0.988 0.908 0.988 0.981

Table 3: Module ablation experiments. ’R’ is the Residual R-GIN
Module (Section 4.1). ’MP’ is Multi-Pooling Attention (Section
4.2). ’GL’ is Graph-Level Fusion (NLFusion in section 4.3). ’NG’
is Node-Graph Fusion (NGFusion in section 4.3). ’Dis’ is cosine
similarity in the GLFusion.

its performance changes on the PTC dataset by gradually dis-
abling the module, see Table 3. The conclusions are sum-
marised as follows: (1) R: after disabling, the feature learn-
ing ability decreases and the model accuracy and ranking rel-
evance are slightly affected, which verifies the importance of
the residual mechanism on the model performance. (2) MP:
the significantly increased error and performance degradation
indicate that this module is crucial in capturing multi-scale
features. (3) GL: its removal has the largest negative impact
on performance, indicating the critical role of graph-level fea-
ture fusion in integrating global features. (4) NG: the model
accuracy decreases after its disabling, demonstrating the im-
portance of node and graph feature fusion in improving ac-
curacy and robustness. (5) Dis : a slight decrease in per-
formance after removal, showing its positive role in feature
fusion. In summary, the best model performance is achieved
when all modules are enabled, indicating that these compo-
nents complement each other in graph similarity computa-
tion, and together improve the accuracy and robustness of the
model.

5.7 Case Study
Randomly select query graphs in the test set, pair them with
all graphs in the training set to generate graph pairs and cal-
culate similarity scores. By sorting, ideally, the true match-
ing graphs of the Query Graph should be ranked top. In
order to analyse the model performance intuitively, we de-
signed a visual display (see Fig. 3). For clarity, only the top
two query graphs are displayed for each dataset. Each case
includes: (1) Real matching results (top): the query graph
and its true matching graph set, annotated with real similarity

scores ranging from 0 to 1 (where values closer to 1 indicate
higher similarity); and (2) Predicted matching results (bot-
tom): the query graph and the most relevant graphs predicted
by the model, ordered by ranking and annotated with the pre-
dicted rankings. This case study demonstrates the model’s ap-
plicability across various graph similarity tasks and its ability
to handle different data scenarios effectively. The alignment
between the predicted and real rankings further underscores
the model’s robustness and accuracy in graph similarity com-
putation.

1 2

1 0.7788

QueryQuery

AIDS700nef
1 2

1 1

QueryQuery

LINUX

1 2

1 1

QueryQuery

IMDBMulti

0.2429 0.1904

1 2

QueryQuery

PTC

Figure 3: Case study.

6 Conclusion
In this paper, a graph similarity computation framework
based on adaptive multi-scale feature fusion (AMFF) is pro-
posed to solve the similarity assessment and feature extrac-
tion problems of existing models in complex graph structures.
By introducing the residual mechanism and multi-pooling at-
tention mechanism, the feature expression ability and fea-
ture aggregation effect are enhanced. Meanwhile, the pro-
posed adaptive feature enhancement fusion strategy dynam-
ically adjusts the attention weights of node embeddings and
graph embeddings, which significantly improves the model’s
sensitivity to graph similarity and computational accuracy.
Experimental results show that the framework exhibits sig-
nificant performance enhancement on multiple datasets, veri-
fying its efficiency and wide applicability.
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