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Abstract

In this paper, we introduce CFDONEval, a compre-
hensive evaluation of 12 operator-learning-based
neural network (ON) models to simulate 7 bench-
mark fluid dynamics problems. These problems
cover a range of 2D scenarios, including Darcy
flow, two-phase flow, Taylor-Green vortex, lid-
driven cavity flow, tube flow, circular cylinder flow,
and 3D periodic hill flow. For a rigorous eval-
uation, we establish 22 fluid dynamics datasets
for these benchmark problems, 18 of which are
newly generated using traditional numerical meth-
ods, such as the finite element method. Our eval-
uation tackles 5 key challenges: multiscale phe-
nomena, convection dominance, long-term predic-
tions, multiphase flows, and unstructured meshes
over complex geometries. We assess computa-
tional accuracy, efficiency, and flow field visual-
ization, offering valuable insights into the applica-
tion of ON models in fluid dynamics research. Our
findings show that attention-based models perform
well in handling almost all challenges; models with
a U-shaped structure excel in handling multiscale
problems; and the NU-FNO model demonstrates
the smallest relative error in L2 norm when pro-
cessing nonuniform grid data. The related code,
dataset, and appendix are publicly available at:
https://github.com/Sysuzqs/CFDNNEval.

1 Introduction
Computational fluid dynamics (CFD) has become an indis-
pensable tool in the analysis and simulation of fluid flows
across a wide range of engineering applications, includ-
ing aeronautics, automotive, and environmental engineering.
Standard CFD methods (e.g. finite element methods or finite
volume methods), which typically rely on the numerical dis-
cretization of fluid equations in a certain mesh of the domain,
are often computationally intensive and time-consuming, es-
pecially in scenarios involving complex geometric domains,
three-dimensional space, and turbulent flow. As a result, there

∗Corresponding author

is a growing interest in developing more efficient computa-
tional approaches to meet the increasing demand for high-
fidelity simulations.

In recent years, NN-based methods, particularly data-
driven operator-learning neural network (ON) methods, have
emerged as promising alternatives or enhancements to tra-
ditional computational methods used in CFD. These ap-
proaches offer the potential to significantly reduce computa-
tional costs while preserving or even improving accuracy. By
utilizing extensive datasets, these models can learn complex
patterns and behaviors, enabling rapid predictions of fluid dy-
namics without the need to solve partial differential equations
from scratch [Kochkov et al., 2021; Guo et al., 2016]. This
has opened up new possibilities for real-time applications and
large-scale simulations in CFD.

The rapid development of NN methods in CFD high-
lights the need for evaluation and comparison. While several
datasets and benchmarks have been established for evaluating
NN methods in CFD, existing evaluations tend to have certain
limitations. First, they are primarily focused on single-fluid
tasks rather than covering a broad range of fluid dynamics
problems. Second, some of the latest models, particularly
those based on attention mechanisms, are often not included.
Lastly, there is a lack of evaluation of how different model
architectures perform across various CFD challenges.

To overcome the above and other limitations, in this pa-
per, we established CFDONEval, a comprehensive evalua-
tion framework for 12 ON models in 22 datasets, aiming at
identifying suitable models for a wide range of challenging
fluid dynamics problems. In summary, CFDONEval offers:
1) A selection of 7 representative viscous incompressible
fluid dynamics problems including six 2D cases: Darcy
flow, Two-phase flow, Taylor-Green vortex, Lid-driven cav-
ity flow, Tube flow, Circular cylinder flow, and one 3D case:
Periodic hill flow, showing various complex phenomena in
incompressible flows. These problems tackle 5 challenges
including multiscale phenomena (C1), convection dominance
(C2), long-term predictions (C3), multiphase flows (C4) and
unstructured meshes over complex geometries (C5). 2) 22
datasets, 18 of which are newly generated dimensionless data
using traditional numerical methods. These datasets offer a
rich collection derived from over 10,000 simulations, which
contain physical field data such as velocity and pressure. 3) A
selection of 12 ON models: Fourier Neural Operator (FNO,
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[Li et al., 2020]), Koopman Neural Operator (KNO, [Xiong
et al., 2024]), Message Passing Neural PDE Solvers (MPNN,
[Brandstetter et al., 2022]), Galerkin Transformer (GFormer,
[Cao, 2021]), Non-Uniform Fourier Neural Operator (NU-
FNO, [Liu et al., 2023]), Unified PDE Solver (UPS, [Shen et
al., 2024]), Deep Operator Network (DeepONet, [Lu et al.,
2021]), Operator Transformer (OFormer, [Li et al., 2023]),
General Neural Operator Transformer (GNOT, [Hao et al.,
2023]), U-shaped Neural Operators (U-NO, [Rahman et al.,
2022]), U-Net [Ronneberger et al., 2015], and Latent Space
Model (LSM, [Wu et al., 2023]). 4) 8 comprehensive met-
rics: In addition to the commonly used accuracy and effi-
ciency metrics, we also introduce the kinetic energy spectra
metric for multiscale phenomena and flow field visualization
metrics for dynamic flow phenomena.

CFDONEval offers three key advantages over existing
benchmarks. First, it is the first to evaluate the performance
of different ON models across a variety of CFD challenges.
Second, it includes not only six classic CFD operator learn-
ing models, but also five attention-based models and the NU-
FNO model which are not considered in the evaluation of
existing benchmarks. Third, we provide a large-scale, high-
fidelity dataset that covers a wide range of conditions, serving
as a comprehensive benchmark for assessing ON models on
complex incompressible flows.

Our evaluation through CFDONEval leads to some key
findings as below. First, models with a U-shaped structure
excel in addressing Challenge C1. Second, attention-based
models demonstrate superior overall performance across
most challenges compared to other model types, with some
excelling in specific tasks like Challenges C2, C3, and C4.
Third, the NU-FNO model, designed especially for handling
data over non-uniform grids, demonstrates the smallest rel-
ative error in L2 norm when processing nonuniform grid
data. Fourth, the MPNN graph neural network model demon-
strates strong performance in short to medium-term predic-
tions. Lastly, the UPS foundation model exhibits stable per-
formance in all challenges, with particular strengths in Chal-
lenges C2 and C3.

This paper is structured as follows: Section 2 reviews re-
lated works on evaluating the performance of ON models
in CFD; Section 3 presents the benchmark fluid problems,
datasets, as well as the evaluated ON models and evaluation
metrics; Section 4 presents our evaluation results and key
findings; finally, Section 5 concludes the paper and discusses
future research directions.

2 Related Works
The advancement of computational power and the growing
data in CFD have enabled the widespread use of operator-
based neural networks for solving complex problems, driving
the development of diverse benchmarks for CFD applications.

In 2022, PDEArena [Gupta and Brandstetter, 2022], com-
pared the performance of FNO, Residual Networks (ResNet),
and U-Net-like architectures in solving shallow water and
Navier-Stokes equations. In 2023, the first benchmark, CFD-
Bench [Luo et al., 2023] established a dataset based on four
classic CFD problems: flow in a lid-driven cavity, flow in

a circular tube, flow in a breaking dam, and flow around
a cylinder. It evaluated nine neural operators, including
four DeepONet variants, two Feed-Forward Network vari-
ants, ResNet, FNO, and U-Net. The second benchmark,
BubbleML [Hassan et al., 2023], introduced a dataset cov-
ering a range of two-phase (liquid-vapor) phase change phe-
nomena in boiling. This benchmark compared two image-
to-image models, including U-Net variants, and five neural
operators such as U-NO and FNO variants. In 2024, three
important benchmarks were introduced to address complex
fluid dynamics challenges. LagrangeBench [Toshev et al.,
2024] presented the first benchmark suite for Lagrangian par-
ticle problems, incorporating fluid dynamics datasets gener-
ated using the Smoothed Particle Hydrodynamics method,
and provided baseline results for four graph neural network
models. MPF-Bench[Anonymous, 2024] provided two mul-
tiphase fluid flow simulation datasets, including rising bub-
bles and falling droplets, and benchmarked four neural op-
erator models and two foundation models, including FNO,
DeepONet and U-Net. FlowBench [Tali et al., 2024] focused
on complex geometries and multiphysics phenomena, includ-
ing lid-driven cavity flow and flow past bluff bodies with intri-
cate geometries. This benchmark evaluates five neural oper-
ator models and two foundation models, including FNO and
DeepONet. However, there is still a lack of comprehensive
comparisons in the literature regarding interpolation tech-
niques, such as NU-FNO, and various attention-based models
across the five challenges mentioned above.

3 CFDONEval: Benchmark CFD Probelms,
Datasets, Baseline ON Models and
Evaluation Metrics

In this section, we first introduce the benchmark fluid dy-
namics problems included in CFDONEval, followed by a
overview of the datasets and ON models used for evaluation.
Finally, we present the evaluation metrics.

3.1 Benchmark Fluid Dynamics Problems
In this subsection, we provide a brief introduction to seven
viscous incompressible fluid dynamics problems. These
problems cover several key areas in fluid mechanics, includ-
ing porous media flow, multiphase flow, flow around obsta-
cles, and terrain effect flow, among others. Due to their
simplified simulation setups, clear boundary conditions, and
inclusion of complex and critical flow phenomena such as
corner vortices, interface deformation, and surface separa-
tion, these problems have become widely used benchmark
test cases for the validation and performance evaluation of
CFD methods. Details of these problems are presented in
Appendix A.

Darcy flow (DAR) describes the movement of liquids
through porous media and is crucial for understanding soil
water transport in subsurface hydrological systems [Todd and
Mays, 2004]. Two-phase flow (TPF), embodies the inter-
facial dynamics between two immiscible liquids, with spin-
odal decomposition and deformation under shear flow be-
ing key phenomena. TPF is relevant to many industrial
and natural processes [Feng, 2006; Gal and Grasselli, 2010].

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Taylor-Green Vortex (TGV), firstly introduced in [Taylor
and Green, 1937], is an array of vortices doubly periodic in
the horizontal direction. It is an unsteady flow of a decaying
vortex, which has a time-dependent analytical solution with
non-trivial and non-zero velocity and pressure fields. This
renders the problem an excellent benchmark test [Lesieur,
2008]. Lid-driven cavity flow (LDC) refers to the fluid mo-
tion generated by a moving top lid. It is commonly used as
a benchmark to test new CFD schemes because it exhibits
almost all phenomena that can possibly occur in incompress-
ible flows[Shankar and Deshpande, 2000]. This flow config-
uration is relevant to many industrial applications and aca-
demic research [Alleborn et al., 1999]. Tube flow (TUB),
refers to a water-air flow into the circular tube full of air
and generates a boundary layer in the tube. Understanding
tube flow dynamics is essential for optimizing industrial pro-
cesses, designing efficient pipelines, and ensuring safe fluid
conveyance [Patankar, 1980]. Circular cylinder flow (CCF)
is a classic problem in fluid mechanics. Due to cylindrical
obstacles in the flow field, its flow characteristics are ex-
ceptionally complex including thin separating shear layers
and large-scale vortex formation and shedding[Williamson,
1996]. Fluid flow around a cylinder is common in various ap-
plications, such as heat exchangers [Motamedi et al., 2012],
chimneys, bridges, and offshore platforms. Periodic hill flow
(PHF) is originally proposed in [Almeida et al., 1993] and is
widely used to validate CFD codes and turbulence models
[Rodi et al., 1995]. Its popularity lies in the simplicity of its
simulation setup, featuring well-defined boundary conditions
that can be computed at reasonable costs, and in the complex-
ity of flow phenomena and turbulence modeling it embodies.

3.2 Datasets
In this subsection, we introduce the 22 datasets used to train
ON models for solving the previously discussed benchmark
fluid problems. Each dataset is labeled as XXXYY, where
“XXX” denotes the benchmark fluid problem mentioned in
Section 3.1, and the subscript “YY” indicates the variable
used to generate the dataset (e.g., a physical parameter or an
initial/boundary condition). A superscript “*” indicates that
the dataset is based on an unstructured mesh.

The CFDONEval datasets are summarized in Table 1,
where basic information is provided, including time depen-
dency, the number of samples (frames), file size, spatial res-
olution or the number of unstructured grid points (Ns), and
associated challenges. Subscripts in the dataset names in Ta-
ble 1 denote specific variations: Subscripts “Mo”, “Re”, and
“Ca”represent datasets generated by varying different param-
eters in the governing equations: mobility, Reynolds num-
ber, and capillary number, respectively, while “Dg” denotes
datasets created by varying the domain geometry. “RD” de-
notes dataset generated by changing both the Reynolds num-
ber and domain geometry, whereas “DV” denotes dataset
generated by altering both density and dynamic viscosity.
Moreover, the datasets identified by the subscripts below are
generated by altering the physical quantities of the function
values. “P1” and “P2” denote datasets produced by varying
the permeability a in Darcy flow, each corresponding to a dis-
tinct expression for a. “Bc” and “Ic” represent datasets cre-

Dataset Time Depend #Samples Size Ns Challenge

DARP1 N 10000 2.93G 128× 128 -
DARP2 N 7013 128× 128 C1

TPFMo Y 200100

102G

66× 66 C4
TPFRe Y 100100 66× 66 C4
TPFCa Y 100100 66× 66 C4
TPFTI Y 100100 66× 66 C4
TPFIc Y 50100 66× 66 C4
TPFIB Y 500500 66× 66 C4

TGVRe Y 200200 46G 64× 64 C3
TGVRD Y 800800 64× 64 C3

LDCRe Y 166728
30G

64× 64 C1, C2, C3
LDCBc Y 98691 64× 64 -
LDCRD Y 385385 64× 64 C1, C2, C3

TUBBc Y 932
253M

64× 64 -
TUBDg Y 887 64× 64 -
TUBDV Y 2221 64× 64 -

CCFBc Y 49591

4.1G

64× 64 C1, C2, C3
CCF∗

Bc Y 49591 991 C1, C2, C3, C5
CCFRe Y 20200 64× 64 C1, C2, C3
CCF∗

Re Y 20200 1011 C1, C2, C3, C5

PHFRe Y 20100 86G 64× 64× 64 C3
PHF∗

Re Y 20100 20678 C3, C5

Table 1: Summary of CFDONEval’s datasets. Here C1, C2, C3,
C4 and C5 indicate challenges from multiscale, convection domi-
nance, long-term predictions, multiphase, and unstructured meshes
over complex geometries respectively.

ated by varying the boundary conditions of velocity u and the
initial condition of the order parameter ϕ, respectively. “IB”
indicates datasets generated by modifying both the initial and
boundary conditions of velocity. “TI” denotes datasets cre-
ated by varying both interface thickness and the initial con-
dition of the order parameter ϕ. The physical parameters al-
tered during dataset generation are selected for their practical
research significance. For instance, in the LDCRD dataset,
variations in the Reynolds number and the depth-to-width ra-
tio of the domain affect the size, center position, and number
of vortices, as well as the overall flow pattern in the cavity.

These datasets encompass various challenges encountered
when applying ON models to simulate real-world fluid dy-
namics problems, as shown in Table 1. Challenge C1 are om-
nipresent in practical applications. Mathematically, this im-
plies that when certain parameters approach zero, the deriva-
tives of the solution may blow up. To address this, we de-
sign a dataset DARP2 generated with a permeability expres-
sion containing small parameters, as well as six datasets de-
rived from the high Reynolds number (Re > 103) Navier-
Stokes equations, which include the LDC and CCF problems.
The latter are also used to evaluate the ON’s ability to han-
dle challenge C2, where the solutions typically exhibit sharp
gradient regions or discontinuities. We design 10 datasets,
including TGV, LDC, CCF, and PHF problems, to evalu-
ate the model’s performance on challenge C3. After train-
ing, the model is required to predict the next 100 time steps.
These 100 time steps span a relatively long physical time in-
terval, enabling the system to exhibit long-term, highly non-
linear evolution. Moreover, six datasets encompass challenge
C4, which involves complex interactions between two distinct
phases within a system, leading to highly nonlinear dynam-
ics. Many real-world problems involve complex geometries,
leading to data based on unstructured grids. However, many
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models from the image domain, such as U-Net, struggle to
handle such data. We design three datasets featuring chal-
lenge C5 (marked with *), including the CCF and PHF prob-
lems.

CFDONEval’s database comprise 18 newly generated and
4 collected high-fidelity datasets. Regarding the methods
used to generate these datasets, the dataset DARP2 and nine
datasets for the LDC, CCF, and PHF fluid problems are gen-
erated using COMSOL Multiphysics®simulation software
[COM, 2023] which is based on the finite element method.
For the six TPF datasets, the phase field model and numerical
scheme are derived from [Qin et al., 2022]. The equations
are spatially discretized using a second-order Marker-and-
Cell method and temporally discretized using a first-order
stabilization method. The two TGV datasets are created us-
ing expressions for the exact solution. Among our collected
datasets, the high-precision dataset DARP1 is sourced from
[Takamoto et al., 2022] and discretized using a second-order
central difference scheme. The three comprehensive, high-
quality TUB datasets are sourced from [Luo et al., 2023] and
generated using ANSYS Fluent 2021R1.

All datasets are stored in a unified HDF5 format, with
download links and generation scripts provided in the code
repository for use or further extension. Detailed information
can be found in Appendix B. During training, we normalize
datasets with large variations in variable values and split all
datasets into training, validation, and test subsets in an 8:1:1
ratio.

3.3 Baseline ON Models
In this subsection, we briefly introduce 12 ON models for
evaluation. The implementation details of each model can be
found in Appendix C. It is noteworthy that we focus on data-
driven operator learning models and therefore do not evalu-
ate some popular function learning models, such as Physics-
Informed Neural Networks.

The 12 ON models are classified into three types according
to their different encoder-processor-decoder (EPD) architec-
tures: (1) EPD with a single encoder and a single decoder,
(2) EPD with multi-encoder and a single decoder; and (3)
EPD with U-shaped architectures(multi-encoder and multi-
decoder).

The first type of models is illustrated in Figure 1. These
models can be uniformly described as first concatenating
all input data (e.g., initial/boundary conditions and param-
eters) into a single representation, which is then encoded
into a latent space using a single encoder. After process-
ing, the latent features are finally decoded back into the ob-
servable space through a single decoder. Various architec-
tures can be employed to parameterize the encoder and de-
coder, including MLP, 1×1 convolution, and Fourier layer,
as utilized in this type. For the core processor, both FNO
and KNO adopt a divide-and-conquer strategy to separately
handle high-frequency and low-frequency information, with
FNO using Fourier layers and KNO employing Koopman lay-
ers for high-frequency processing. MPNN employs a graph
neural network (GNN) based on message passing, while
GFormer introduces a processor with a non-Softmax self-
attention mechanism (Fourier/Galerkin-type attention). NU-

FNO 1× 1 CL FL 1× 1 CL
KNO 1× 1 CL KL 1× 1 CL
MPNN MLP MP MLP
GFormer MLP SA FL
NU-FNO 1× 1 CL FL 1× 1 CL

Figure 1: Structure of 1st type models, where “Input functions”
stands for the values of input functions at observation points, “CL”
for Convolution Layer, “FL” for Fourier Layer, “MLP” for Multi-
layer Perceptron, “MP” for Message Passing, “KL” for Koopman
Layer, and “SA” for Self -Attention.

FNO shares the same EDP as FNO, but it includes conver-
sions between nonuniform and uniform grids both before and
after the EDP.

UPS MLP FL LLM MLP
DeepONet MLP MLP DP -
OFormer MLP MLP + SA CA+MLP MLP
GNOT MLP MLP CA + SA MLP

Figure 2: Structure of 2nd type models, where “LLM” stands for
Large Language Model, “DP” for Dot Product and “CA” stands for
Cross Attention.

The second type of models is illustrated in Figure 2. In
addition to input function encoders, this type of models in-
cludes a text metadata encoder in UPS and a query positions
encoder in the other three models. Specifically, the founda-
tion model UPS utilizes the embedder of an LLM to process
metadata, including problem descriptions and physical pa-
rameters, while variable data are encoded using Fourier lay-
ers. The concatenated features from both parts are fed into the
LLM-based processor. Moreover, the remaining three models
use MLP as encoders and decoders, with OFormer incorpo-
rating self-attention in the encoder. For the number of in-
put function encoders, N1 = 1 in DeepONet and OFormer,
while N1 > 1 in GNOT, allowing separate encoding of mul-
tiple types of input functions. After encoding, DeepONet
transfers the information of the input functions to the query
points through a dot product operation, while OFormer and
GNOT use cross-attention mechanisms to achieve this. No-
tably, when solving time-dependent PDE systems, OFormer
introduces an additional processor (MLP) to predict the resid-
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ual of the solution between each time step in the latent space,
which differs from the way the other 11 models propagate
dynamics in the observable space.

U-NO MLP - FL FL+FL FL
U-Net CL - DS+CL US CL+US

LSM MLP
+CL NSB DS+CL NSB +US CL+US

Figure 3: Structure of 3rd type models, where “E1, E2” stand for
encoder, “P1, P2” for processor, “D1, D2” for decoder, “NSB” for
Neural Spectral Block, “DS” for downsampling, and “US” for up-
sampling.

The third type of models is illustrated in Figure 3. These
models are based on a U-shaped architecture, consisting of
a contracting path (left side) and an expansive path (right
side), with skip connections from the encoder to the decoder.
Specifically, the first encoder and final decoder of these three
models offer three options: MLP, 1×1 convolution, and two
3×3 convolutions. In other parts of the model architecture, U-
NO primarily uses nonlinear integral operators (Fourier lay-
ers), with the left encoder reducing the domain size and in-
creasing the co-domain dimension, while the right decoder
performs the opposite operation. U-Net is mainly based
on two 3×3 convolutions, with the left encoder performing
downsampling and the right decoder handling upsampling.
With the same architecture as the U-Net, LSM incorporates
a neural spectral block design in the processor. The block
involves the following steps: first, high-dimensional data is
projected into a latent space using a hierarchical projection
network based on cross-attention. The PDE is then solved in
this latent space. Afterward, the data are projected back to
the original coordinate space. Patchify and de-patchify op-
erations are applied at the beginning and end of the process,
respectively.

3.4 Evaluation Metrics
The CFDONEval metrics include 3 accuracy metrics, 2 time
metrics, and 3 visualization metrics. Below is a brief expla-
nation of how to calculate these metrics. The three accuracy
metrics are calculated with the formulae

L2RE =
1

n

n∑
i=1

∥yi − ŷi∥2
∥yi∥2

,

RMSE =
1

n

n∑
i=1

∥yi − ŷi∥2,

mERR = max
0≤i≤n

∥yi − ŷi∥∞,

where (yi)
n
i=1 represents the ground truth, (ŷi)ni=1 represents

the predictions, and n is the number of test cases. The
time metrics include training time ttrain and inference time
tinfer. The training time ttrain is calculated with the formula
ttrain = Nepoch × tepoch, where tepoch is the time spent to train
the model for one epoch, Nepoch represents the number of
epochs required for training. The inference time tinfer is the
average time to predict one time step’s solution for all sam-
ples in the test dataset, calculated by tinfer = tframe/k, where
tframe is the total inference time for all samples in the test
dataset, and k is the number of samples. Finally, three vi-
sualization metrics include the kinetic energy spectrum met-
ric KES, the flow streamline metric FSV and contours met-
ric FCV. The KES describes the distribution of kinetic en-
ergy across different wave numbers (scales) and is widely
used in multiscale modeling, its evaluation algorithm and the
computation script is from [Navah et al., 2020] and [Navah,
2024], respectively. The FSV visually displays the fluid flow
paths and directions, allowing us to visually assess whether
the evaluated ON models accurately predict fluid flow phe-
nomena, such as the symmetry, size, and number of vortices.
The FCV refers to contour lines or surfaces that represent
constant values of a flow field variable, such as velocity or
pressure, within a fluid flow. These contours help visualize
the distribution and variation of the variable across the flow
domain.

4 Performance of Models
To evaluate the 12 ON models (see Section 3.3), we con-
ducted extensive experiments, training them on 22 datasets
(see Section 3.2) and 9 novel datasets derived from combina-
tions of the original 22. The performance was assessed using
8 metrics (see Section 3.4). All experiments were conducted
on two Intel Xeon Platinum 8375C CPUs @ 2.90GHz, one
NVIDIA GeForce RTX 4090 GPU, with PyTorch 2.1.2 and
CUDA 11.8. Due to space constraints, we present only a se-
lection of representative results showing the performance of
ON models in addressing Challenge C1 to C5 with a few met-
rics here. Other evaluation results are presented in Appendix
E. Notably, the training loss for all models is based on the er-
ror between the ground truth and the predicted values across
three consecutive time steps. During testing, the trained mod-
els are provided with data from the initial time step, and the
predicted results for each subsequent time step are evaluated.
The three accuracy metrics are computed by averaging the
cumulative error across all time steps.

On Multiscale phenomena (C1). Figure 4 shows the nor-
malized mean squared error (NMSE) of the KES between
the predictions of the 8 ON models and the ground truth,
trained on the DARP2 dataset. The results for the remain-
ing 4 models are not included, as they are unable to solve
time-independent problems. The NMSE for each wavenum-
ber is averaged over all test sequences. The results show
that all models achieve higher simulation accuracy at low
wavenumbers (large scales) compared to high wavenumbers
(small scales). In the low wavenumber range (wavenumber <
10), U-NO performs the best, followed by LSM, OFormer,
FNO, U-Net, GNOT, DeepONet and GFormer. In the high
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Figure 4: Kinetic energy spectrum (KES) NMSE error.

wavenumber range, LSM performs the best, followed by U-
Net, the remaining models show relatively poorer perfor-
mance, with errors greater than 0.01. Overall, LSM demon-
strates stable performance, maintaining errors below 0.01
across most wavenumbers, except for a few specific cases.
On Convection dominance (C2). Figure 5 illustrates the
contours of velocity field predictions at t = 2.2 for a
Reynolds number Re = 100, 000 in the CCFRe dataset, where
convection effects dominate the flow. We observe that the
models GFormer and OFormer excel in predicting both the
velocity magnitude and the flow field phenomena, includ-
ing the Kármán vortex street. The models GNOT, UPS, and
LSM also demonstrate good performance in predicting flow
field phenomena, though some errors are observed in predict-
ing the velocity magnitude. In comparison, KNO, FNO, and
MPNN show slightly reduced performance, with lower accu-
racy in predicting the velocity magnitude. Furthermore, the
U-NO, U-Net, and DeepONet models exhibit errors not only
in predicting the velocity magnitude but also in capturing the
direction of vortex rotation.

G.Truth GFormer OFormer GNOT UPS LSM

KNO FNO MPNN U-NO U-Net DeepONet

Figure 5: FCV at t = 2.2 with Re = 100, 000.

On Long-term predictions (C3). Figure 6 presents the
L2RE error curve for the TGVRe dataset at different time
steps. We evaluate the model’s predictions over up to 100
time steps, which significantly exceeds the maximum 3-frame

Figure 6: The L2RE error curves of 12 models at different time
steps, with a time step of ∆t = 0.1.

prediction horizon during training. The L2RE for each time
step is calculated by averaging over all cases in the test set
with more than 100 time steps. All models, except UPS, per-
form well in the first five time steps, with errors below 0.1.
The results show that, the models GFormer and OFormer per-
form the best, with their L2RE error consistently staying be-
low 0.3 throughout the entire prediction range. The error also
increases very gradually and almost linearly. The UPS also
performs well, maintaining an error below 0.2 for the first 80
time steps, demonstrating high stability. The FNO, KNO, and
DeepONet perform moderately, with errors reaching 0.1 af-
ter 30 time steps, after which the error growth rate increases.
The MPNN maintains very low errors up to 40 time steps,
but the error increases sharply after 50 time steps. The er-
ror curve for U-NO gradually rises, but the error remains be-
low 0.4 within 50 frames. U-Net, GNOT, and LSM show
relatively poorer performance, with errors reaching 0.8 at ap-
proximately 50, 40, and 15 time steps, respectively. Among
these, the LSM exhibits the steepest error trend, with the error
increasing sharply to 1 within the first 20 time steps.

On Multiphase (C4). Figure 7 compares the predicted
streamlines of the ON models with the ground truth at t =
0.35 for the sample Mo = 0.005 in dataset TPFMo. The
phase interface is outlined with contours, highlighted in red.
We observe that LSM successfully simulates the deformation
of the interface along the flow direction and accurately cap-
tures the formation of vortices inside the interface. Addition-
ally, the OFormer and GFormer simulate slight deformations
of the interface, followed by MPNN, U-Net, U-NO, FNO,
KNO, and UPS. The UPS model is unable to handle variables
not included in the remaining datasets, which is why it does
not predict the two-phase interface. DeepONet struggles to
predict the vortices within the interface, while GNOT cannot
simulate the two-phase interface.

On unstructured meshes over complex geometries (C5).
Table 2 lists the L2RE predictions made by the 6 ON models,
trained on three datasets with unstructured meshes. Overall,
the results show that NU-FNO performs exceptionally well,
achieving the lowest L2RE errors in both velocity and pres-
sure predictions across the three datasets multiple times. Sim-
ilarly, GNOT also performs excellently, consistently ranking
in the top 3 for prediction accuracy, with the lowest predic-
tion errors for the x-direction velocity u on both the CCF∗

Re
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Figure 7: Flow stramline (FSV) and Flow contour (FCV)

and PHF∗
Re datasets. Models that perform slightly weaker in-

clude MPNN, OFormer, and DeepONet. LSM, however, does
not perform well in this challenge.

Dateset MPNN NU-FNO DeepONet OFormer GNOT LSM

CCF∗
Bc

u 1.82E-01 8.28E-02 1.92E-01 1.57E-01 1.49E-01 1.69E-01
v 9.70E-01 9.82E-02 8.41E-01 8.13E-01 7.56E-01 7.39E-01
p 5.74E-01 2.69E-02 2.33E+00 4.14E-01 3.86E-01 1.07E+00

CCF∗
Re

u 9.14E-02 1.08E-01 1.27E-01 1.09E-01 7.07E-02 2.63E-01
v 2.08E-01 8.88E-02 4.98E-01 5.75E-01 3.34E-01 8.07E-01
p 2.69E-01 3.83E-02 3.96E-01 2.29E-01 1.69E-01 4.57E-01

PHF∗
Re

u 1.72E-01 3.54E-01 7.63E-01 1.96E-01 1.61E-01 -
v 1.23E+00 4.14E-02 1.04E+00 1.36E+00 1.20E+00 -
w 7.75E-01 5.73E-02 9.95E-01 8.32E-01 7.26E-01 -
p 6.08E-01 1.26E-01 8.41E-01 4.68E-01 4.58E-01 -

Table 2: L2RE over unstructured meshes over complex geome-
tries. The best and second-best models are denoted in bold and
underlined.

5 Conclusions
The results of evaluation experiments conducted in CF-
DONEval demonstrate the crucial impact of network archi-
tecture on the predictive performance of neural network mod-
els for CFD problems, while also showing the important role
of data quality and preprocessing before model training.

First, network architecture plays a critical role in determin-
ing model performance. Each model of the first type has
a single encoder and decoder, with simple structures such
as MLP or a 1×1 convolutional layer. Its predictive perfor-
mance is primarily influenced by the choice of processor.
FNO and KNO excel in short-term predictions, likely due to
their ability to separately handle high- and low-frequency in-
formation, compensating for the common ON’s limitation of
better learning low-frequency features than high-frequency
ones. MPNN performs exceptionally well in making short-
to medium-term forecasts, probably because its processor,
through message passing, can more readily extract local fea-
tures. GFormer performs exceptionally well in tackling Chal-
lenges C2 and C3, probably because its processor self at-
tention facilitates the extraction of global features more ef-
fectively. A model of the second type differs from one in
the first type mainly by incorporating an additional encoder
for special purposes. The additional encoders of the models
DeepONet, OFormer, GNOT are designed to handle query lo-
cations, enabling queries at arbitrary locations independent
of the input grid points, which enhances the flexibility of the

models and improves their prediction performance. For in-
stances, DeepONet performs well in large-scale flow predic-
tions and short-term forecasting, OFormer excels in address-
ing Challenges C2 and C3, GNOT excels in addressing Chal-
lenge C5 and demonstrates above-average performance in
solving Challenge C2. The additional encoder of the UPS is
designed to handle text metadata describing physical parame-
ters or governing equations. UPS performs well on both Chal-
lenges C2 and C3, demonstrating stable performance across
tasks. Models of the third type all have a U-shaped structure,
extracting features at different scales, so they have advantages
in handling Challenge C1. Their performance varied on other
Challenges, such as LSM outperforms both U-NO and U-Net
in Challenge C2.

On the other hand, models based on transformer architec-
tures perform exceptionally well in Challenges C2, C3 and
C4, and above average in Challenges C1. Their superior
performance may be attributed to their ability to effectively
capture long-range dependencies and complex spatial corre-
lations inherent in convection-dominated flows. As a funda-
mental GNN model, MPNN has shown strong performance
in short- to medium-term predictions. Exploring more ad-
vanced GNN architectures for CFD represents a promising
and worthwhile research direction. As a foundation model,
UPS performs stably across all challenges, particularly ex-
celling in Challenges C2 and C3. Future work should pay
more attention to design more advantageous foundation mod-
els which can handle more diverse input data and more types
of fluid problems and have superior predictive performance.
In processing unstructured data, NU-FNO delivers the best
performance in multiple tasks related to Challenge C5, due
to its specialized interpolation techniques. On the other hand,
models like GNOT can directly process unstructured data and
perform well. How to process unstructured data in the future
is still a question worth exploring.

Secondly, data is another critical factor affecting the per-
formance of ON models. The quality and quantity of training
data significantly impact model performance, but generating
a large volume of high-quality data requires substantial com-
putational resources. Finding the balance between compu-
tational cost and improving the quality of large-scale data is
a crucial issue. Alternatively, combining a small amount of
high-fidelity data with a large amount of low-fidelity data for
training may be an effective strategy to improve models’ per-
formance. Furthermore, employing appropriate data prepro-
cessing methods can also significantly enhance the models’
predictive performance.
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