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Abstract
Defending against adversarial attacks on graphs has
become increasingly important. Graph refinement
to enhance the quality and robustness of represen-
tation learning is a critical area that requires thor-
ough investigation. We observe that representa-
tions learned from attacked graphs are often in-
effective for refinement due to perturbations that
cause the endpoints of perturbed edges to become
more similar, complicating the defender’s ability
to distinguish them. To address this challenge,
we propose a robust unsupervised graph learning
framework that utilizes cleaner graphs to learn ef-
fective representations. Specifically, we introduce
an anomaly detection model based on contrastive
learning to obtain a rough graph excluding a large
number of perturbed structures. Subsequently, we
then propose the Graph Pollution Degree (GPD),
a mutual information-based measure that lever-
ages the encoder’s representation capability on the
rough graph to assess the trustworthiness of the
predicted graph and refine the learned representa-
tions. Extensive experiments on four benchmark
datasets demonstrate that our method outperforms
nine state-of-the-art defense models, effectively de-
fending against adversarial attacks and enhancing
node classification performance.

1 Introduction
Graphs are a ubiquitous form of data structure capable of rep-
resenting a diverse array of entities and their complex re-
lationships [Zhang et al., 2020]. Graphs can mirror vari-
ous real-world networks, including protein networks [Vlaic
et al., 2018], traffic networks [Huang et al., 2022], social net-
works [Chang et al., 2023], and Textual Networks [Wang et
al., 2025]. Graph Neural Networks (GNNs) [Hamilton et al.,
2017; Kipf and Welling, 2017] have emerged as a powerful
tool for graph representation, attracting significant attention
due to their remarkable performance in tasks such as node
classification [Yan et al., 2025].

∗Corresponding author
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Figure 1: Overview of using corrupted representations to detect per-
turbed edges. The adversary adds an edge between v1 and v2 based
on the clean representation, maximizing the disruption to the graph’s
representation. The defender, trained on the attacked graph, has dif-
ficulty correctly removing the perturbed edges because the message
passing process causes the two nodes to become more similar.

While supervised learning remains prevalent in practical
applications, labeling large volumes of graph data can be
costly and prone to errors. Consequently, there have been no-
table advancements in unsupervised algorithms over the years
[Veličković et al., 2019; Zhu et al., 2021]. These methods fo-
cus on learning an encoder from unlabeled graph data, which
can be used to generate representations for downstream tasks.

Despite their advantages in many tasks, unsupervised
learning models are generally more vulnerable to adversar-
ial attacks than supervised models due to the absence of la-
beled data. Supervised models use labeled data to correct
predictions and learn more robust representations, whereas
unsupervised models lack this mechanism, making them
more susceptible to structural perturbations [Xu et al., 2022;
Jin et al., 2023]. Adversarial attacks introduce small pertur-
bations to the graph structure, which can significantly alter
prediction outcomes [Madry et al., 2018; Zügner et al., 2019;
Sun et al., 2022; Zhu et al., 2024; He et al., 2025].

Existing research primarily focuses on defending against
evasion attacks by training robust representations to with-
stand adversarial attacks during the inference phase [Zhuang
and Al Hasan, 2022; Feng et al., 2024b]. However, com-
pared to evasion attacks, poisoning attacks are more destruc-
tive because they directly alter the model during training,
while evasion attacks only degrade performance by modify-
ing the structure around target nodes [Li et al., 2023]. Re-
search on defenses against poisoning attacks remains lim-
ited. Common defense strategies often rely on the homophily
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assumption, which seeks to remove edges between nodes
with dissimilar representations [Zhang and Zitnik, 2020;
Zhang et al., 2019]. However, due to the presence of per-
turbed edges, the endpoints of these edges are influenced
by the perturbations, causing their representations to become
more similar and, consequently, harder to detect. In other
words, the large number of normal edges causes the effect of
a few perturbed edges to be diluted, resulting in similar simi-
larity distributions for both perturbed and original edges. To
illustrate, we design a simple process for detecting adversarial
perturbations based on similarity as shown in Figure 1. The
adversary aims to maximize disruption by connecting distant
nodes, v1 and v2, with a perturbed edge. However, the per-
turbation causes their representations to become more similar,
making it difficult to distinguish between them. To verify this,
we examine the similarity distribution of perturbed edges. As
shown in Figure 2(a), the similarity distributions of normal
and perturbed edges are highly similar, which makes it chal-
lenging for similarity-based detection methods to effectively
distinguish the perturbed edges.

Currently, several self-supervised methods based on con-
trastive learning have been developed to detect anomalous
structures in graphs, where anomalies are defined as edge
connection patterns or the existence of edges that signifi-
cantly deviate from typical graph structures, such as edges
connecting distant nodes or altering the inherent properties
of nodes [Peng et al., 2018; Liu et al., 2021; Duan et al.,
2023]. Unlike similarity-based detection methods, which are
influenced by information propagation, these methods learn
anomaly patterns by capturing the normal patterns between
a large number of nodes and their neighbors (e.g., the ho-
mophily assumption), without being affected by information
propagation. Can anomaly detection methods be leveraged to
better identify perturbed edges? Figure 2(b) shows the distri-
bution of anomaly edge scores on the Cora dataset computed
by CoLA. We find that most normal edges can be reliably
trusted; however, some normal edges with higher anomaly
scores overlap with perturbed edges, making it difficult to dis-
tinguish between them. This raises the following challenge:

How to effectively utilize the trusted normal edges to dis-
tinguish those within the overlapping region and accurately
identify perturbed edges.

To address this challenge, we first apply anomaly detec-
tion techniques to generate a preliminary graph composed
of “true” (trusted) edges. In the next step, we employ an
information-theoretic measure called Graph Pollution Degree
(GPD) to quantitatively assess the purity of the predicted
graph. This measure allows us to identify candidate edges
that remain perturbed, pinpointing clean subgraphs that are
suitable for model training. Through this two-stage process,
we iteratively refine the graph and fine-tune the graph repre-
sentation learning model, ultimately achieving effective rep-
resentations. In summary, the main contributions of this work
are as follows:

• We propose a robust unsupervised graph representation
learning framework that leverages a clean graph to iter-
atively refine the graph structure for effective represen-
tation learning.
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Figure 2: (a) The representation similarity for each edge is calcu-
lated using Jaccard Similarity, with DGI trained on the attacked
graph. (b) The anomaly scores for each edge are computed using
CoLA. Both are based on attacked graphs generated by PGD on the
Cora dataset.

• We propose a novel graph refinement process that lever-
ages anomaly detection to identify perturbed edges
and utilizes our designed information-theoretic measure,
Graph Pollution Degree (GPD), to infer the clean graph
by focusing on edges most likely to be “true”.

• Extensive experiments on four real-world datasets
demonstrate that our model defends against various
types of attacks and outperform nine state-of-the-art de-
fense models.

2 Preliminaries
2.1 Graph Representation Learning
We are provided with an attribute graph G = {V,A,X},
where V = {v1, v2, . . . , vn} represents the set of nodes in the
graph, A ∈ RN×N denotes the adjacency matrix of the graph
G, and X ∈ RN×d is the node feature matrix, where each row
xi corresponds to the d-dimensional feature vector of node
vi. In the adjacency matrix A, the element Ai,j ∈ {0, 1} in-
dicates whether there is an edge between nodes vi and vj : if
an edge exists, the value is 1; otherwise, it is 0. The objective
of the graph representation learning task is to train an encoder
e : Rd → Rd′

and obtain high-level representations Hi ∈ Rd′

for every node vi.
A lot of studies [Veličković et al., 2019; Sun et al., 2019;

Qiu et al., 2020] train a graph encoder to maximize the mutual
information between the node representations and the global
graph representation in the graph G. Since the marginal dis-
tribution is not estimated, optimizing mutual information di-
rectly can be challenging, these methods transform the prob-
lem into a standard binary cross-entropy loss between posi-
tive and negative examples:

l =
1

N +M

{ N∑
i=1

EG logD(hi, s)

+
M∑
j=1

EG̃ log
[
1−D(ĥj , s)

]}, (1)

where N and M respectively represent the number of positive
and negative samples, hi and hj respectively denote the rep-
resentations of positive G and negative G̃ samples, encoded
by the encoder e, s represents graph-level summary vectors,
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and D(·) represents a discriminator composed of a bilinear
scoring function:

D(hi, s) = σ(hTWs),

where W represents the scoring matrix that needs to be
learned in the discriminator, and σ(·) represents the logistic
sigmoid function.

2.2 Adversarial Attacks and Defense
Adversarial attacks [Madry et al., 2018; Bojchevski and
Günnemann, 2019] on graphs may involve alterations to both
the graph structure and node attributes, potentially leading to
failures in tasks such as node classification, graph classifica-
tion, and more. Essentially, adversarial attacks can be mathe-
matically expressed as a bi-level attack form:

max
Gattack∈φ(G)

l (fθ∗(Gattack))

s.t.θ∗ = argmin
θ

l (fθ(G))
, (2)

where φ(G) denotes the space of perturbation, fθ is the sur-
rogate model, and l is the loss associated with the surrogate
model, such as cross-entropy or contrastive loss.

Depending on whether the attackers generate adversarial
samples during the training or inference phase, attacks can
be categorized into poisoning attacks and evasion attacks. In
response to poisoning attacks, a substantial body of research
has adopted attack detection methods, aiming to proactively
identify and eliminate malicious nodes and edges in graph
data [Li et al., 2022; Wu et al., 2019; Ding et al., 2019].

Graph-based anomaly detection aims to identify abnormal
patterns that deviate from the majority of the data, particularly
anomalous structures. Adversarial attacks can be considered
a distinct and dangerous scenario of anomalies [Abusnaina et
al., 2021; Ma et al., 2021; Wang et al., 2023]. In this paper,
we propose a graph refinement method based on the CoLA
[Liu et al., 2021] framework, recognized as the state-of-the-
art in contrastive learning for unsupervised anomaly detec-
tion. Our approach predicts the anomaly score of a node by
calculating the contrastive instance pair labels between the
node vi and its corresponding sub-graph and thus obtains a
preliminarily filtered rough graph.

3 Methods
In this section, we introduce a robust representation learning
framework composed of two main components: normality
analysis and robust representation learning. As illustrated in
Figure 3, we initially employ graph anomaly detection meth-
ods to ascertain the anomaly scores of each edge, identifying
potential adversarial structures. Subsequently, we implement
a progressive refinement process that iteratively updates the
graph and fine-tunes the model, thereby transforming cor-
rupted representations into effective ones and enabling the
learning of robust graph representations.

3.1 Anomaly Studying
We present methods for obtaining a rough graph that contains
a significantly lower proportion of perturbed edges. This pro-
cess involves two main steps: computing anomaly scores for
nodes and constructing the rough graph based on these scores.

Anomaly Score Learning
Adversarial attacks often connect two unrelated and distant
nodes, resulting in inconsistency between the attributes of a
node and its neighbors, which causes these nodes to appear
anomalous. Therefore, we compute an anomaly score for
each node to identify these anomalies caused by adversarial
attacks. Inspired by [Liu et al., 2021], we model the anomaly
patterns using contrastive self-supervised learning. Specifi-
cally, in each epoch, we randomly select a target node i, and
adopt the random walk with restart (RWR) method to sample
positive examples associated with i, represented as the posi-
tive subgraph G+

i . First, we compute the embeddings Hi of
the nodes in the subgraph G+

i . To achieve this, we aggregate
information from each node’s local neighborhood to capture
both structural and attribute information. For this purpose, we
use a Graph Convolutional Network (GCN), as it effectively
learns representations by combining features from neighbor-
ing nodes. The embeddings H(l)

i at layer l are computed as:

H l
i = φ(D

− 1
2

i AiD
− 1

2
i H

(l−1)
i W (l−1)), (3)

where Di represents the degree of node i, and Ai represents
the adjacency matrix of the subgraph to which node i belongs.
W denotes the learnable parameters, and φ(·) is the ReLU ac-
tivation function. Then, we apply an average pooling function
as the readout function to obtain the overall embedding hg

i of
the subgraph Gi.

hg
i =

K∑
k=1

(Hk)

K
, (4)

where k represents the k-th node in G+
i , and K represents the

number of nodes in G+
i .

Next, we calculate the representation of node i by mapping
it into the same embedding space as the subgraph embedding
hg
i . Specifically, we use a deep neural network (DNN) to

compute the embedding of node i as:

h
(l)
i = φ(h

(l−1)
i W (l−1)), (5)

where h(l−1)
i is the representation of node i at layaer l−1, and

W represents the corresponding learnable parameters. Based
on the embeddings of node i and the subgraph G+

i , we predict
the anomaly score of node i. We adopt a bilinear scoring
function defined as:

s+i = σ(hg
iWhi), (6)

where W is a learnable weight matrix, and σ(·) is the sig-
moid activation function. For positive instance pairs, the
score s+i should be close to 1. Learning exclusively from
positive instance pairs can result in model collapse [Zhuang
et al., 2024]. To address this issue, we introduce the score s−i
for negative instance pairs. The negative instance pairs G−

i
are obtained by randomly selecting positive subgraphs from
other nodes. Consequently, s−i should be close to 0 and is
defined as:

s−i = σ(hg
jWhi), (7)

where j represents any random node other than node i. Dur-
ing the testing phase, the anomaly score of node i is defined
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Figure 3: The overall framework of effective representation learning, consists of two modules: Anomaly Studying and Effective Representa-
tion Learning. First, the anomaly score for each node is computed to identify anomalous edges, and the top-k anomalous edges are pruned
based on similarity to obtain a rough graph. Then, the rough graph is refined step by step, while the representation learning model is fine-
tuned.

by the difference between the scores from the negative and
positive instance pairs:

si = −(s+i − s−i ). (8)
A higher value of si suggests that node i is more likely to

be anomalous.

Obtaining Rough Graph
We first develop a method to exclude most of the perturbed
edges from the graph. Previous research shows that adver-
sarial attacks often connect distantly located nodes to disrupt
the graph’s homogeneity, typically resulting in high anomaly
scores for the two connected endpoints [Tang et al., 2020;
Jin et al., 2023; Li et al., 2023]. Therefore, if the anomaly
scores of the endpoints of an edge are high, it suggests a
higher probability that the edge has been perturbed. In prac-
tice, we rely on the anomaly scores of the endpoints to derive
the edge anomaly matrix E∗

i,j , defined as:

E∗
i,j =

{
si + sj , if Ai,j = 1
0, otherwise

. (9)

We sort the edges according to their anomaly scores in de-
scending order and remove the top-k most anomalous edges
to generate the rough graph G. Although this edge removal
strategy does not entirely eliminate all perturbed edges, it
significantly mitigates the influence of most “false” edges,
thereby increasing the proportion of original edges in G.

In addition, averaging the anomaly scores of the endpoints
is a straightforward way to handle results across multiple
rounds. Theoretically, more statistical methods could be em-
ployed, such as using the minimum or maximum values.
However, since perturbed edges tend to exhibit different dis-
tribution characteristics, we believe that averaging remains an
effective solution.

3.2 Effective Representation Learning
Although we obtain a cleaner graph in the previous section,
this comes at the cost of discarding many “true” edges that
are mistakenly identified as “false”, thereby reducing the rich-
ness of the graph’s structural information. To address this is-
sue, we propose a method in this section to progressively ex-
pand the rough graph to include more “true” edges while re-
fining the corrupted representations into effective ones. This
method consists of two key components: the establishment of
the Graph Pollution Degree (GPD) and the overall framework
for obtaining effective representations.

Quantifying Graph Pollution Degree
We propose a method to ascertain whether the edges in a pre-
dicted graph have been perturbed by measuring changes in
mutual information. Intuitively, the aim of adversarial attacks
on graphs is to damage the representations, thereby reduc-
ing the performance of downstream tasks. This indicates that
representations learned from clean graphs do not adequately
reflect graphs containing adversarial edges. Therefore, we
propose the Graph Pollution Degree (GPD) as a measure to
quantify the level of pollution in the predicted graph.

GPD(θ) = I (G, fθ (G))− I (G′, fθ (G
′)) , (10)

where G denotes the clean graph and G′ denotes the pre-
dicted graph, fθ is an encoder trained on the clean graph G,
and I (G, fθ (G)) represents the mutual information between
the G and its representation fθ (G). The GPD quantifies
the difference in mutual information between the clean graph
and the predicted graph, reflecting how much the predicted
graph’s structure deviates from the clean graph in terms of its
learned representations. A lower value of GPD(θ) indicates
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that the predicted graph under examination contains a higher
level of pollution due to perturbed edges.

Depending on the value of GPD, problem (10) can guide
two simple sub-problems:{

G′ contains adversarial edges, if GPD > α
G′ can be trusted, otherwise

.

A highly expressive encoder, which undergoes continuous
fine-tuning based on clean graphs, fails to capture the inter-
dependencies between polluted graphs and their representa-
tions, resulting in GPD > α.

Although some studies [Xu et al., 2022; Jin et al., 2023;
Zhu et al., 2020] propose the concept of Representation Vul-
nerability (RV) to quantify the impact of adversarial attacks
on representations and develop corresponding defense strate-
gies, their primary focus is on learning robust representations
from clean graphs. In contrast, the goal of GPD is to quan-
tify the level of pollution in the predicted graph and refine
the polluted graph into a cleaner one that is more suitable for
learning effective representations.

Algorithm 1 Overall Procedure of Algorithm

Input: Attacked graph G∗ = (A∗, X), rough graph G,
learning rate δ, hyperparameters α

Output: Refined model θ, effective representation fθ (G)
1: Calculate model θ according Eq. (1)
2: While not early-stop do
3: Randomly select E′, and combine it with G to form

G′ = (A′, X), where E′ ∈ G∗&E′ /∈ G
4: If I (G, fθ (G))− I (G′, fθ (G

′)) < α
5: // updating clean graph
6: Let G = G′

7: // fine-tuning the model
8: θ ← θ − δ∇θI(G; fθ(G))
9: Else

10: // fine-tuning the model
11: θ ← θ − δ∇θI(G; fθ(G))
12: End while
13: Calculate effective representation fθ (G)
14: Return θ, fθ (G)

Graph Representation Learning Framework
The overall graph representation learning framework is out-
lined in Algorithm 1. We begin by randomly initializing the
parameters θ for the unsupervised graph contrastive learning
method, which employs the DGI (Deep Graph Infomax) ap-
proach defined in Eq. (1). Next, we randomly select edges
that belong to the polluted graph but not to the clean graph
and sequentially add them to the clean graph to generate the
predicted graph G′. We then calculate the difference in mu-
tual information between the clean graph G and its represen-
tation fθ(G), and between the predicted graph G′ and its rep-
resentation fθ(G

′), denoted as GPD(θ) (step 4). If GPD(θ)
is less than the threshold α, the predicted graph G′ is deemed
trustworthy and used to fine-tune the model via Eq. (1). Con-
versely, if GPD(θ) exceeds α, it indicates that G′ contains a
significant number of perturbed edges. In this case, we use

the cleaner graph G to fine-tune the model, repeating the pro-
cess until convergence is achieved. The algorithm ultimately
returns the refined model and robust representation fθ(G),
which can then be used for downstream tasks such as node
classification, selecting only the graph G′ with the smallest
GPD as the refined graph for each round.

4 Experiments
In this section, we demonstrate that our model can train ro-
bust, high-quality representations on graphs under adversarial
attacks. We focus on addressing the following research ques-
tions. Q1: Can our model learn robust and efficient represen-
tations under PGD attacks with varying perturbation rates?
Q2: Can our model effectively defend against different types
of graph adversarial attacks? Q3: How sensitive is the model
to parameter variations? Q4: What is the impact of each com-
ponent on the overall model performance?

4.1 Experimental Settings
Datasets
We conduct experiments on four widely used benchmark
datasets: Cora, Citeseer, Pubmed [Kipf and Welling, 2017;
Sen et al., 2008], and Polblogs [Adamic and Glance, 2005].
The first three are citation networks, where nodes represent
documents and edges denote citation links between them.
Polblogs is a political blog network, in which nodes are blogs
and edges indicate hyperlinks. Since Polblogs lacks node fea-
tures, we use an identity matrix as its attribute matrix follow-
ing [Xu et al., 2022]. Detailed dataset statistics are provided
in Table 1.

|V | |E| |Feature| |Class|
Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Polblogs 1,490 16,714 - 2

Table 1: Statistics of the experimental data.

Baselines
We compare our methods with nine state-of-the-art defense
Graph Neural Networks (GNNs). The baselines are catego-
rized into two main groups: embedding-based methods, in-
cluding DGI [Veličković et al., 2019], Jaccard [Wu et al.,
2019], SVD [Entezari et al., 2020], STABLE [Li et al.,
2022], and STRG [Li et al., 2023]; and anomaly detection-
based methods, such as Dominant [Ding et al., 2019], CoLA
[Liu et al., 2021], GRADATE [Duan et al., 2023], and
GFCN [Mesgaran and Hamza, 2024]. Additionally, we im-
plement three non-targeted structural adversarial attack meth-
ods: PGD [Madry et al., 2018], MetaAttack [Zügner and
Günnemann, 2019], and Random.

Implementation Details
For each dataset, we randomly divided 10% of the nodes for
training and 80% for testing, as in [Feng et al., 2024a]. In
our work, we set the hyperparameters α = 5e − 4. Regard-
ing the attack setup, the polluted graph is generated using the
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Dataset Ptb rate Model
DGI JACCARD Dominant CoLA SVD STABLE STRG GRADATE GFCN Ours

Cora

5% 72.3 73.8 74.6 73.8 72.6 73.5 75.6 74.2 72.4 77.3
10% 66.5 67.2 68.7 68.3 66.9 68.8 69.0 69.2 65.8 71.8
20% 60.3 60.5 61.1 62.5 59.8 61.9 63.5 62.8 60.2 67.0
30% 54.1 54.5 54.3 58.9 55.2 56.1 61.8 58.6 52.8 64.3
40% 49.9 50.2 49.2 54.8 50.4 54.9 57.0 53.4 50.6 59.2

Citeseer

5% 63.1 64.7 66.3 66.2 64.2 65.4 66.7 67.2 63.5 69.0
10% 60.4 62.5 63.0 64.5 61.4 63.3 64.5 64.1 59.8 67.4
20% 54.2 53.6 53.8 58.8 54.5 58.0 58.0 57.4 57.7 62.3
30% 47.3 49.8 45.4 51.8 47.7 49.0 53.5 50.5 48.6 57.7
40% 41.8 43.5 41.4 46.6 42.5 42.9 49.9 45.1 43.5 53.1

Pubmed

5% 60.5 60.1 59.7 62.2 59.6 59.6 64.5 62.2 62.2 66.5
10% 52.7 53.5 52.9 55.6 51.4 51.9 57.9 54.2 53.8 60.4
20% 42.8 41.5 42.3 43.3 41.6 41.1 50.1 43.8 43.6 54.7
30% 36.3 37.8 38.3 39.9 36.5 38.8 44.8 38.3 37.6 48.2
40% 34.9 36.4 36.4 37.9 11.1 34.5 40.5 37.7 36.2 43.6

Polblogs

5% 85.5 85.4 86.2 86.4 85.2 86.0 86.5 86.4 85.6 87.4
10% 82.0 82.8 82.1 83.6 81.5 83.6 84.8 83.3 83.1 85.7
20% 80.3 81.5 81.8 81.6 80.1 82.4 83.4 81.6 81.8 84.1
30% 78.3 79.6 78.6 78.8 77.5 80.7 82.1 79.9 79.8 83.1
40% 76.5 77.2 77.1 77.3 75.3 79.2 80.8 77.0 78.2 82.2

Table 2: Node classification performance (Acc%) on Cora, Citeseer, Pubmed and Polblogs under PGD attack.

aforementioned three structural perturbation methods. We set
the perturbation ratio δ, which is tuned from {0.05, 0.1, 0.2,
0.3, 0.4}, based on the default parameters. For the parameter
design of the baselines, besides using the default parameters,
we set a threshold for JACCARD, and STABLE from {0.2,
0.3, 0.4, 0.5, 0.6} and select the best-performing one. For
Dominant, CoLA, GRADATE, and GFCN, we delete edges
based on node or structural anomaly rankings, ensuring that
the number of removed edges corresponds to the number of
edges targeted in the attack.

4.2 Performances against PGD Attack (Q1)
Table 2 presents the node classification accuracy of our pro-
posed model compared to nine baselines under PGD ad-
versarial attacks. Our method consistently outperforms all
baselines across different perturbation ratios, achieving ACC
gains of 77.3%, 69.0%, 66.5%, and 87.4% on Cora, Citeseer,
PubMed, and Polblogs at a 5% perturbation rate. Compared
to similarity-based approaches, our model’s advantage lies in
its ability to identify more accurate structures from the outset.
In contrast to anomaly detection-based methods, we lever-
age trusted structures to effectively identify the correct struc-
tures within untrusted regions. Additionally, as perturbation
increases, our model’s performance decreases more slowly
across all datasets, similar to the STABLE baseline. This re-
silience is attributed to our approach of initially selecting a
rough graph and fine-tuning the model based on refined graph
structures, reducing sensitivity to adversarial perturbations.

4.3 Performance against Different Attacks (Q2)
In this section, we evaluate the performance of our model un-
der MetaAttack and random perturbations on the Cora and
Citeseer datasets, as shown in Figure 4. Our experiments re-

veal that adversarial attacks primarily aim to connect distant
nodes, resulting in both structural anomalies and mismatches
between the polluted graph and its learned representations.
By leveraging mutual information, our model effectively mit-
igates these issues, consistently outperforming baseline meth-
ods across different perturbation techniques. Moreover, as the
perturbation rate increases, our model’s performance declines
more gradually than other methods. This resilience can be at-
tributed to the reduced number of perturbed edges, which al-
lows the accurate structures to provide more reliable informa-
tion and making it easier to identify and exclude false edges.

4.4 Sensitivity Analysis (Q3)
To verify the effectiveness of our framework, we investigate
two parameters under a 5% PGD attack on different datasets:
the GPD threshold α, the proportion of edges removed in ad-
vance, and the number of edge verifications q. First, we vary
α to observe changes in classification accuracy. As shown in
Figure 5(a), extremely small α values lead to premature ter-
mination, while excessively large values can cause severely
polluted graphs to be misclassified as clean. Hence, we set
α to 5 × 10−4 for a robust balance. Second, increasing the
proportion of edges removed in advance generally improves
model robustness, indicating that screening out more poten-
tially perturbed edges helps stabilize subsequent refinements.
Finally, we examine the effect of q. As shown in Figure
5(b), a higher q yields better refinement, as too few queries
risk incomplete structural information. We find that q = 10
sufficiently captures most accurate structures for downstream
tasks. Overall, our model remains relatively stable within rea-
sonable parameter ranges, confirming that thresholding pol-
luted edges and adjusting verification times effectively en-
hance both robustness and representation quality.
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Figure 4: Node classification performance (Acc %) on Cora and Citeseer under different attacks.
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Figure 5: Experimental results for parameters α and q.
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Figure 6: Evaluation of different anomaly detection methods.

4.5 Ablation Study (Q4)
In this section, we provide a detailed analysis of our method’s
performance under various conditions on the Cora dataset.
Specifically, we compare three variants: Ours-similarity
(Ours-s), which first learns the representations of the attacked
graph using DGI and retains edges with higher similarity;
Ours-dominant (Ours-d), which uses autoencoders to com-
pute the anomaly score and selects edges with lower scores;
and Ours-none (Ours-n), which randomly selects edges from
the polluted graph. Figure 6 shows the results of these vari-
ants. We make the following observations: using these meth-
ods to obtain the rough graph is less effective than employing
the CoLA method. This is likely because CoLA’s anomaly
detection approach identifies anomaly patterns rather than re-
lying on structural information, making it less influenced by
the presence of anomalous edges.

5 Related Works
Numerous studies have demonstrated that graph neural net-
works (GNNs) are susceptible to attacks, particularly through
adversarial perturbations. Nettack [Zügner et al., 2019] is
a pioneering study in the domain of graph adversarial at-
tacks, pioneering targeted attacks through subtle changes to
the structure and node attributes of graphs. Building on this,
Mettack [Zügner and Günnemann, 2019] employs a meta-
learning approach to tackle the bi-level optimization problem
in adversarial attacks. This method of perturbation persis-

tently diminishes the representational capacity of graph con-
volutional networks, enabling maximally effective untargeted
attacks on graph neural network learning. PGD [Madry et
al., 2018] method uses a projected gradient descent topol-
ogy attack for dual optimization, effectively applying con-
vex relaxation optimization to enable gradient-based adver-
sarial attacks on discrete graph data. These graph attack al-
gorithms can be directly applied during the graph training
phase, leading to extensive research on defending against ad-
versarial perturbations. For defense against different attacks,
[Wu et al., 2019] propose using the Jaccard similarity of node
representations to remove adversarial edges. [Entezari et al.,
2020] propose defending against adversarial attacks by using
Singular Value Decomposition (SVD) for low-rank approxi-
mation, which retains the high-rank components of the graph
and effectively reduces the impact of attacks. [Li et al., 2022]
propose removing edges between dissimilar nodes and addi-
tionally selecting top-k edges to reduce the impact of resid-
ual perturbations. STRG [Li et al., 2023] leverages the local
structures of test nodes and pseudo-labels to train a GCN, re-
ducing the distribution shift between the training and test sets,
thereby enhancing robustness. Unlike these studies, we rec-
ognize the potential impact of perturbed edges on attack de-
tection models. Consequently, we design a method to refine
contaminated graphs using clean graphs, enabling more de-
tailed refinement of the contaminated graphs to better defend
against adversarial attacks.

6 Conclusion

In this paper, we propose a novel robust representation learn-
ing method for unsupervised learning through graph refining.
Our framework iteratively refines graphs using cleaner struc-
tures, guided by the Graph Pollution Degree (GPD) metric
to quantify graph pollution and direct the refinement process.
By employing contrastive learning and anomaly detection to
identify and exclude perturbed edges, we progressively im-
prove the quality of the learned representations. Extensive ex-
periments demonstrate our model’s effectiveness in learning
representation, leading to significant improvements in node
classification. One limitation of our method is its reliance
on the homophily assumption, which may reduce effective-
ness on graphs with low homophily. For future work, we
aim to adapt our defense technique to effectively handle ad-
ditional attack types, specifically injection and backdoor at-
tacks, and assess our framework on more complex and varied
graph data, such as heterogeneous and multimodal graphs.
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Stephan Günnemann. Adversarial attacks on neural net-
works for graph data. In International Joint Conference
on Artificial Intelligence, 2019.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


