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Abstract

Recently, numerous multi-view clustering (MVC)
and multi-view graph clustering (MVGC) methods
have been proposed. Despite significant progress,
they still face two issues: I) MVC and MVGC are
often developed independently for multi-view and
multi-graph data. They have redundancy but lack a
unified methodology to combine their strengths. II)
Contrastive learning is usually adopted to explore
the associations across multiple views. However,
traditional contrastive losses ignore the neighbor
relationship in multi-view scenarios and easily lead
to false associations in sample pairs. To address
these issues, we propose Graph Embedded Con-
trastive Learning for Multi-View Clustering. Con-
cretely, we propose a process of view-specific pre-
training with adaptive graph convolution to make
our method compatible with both multi-view and
multi-graph data, which aggregates the graph in-
formation into data and leverages autoencoders to
learn view-specific representations. Furthermore,
to explore the view-cross associations, we intro-
duce the process of view-cross contrastive learning
and clustering, where we propose the graph-guided
contrastive learning that can generate global graph
to mitigate the false association issue as well as the
cluster-guided contrastive clustering for improving
the model robustness. Finally, extensive experi-
ments demonstrate that our method achieves supe-
rior performance on both MVC and MVGC tasks.

1 Introduction
The rich real-world applications have generated diverse for-
mats of multi-view data, such as a sample often having mul-
tiple views, modalities, or graph structure information [Liang
et al., 2021; Chen et al., 2024; Fu et al., 2025]. Multi-View
Clustering (MVC) can extract representations and discover

∗Corresponding authors: Jie Xu (jiexuwork@outlook.com) and
Guoqiu Wen (guoqiuwen@gxnu.edu.cn).

Code is available at https://github.com/SubmissionsIn/GMVC.

patterns for multi-view data without relying on label infor-
mation, which has attracted widespread attention from re-
searchers [Bickel and Scheffer, 2004; Chaudhuri et al., 2009;
Nie et al., 2017]. Recently, deep learning-based MVC has
achieved significant progress and has been successfully ap-
plied in many fields like industry, internet, and medicine.
Such deep MVC utilizes deep neural network models to
improve the clustering ability and is conducive to explor-
ing consistent and complementary information in multi-view
data [Abavisani and Patel, 2018; Wen et al., 2021; Luo et al.,
2024; Xu et al., 2023; Xu et al., 2024].

According to the data differences, we can finely divide ex-
isting deep MVC methods into two types: I) multi-view clus-
tering for general multi-view data and II) multi-view graph
clustering (MVGC) for multi-graph data, as follows.

For general multi-view data, each sample i contains mul-
tiple associated views x1

i ,x
2
i , . . . ,x

V
i , and these multi-view

data often have different modalities, e.g., RGB and depth data
are associated in DHA dataset [Lin et al., 2012] and they
are used for human action recognition and retrieval. Deep
MVC typically combines deep models with view-cross clus-
tering objectives to obtain discriminative representations. For
example, [Abavisani and Patel, 2018] employed deep au-
toencoders to process multi-view/-modal data, and then con-
ducted subspace clustering on the learned middle represen-
tations. [Perkins and Yang, 2019] combined deep encoder
models with the alternating-view K-Means clustering and es-
tablished a deep MVC method for dialogue intent induction.
Recently, contrastive learning has gradually become a main-
stream approach for deep MVC, which constructs multi-view
data into positive/negative sample pairs to improve the repre-
sentation discrimination for clustering. For instance, [Trosten
et al., 2021] proposed a contrastive deep MVC method that
employs multiple encoders and minimizes contrastive loss to
align the representations from different views. Furthermore,
[Xu et al., 2022] introduced contrastive learning into a multi-
level feature learning framework that obtains final clustering
predictions by averaging multiple network outputs.

For multi-graph data, the sample i owns its single-view
data xi and provides sample relation data in multiple graph
structures A1,A2, . . . ,AV , e.g., ACM dataset [Jin et al.,
2021] describes the paper-author and paper-subject relation-
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(a) View-specific pre-training with adaptive graph convolution (b) View-cross contrastive learning and clustering
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Figure 1: Our GMVC framework. (a) The view-specific pre-training with adaptive graph convolution organizes data input as multiple views
and graphs. Then, it utilizes the adaptive graph convolution to aggregate graph structure information into the graph-embedded data Ev ,
which is used to train the autoencoder with reconstruction loss Lv

REC for refining the view-specific representation Zv . (b) The view-cross
contrastive learning and clustering promote each other as follows. (b-1) Graph-guided contrastive learning achieves the interaction across
multiple views to further refine {Zv}Vv=1, which employs attention and graph optimization to get the global feature H and graph A, and
then A is integrated into our graph-guided contrastive loss LGGC to avoid false associations. (b-2) Cluster-guided contrastive clustering
leverages comprehensive multi-view information in {Zv}Vv=1 for end-to-end clustering, which learns clustering labels {Qv}Vv=1 and cluster-
strengthened labels {Pv}Vv=1, and then the cluster-guided contrastive loss LCGC is optimized for the clustering alignment across all views.

ships with two graphs. MVGC typically incorporates graph
learning models into MVC frameworks to learn graph node
representations, aiming to extract useful information from
multi-graph data and then to facilitate clustering. For exam-
ple, [Fan et al., 2020] proposed a deep MVGC method that
employs graph autoencoder models to learn the node repre-
sentations shared by multi-graph data. [Wang et al., 2022]
proposed a multi-graph convolutional clustering network that
fuses the representations from multiple graph encoders for
clustering. Like contrastive learning in deep MVC, [Liu et
al., 2022] recently introduced contrastive learning into deep
MVGC to improve the clustering effectiveness.

Although recent deep MVC and MVGC methods have
achieved important progress, they face the following issues.

Firstly, current MVC and MVGC methods are individu-
ally designed, whereas their gap has not yet been bridged
by a unified methodology and their commonalities result in
redundancy. To be specific, general MVC methods can-
not be applied to the clustering tasks of multi-graph data
due to that their models are unable to accept the graph in-
put. MVGC is technically similar to MVC and can be con-
sidered a subdomain of MVC [Chen et al., 2022; Chen et
al., 2025]. Although MVGC methods are good at process-
ing graph structure information in multi-graph data, experi-
ments find that these graph data-specific methods have lim-
ited performance when dealing with general multi-view data
(see Section 3.2). Secondly, contrastive learning typically
treats data pairs in associated views as positive sample pairs,
while data pairs without explicit association are considered
as negative sample pairs [Trosten et al., 2021]. This prac-
tice does not fully consider and utilize the neighbor rela-
tionships in multi-view scenarios and may have side effects.

Concretely, multiple views of different samples might pro-
vide the information of the same class, but previous con-
trastive learning treats these data as negative sample pairs and
increases the distance between their representations, caus-
ing the model to be negatively affected by their false as-
sociations. Although some methods [Chuang et al., 2022;
Sun et al., 2024] tried to modify the contrastive loss to make
it more robust, current multi-view methods have not yet con-
sidered incorporating graph structure information into the de-
sign of contrastive loss to alleviate this problem.

To address the aforementioned issues, this paper proposes
GMVC: Graph Embedded Contrastive Learning for Multi-
View Clustering as shown in Figure 1. First, GMVC has a
view-specific pre-training process that can compatibly han-
dle both multi-view and multi-graph data, where we propose
to leverage the adaptive graph convolution and autoencoder to
enhance the correlation among sample representations within
each view. Then, GMVC performs the view-cross contrastive
learning and clustering, where the graph-guided contrastive
learning incorporates graph structure information into loss
function for improving the discrimination of representations,
and the cluster-guided contrastive clustering further explores
the associations among multiple views for the robustness of
clustering. In this way, GMVC can play a unified solution for
clustering on both multi-view and multi-graph datasets.

Unlike existing deep MVC and MVGC methods, the main
differences and contributions of this paper are as follows:

• We propose a novel deep MVC method, namely GMVC,
which is equipped with a view-specific pre-training pro-
cess and can leverage graph structure to refine represen-
tations. This makes our method applicable to both MVC
and MVGC as well as combines their advantages.
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• We design a novel contrastive loss that can utilize the
graph structure of representations to guide the model in
identifying more reliable positive and negative sample
pairs, thereby promoting the effective usage of neighbor
relationships in multi-view contrastive learning.

• We conduct extensive comparison experiments with
state-of-the-art MVC and MVGC methods on multi-
view and multi-graph datasets respectively, which ver-
ified the superiority of our proposed GMVC framework.

2 Method
Notations. In this paper, we define a multi-view dataset as
{Xv ∈ RN×Dv}Vv=1 including N samples with V view data,
and define a multi-graph dataset as {X ∈ RN×D,Av ∈
RN×N}Vv=1 including N samples with V graph data. Assum-
ing one dataset has different C classes, our goals of MVC and
MVGC are the same to assign N samples to C clusters.

2.1 Preliminaries and our motivation
In this section, we present the preliminaries of deep MVC and
MVGC in the literature and give our motivation.

For multi-view data, deep MVC methods usually adopt
feedforward neural networks (e.g., autoencoder) to learn the
data representation for clustering. Specifically, the learning
paradigm of deep MVC can be illustrated as follows:

Fdeep MV C : {Xv}Vv=1 → {Zv}Vv=1 → Q. (1)

Based on the learned representations {Zv}Vv=1, some deep
MVC methods [Zhou and Shen, 2020; Trosten et al., 2021]
focus on establishing effective fusion strategies to obtain one
robust representation Z of multiple views and then produce
final clustering result Q. Some methods [Xu et al., 2022;
Tang and Liu, 2022; Chen et al., 2023] choose to discover
effective multi-view information interaction approaches to
obtain individual robust clustering results {Qv}Vv=1 from
{Zv}Vv=1 and then merge them into one result Q.

For multi-graph data, deep MVGC methods leverage graph
neural networks to extract the information in graphs, aim-
ing to iteratively obtain node representations and refine graph
structures for optimizing clustering. To be specific, the learn-
ing paradigm of deep MVGC can be illustrated as follows:

Fdeep MVGC : X, {Av}Vv=1 → Z → Q. (2)

Existing deep MVGC typically focus on designing different
methods to effectively integrate multi-graph information in
{Av}Vv=1 into the representation learning for data X, and the
learned representation Z is then used to produce clustering
result Q. For example, [Fan et al., 2020; Cheng et al., 2021]
train multiple graph decoders stacked on the representations
to make them merge comprehensive information hidden in
multi-graph data. [Ling et al., 2023] further leverage pseudo
labels to refine multiple graphs and then add them up to obtain
a consensus graph and representation for clustering.

As shown in Eq. (1) and Eq. (2), the paradigm differences
between deep MVC and MVGC make the researchers de-
sign their methods separately, causing the two incompatible
and limiting their applications. To this end, our motivation

is to propose a unified clustering framework for multi-view
and multi-graph data, which combines the strengths of MVC
and MVGC and hopefully provides a unified methodology for
them. The learning paradigm of our method is expressed as:

Fours : {Xv}Vv=1 or X, {Av}Vv=1 → {Zv}Vv=1 → Q. (3)

To achieve this paradigm, we propose Graph Embedded
Contrastive Learning for Multi-View Clustering (GMVC) as
shown in Figure 1, which consists of the view-specific pre-
training with adaptive graph convolution and view-cross con-
trastive learning & clustering that will be introduced below.

2.2 View-specific pre-training with adaptive graph
convolution

This section introduces our proposed view-specific pre-
training with adaptive graph convolution in GMVC, i.e., the
process of {Xv}Vv=1 or X, {Av}Vv=1 → {Zv}Vv=1.
Data format unification. To make a unified framework com-
patible with both multi-view data and multi-graph data, we
propose to organize them into a unified format. Specifically,
our method GMVC achieves the following function:

{Xv}Vv=1 or X, {Av}Vv=1 → {Xv,Av}Vv=1. (4)

Firstly, if the input is multi-view data {Xv}Vv=1, we con-
struct additional self-expression matrices {Av ∈ RN×N}Vv=1
for each view. Self-expression assumes that each sample can
be reconstructed through a linear combination of other sam-
ples, that is, for any i-th sample in the v-th view xv

i , we have

xv
i = avi1x

v
1 + avi2x

v
2 + · · ·+ aviNxv

N , (5)

where the coefficient avij ∈ Av reflects the similarity between
xv
i and xv

j . In this way, the self-expression matrix Av cap-
tures the neighbor information within each view, which can
be used to produce the adjacency matrix as the graph data.
Furthermore, considering that two samples with larger dis-
tances are likely to belong to the different classes [Zhou et al.,
2003], we optimize the following objective for each view:

min
Av

∥Xv −AvXv∥2F + α
N∑

i,j=1

dvija
v
ij + β

N∑
i,j=1

(avij)
2, (6)

where dvij =
∥∥xv

i − xv
j

∥∥2
2

is treated as a penalty term that
encourages the self-expression matrix to focus on the local
neighbor relationship. The third term prevents the matrix
from reaching a trivial solution. α and β are non-negative
parameters to trade off the three terms. Eq. (6) actually has
the closed-form solution to obtain the optimal self-expression
matrix Av [Mo et al., 2024]. Then, we leverage the following
operation to make Av become an adjacency matrix:

aij =

{
1, aij > 0 .

0, aij ≤ 0 .
(7)

Secondly, if the input data is multi-graph data
X, {Av}Vv=1, we can intuitively make V copies of X
to form multiple views, i.e., {Xv = X}Vv=1. Then,
multi-view data and multi-graph data have the same format
{Xv,Av}Vv=1, which allows us to develop the unified
framework of MVC and MVGC.
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View-specific pre-training. Given the data {Xv,Av}Vv=1,
we further conduct the view-specific pre-training process
which aims to achieve information aggregation between Xv

and Av and produces view-specific representations {Zv}Vv=1.
Firstly, it is observed that the neighbor information in

graphs can be embedded in data [Chanpuriya and Musco,
2022]. Therefore, we define the graph-embedded data Ev ∈
RN×d and adopt the adaptive graph convolution (AGC) op-
erations to aggregate the information in Xv and Av . Con-
cretely, AGC computes the following tensor:

T v =
[
(Sv)0Xv; (Sv)1Xv; . . . ; (Sv)KXv

]
∈ RN×d×(K+1).

(8)
where Sv = D− 1

2AvD− 1
2 is the normalized adjacency ma-

trix and D = diag(Av1) is the degree matrix. K controls the
convolution orders. Then, for the i-th sample in the v-th view,
we fetch Tv

i = T v[i, :, :] ∈ Rd×(K+1), and let wv
i ∈ RK+1

represent the importance of (Sv)
k
Xv at the k-th order. AGC

optimizes wv
i by minimizing the error of the least square:

min
wv

i

∥∥Tv
iw

v
i − (xv

i )
T
∥∥2
2
. (9)

After that, we compute the graph-embedded data evi by
evi = Tv

iw
v
i ∈ Ev. (10)

Secondly, to further explore discriminative information in
graph-embedded data Ev , we leverage autoencoder [Hinton
and Salakhutdinov, 2006] to learn view-specific representa-
tion Zv . Letting fv

θv and gvϕv denote the encoder and decoder
of the v-th view, respectively, we optimize the following ob-
jective to pre-train the autoencoders for all views:

LREC =
V∑

v=1

∥∥Ev − gvϕv (fv
θv (Ev))

∥∥2
F
, (11)

where Zv = fv
θv (Ev) ∈ RN×d. By minimizing the recon-

struction loss LREC, the model is forced to learn the most
discriminative information and filter out noise from data,
which is conducive to discovering the clustering patterns.

Through Eqs. (10) and (11), the model aggregates the
graph information into the graph-embedded data, and then
produces the clustering-friendly view-specific representa-
tions. It is worth noting that the interaction across multiple
views is not yet implemented, and the next section presents
our view-cross contrastive learning and clustering in GMVC.

2.3 View-cross contrastive learning and clustering
This section introduces our view-cross contrastive learning
and clustering in GMVC, i.e., the process of {Zv}Vv=1 → Q.
Graph-guided contrastive learning (GGC). To achieve the
multi-view information interaction with contrastive learning
for refining {Zv}Vv=1, we construct a global feature H ∈
RN×f and a global graph A ∈ RN×N , and propose GGC
which makes the global graph information guide the con-
trastive learning to avoid its false associations. As shown in
Figure 1, {Zv}Vv=1 produce low-dimensional features {Hv ∈
RN×f}Vv=1 by a multilayer perceptron (MLP) Mf and then
obtain H ∈ RN×f by

H =
V∑

v=1

bvHv =
V∑

v=1

bvMf (Z
v), bv ∈ bv, (12)

where bv ∈ Rv is a weighting vector to balance the impor-
tance among multiple views, and it is obtained through the
following attention mechanism [Vaswani et al., 2017]:

bv = Softmax(Att([ĥ1; ĥ2; . . . ; ĥV ])), (13)

where ĥv is the mean value of the features Hv in the dimen-
sions to simplify computation, i.e., ĥv = 1

fH
v1. Further-

more, the global graph A is inferred by the graph optimiza-
tion as did in Eq. (6):

min
A

∥H−AH∥2F + α
N∑

i,j=1

dijaij + β
N∑

i,j=1

(aij)
2. (14)

dij = ∥hi − hj∥22 captures neighbor relationship among the
global feature H. Eq. (14) adopts a closed form solution sim-
ilar to Eq. (6). In GGC, we mark the top n elements as 1 and
mark others as 0 in each row of A, to identify the reliable
positive and negative sample pairs as the following rules:

s+ ∈ P, s+ = D(hm
i ,hn

j ) where i = j,m ̸= n.

ŝ+ ∈ P̂, ŝ+ = D(hm
i ,hn

j ) where i ̸= j, aij = 1.

s− ∈ N , s− = D(hm
i ,hn

j ) where i ̸= j, aij = 0.

(15)

In the above rules, P denotes the positive sample pairs as
did in previous contrastive learning. P̂ and N respectively
denote the additional positive sample pairs and the rest nega-
tive sample pairs selected by our method. D(hm

i ,hn
j ) is the

metric computed by cosine distance with a temperature, i.e.,
1/τ · ⟨hm

i ,hn
j ⟩/∥hm

i ∥2∥hn
j ∥2,hm

i ∈ Hm,hn
j ∈ Hn. More-

over, we define the graph-guided contrastive loss as follows:

Lm,n
GGC = −Es+∈P∪ŝ+∈P̂ [s

+ + γŝ+ − log(es
+

+

γeŝ
+

+
∑

s−∈N
es

−
)].

(16)

For any m,n-th views, minimizing our GGC loss Lm,n
GGC will

enforce the model to explore their mutual information as well
as avoid the possible false associations, thereby refining the
view-specific representations to promote clustering. For all
views, the total GGC loss is formulated as

LGGC =
V∑

m=1

V∑
n=m+1

Lm,n
GGC . (17)

Cluster-guided contrastive clustering (CGC). In order to
fully utilize the comprehensive multi-view information in
{Zv}Vv=1 for clustering, we employ a MLP Mq to learn clus-
ter labels {Qv ∈ RN×C}Vv=1 from {Zv}Vv=1, and then we
establish cluster-strengthened labels {Pv ∈ RN×C}Vv=1 to
make their cluster structures guide the view-cross clustering.
Motivated by the usage of self-supervised learning in cluster-
ing [Xie et al., 2016], we define qvic ∈ Qv as the probability
that the i-th sample in the v-th view belongs to the c-th class,
and compute the cluster-strengthened label pvij ∈ Pv by

pvij =
(qvij)

2/
∑N

i=1 q
v
ij∑C

c=1((q
v
ic)

2/
∑N

i=1 q
v
ic)

. (18)
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Datasets DHA NGs WebKB Caltech
Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
K-Means 65.6 ± 2.9 79.8 ± 0.1 59.7 ± 2.7 20.6 ± 0.2 1.9 ± 0.3 21.0 ± 0.0 61.7 ± 0.8 0.2 ± 0.1 1.4 ± 0.0 85.1 ± 0.1 75.6 ± 0.1 71.6 ± 0.2
DSIMVC 63.5 ± 4.6 77.8 ± 4.3 55.6 ± 4.7 63.0 ± 6.2 50.2 ± 5.9 43.9 ± 6.3 70.2 ± 1.4 25.0 ± 1.3 16.2 ± 2.3 49.8 ± 3.8 52.1 ± 3.2 38.1 ± 4.6
MFLVC 71.6 ± 1.1 81.2 ± 0.4 62.5 ± 0.7 90.8 ± 0.0 80.2 ± 0.0 79.2 ± 0.0 67.2 ± 2.1 24.5 ± 1.4 4.5 ± 2.1 75.2 ± 3.8 66.7 ± 2.6 58.6 ± 3.3
CPSPAN 66.3 ± 3.3 77.5 ± 1.0 62.7 ± 1.5 35.2 ± 0.2 21.5 ± 1.5 9.2 ± 0.5 77.1 ± 2.1 16.6 ± 4.2 12.5 ± 2.1 82.6 ± 4.0 73.2 ± 3.0 69.2 ± 4.2
CVCL 66.2 ± 6.3 75.4 ± 3.3 53.6 ± 6.3 56.8 ± 7.7 31.7 ± 7.8 28.1 ± 10.7 74.1 ± 3.0 24.6 ± 2.6 19.8 ± 3.3 80.3 ± 5.1 71.8 ± 3.8 65.8 ± 5.5
SCM 80.4 ± 0.1 84.0 ± 0.1 70.0 ± 1.1 96.5 ± 0.1 89.3 ± 0.1 91.4 ± 0.2 72.5 ± 2.4 26.8 ± 5.2 15.5 ± 4.3 83.1 ± 0.2 71.0 ± 0.6 67.4 ± 0.6
GMVC [ours] 82.5 ± 0.6 83.5 ± 0.4 70.4 ± 0.8 97.3 ± 0.2 92.0 ± 0.5 93.3 ± 0.6 80.2 ± 1.5 32.6 ± 3.7 34.9 ± 1.4 87.9 ± 0.8 79.6 ± 1.0 75.8 ± 1.5

Table 1: Clustering performance of MVC methods on multi-view datasets. Bold and underline denote the best and the second-best results.

Eq. (18) encourages that large elements in Qv become rela-
tively larger in Pv , and thus the cluster information with high-
probability is strengthened. This cluster-strengthened label
of one view can act as the supervised information to promote
other views. To this end, we propose the CGC objective on
{Pv ∈ RN×C}Vv=1, which is different from the contrastive
objective employed on {Qv ∈ RN×C}Vv=1 in other methods.
Specifically, we define the positive and negative label pairs:{

l+ ∈ P ′, l+ = D(pm
.i ,p

n
.j) where i = j,m ̸= n.

l− ∈ N ′, l− = D(pm
.i ,p

n
.j) where i ̸= j.

(19)

For any m,n-th views, the CGC loss is further defined as

Lm,n
CGC = −El+∈P′ [l+ − log(el

+

+
∑

l−∈N ′
el

−
)], (20)

and minimizing it will achieve the view-cross agreement be-
tween positive label pairs as well as disagreement between
negative label pairs, which is consistent with the intuition that
the same clusters in different views should have the consistent
cluster labels. For all views, the CGC loss is formulated as

LCGC =
V∑

m=1

V∑
n=m+1

Lm,n
CGC +

V∑
v=1

C∑
c=1

rvc log r
v
c , (21)

where the second term is a commonly-used regularization for
avoiding trivial solutions and it has rvc = 1

N

∑N
i=1 p

v
ic.

Objective function. Our proposed framework conduct the
graph-guided contrastive learning and the cluster-guided con-
trastive clustering simultaneously. Overall, the training loss
consists of the following three components:

L = LREC + LGGC + LCGC. (22)

where LREC constrains the view-specific representations
{Zv}Vv=1 to maintain the discriminative information of data.
Minimizing LGGC achieves multi-view information inter-
action to refine {Zv}Vv=1. Meanwhile, minimizing LGGC

learns semantic consistent clustering labels {Qv}Vv=1 from
{Zv}Vv=1. Finally, we calculate the average of the cluster la-
bels of all views to obtain the final clustering results by

qij =
1

V

V∑
v=1

qvij , qij ∈ Q. (23)

Eq. (23) finishes the process of {Zv}Vv=1 → {Qv}Vv=1 →
Q, and the hard cluster label is yi = argmaxc qic, c ∈
{1, 2, . . . , C}. In this way, our proposed method can obtain
end-to-end clustering results for input data, which is compat-
ible with both multi-view and multi-graph datasets.

3 Experiments
3.1 Experimental setup
In this subsection, we briefly present the datasets, comparison
methods, and evaluation protocol. More information can be
found in the supplementary materials of our GMVC code.
Datasets. We conduct experiments on 8 public benchmarks,
including 4 multi-view datasets, i.e., DHA [Lin et al., 2012],
NGs [Hussain et al., 2010], WebKB [Sun et al., 2007], Cal-
tech [Fei-Fei et al., 2004], and 4 multi-graph datasets, i.e.,
ACM [Jin et al., 2021], IMDB [Jin et al., 2021], Texas [Ling
et al., 2023], Chameleon [Ling et al., 2023].
Comparison methods. In this paper, the baseline methods
include 2 classical single-view clustering methods (i.e., K-
Means [MacQueen, 1967], VGAE [Kipf and Welling, 2016])
and 5 recent MVC methods (i.e., DSIMVC [Tang and Liu,
2022], MFLVC [Xu et al., 2022], CVCL [Chen et al., 2023],
CPSPAN [Jin et al., 2023], SCM [Luo et al., 2024]) and
5 recent MVGC methods (i.e., O2MAC [Fan et al., 2020],
MvAGC [Lin and Kang, 2021], MVGC [Xia et al., 2022],
DuaLGR [Ling et al., 2023], BTGF [Qian et al., 2024]).
Evaluation. We leverage three metrics for comprehensive
evaluation, i.e., clustering accuracy (ACC), normalized mu-
tual information (NMI), adjusted rand index (ARI), and re-
port the mean results with standard deviation of 10 runs.

3.2 Comparison experiments
Tables 1, 2, 4 demonstrate the effectiveness of our GMVC
compared with MVC and MVGC methods, respectively.
MVC on multi-view datasets. When our GMVC conducts
clustering tasks on multi-view datasets as shown in Table 1,
we have the following observations: 1) Our GMVC is com-
patible with MVC tasks and achieves better performance
than the comparison methods. For example, on WebKB,
our GMVC obtains 18.5% improvement from the single-
view method K-Means, and surpasses the recent deep MVC
method SCM by 7.7% in ACC values. This indicates that our
GMVC can effectively explore the multi-view information for
clustering. 2) Our GMVC of integrating graph structure in-
formation into contrastive learning is conducive to improving
the model robustness. For example, the deep MVC methods
CPSPAN, and CVCL also use contrastive learning, and they
perform well on WebKB, Caltech but underperform on DHA,
NGs. On these multi-view datasets, our GMVC consistently
achieves the robust clustering performance.
MVGC on multi-graph datasets. Table 2 shows the com-
parison of our GMVC conducting clustering tasks on multi-
graph datasets. For further comparison, Table 4 reports the
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Datasets ACM Chameleon IMDB Texas
Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
VGAE 44.4 ± 0.6 8.3 ± 0.7 5.0 ± 0.4 35.4 ± 1.0 15.1 ± 0.7 12.4 ± 0.6 41.2 ± 1.0 1.8 ± 0.5 0.7 ± 0.4 55.3 ± 1.8 12.7 ± 4.4 21.7 ± 8.4
O2MAC 89.7 ± 0.5 67.2 ± 1.1 72.2 ± 1.3 33.5 ± 0.3 12.3 ± 0.7 8.9 ± 1.2 42.9 ± 2.5 3.1 ± 1.1 3.8 ± 1.5 46.7 ± 2.4 8.7 ± 0.8 14.6 ± 1.8
MvAGC 84.4 ± 0.9 57.8 ± 1.3 60.1 ± 1.8 29.2 ± 0.9 10.8 ± 0.8 3.3 ± 1.7 56.3 ± 0.0 3.7 ± 0.0 9.4 ± 0.0 54,3 ± 2.6 5.4 ± 2.8 1.1 ± 4.1
MVGC 80.3 ± 2.0 57.6 ± 2.3 52.5 ± 3.4 32.8 ± 0.4 12.6 ± 0.3 5.1 ± 0.6 41.7 ± 2.8 0.2 ± 0.0 0.1 ± 0.0 41.8 ± 2.6 8.1 ± 3.3 7.8 ± 3.1
DuaLGR 92.4 ± 0.2 72.5 ± 0.5 78.8 ± 0.5 42.2 ± 0.2 18.5 ± 0.1 13.6 ± 0.1 44.3 ± 3.2 4.5 ± 2.0 5.2 ± 2.5 55.4 ± 2.1 33.6 ± 5.1 24.1 ± 3.7
BTGF 90.2 ± 1.4 69.3 ± 2.6 73.6 ± 3.2 35.8 ± 0.0 17.2 ± 0.0 11.5 ± 0.0 52.7 ± 5.5 4.6 ± 2.4 7.3 ± 5.8 58.5 ± 0.0 22.7 ± 0.0 20.5 ± 0.0
GMVC [ours] 93.4 ± 0.1 76.2 ± 0.2 81.3 ± 0.2 42.3 ± 0.3 19.3 ± 0.5 14.4 ± 0.4 47.7 ± 0.3 9.1 ± 0.1 9.4 ± 0.2 60.1 ± 0.1 36.4 ± 0.3 31.0 ± 0.3

Table 2: Clustering performance of MVGC methods on multi-graph datasets. Bold and underline denote the best and the second-best results.

Datasets DHA NGs WebKB Caltech ACM IMDB Texas Chameleon
Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
(1) w/o AGC 81.1 83.1 68.7 93.7 83.5 85.0 77.6 31.9 29.9 86.3 76.8 72.8 86.0 55.1 62.7 40.5 3.4 3.8 58.4 38.5 32.3 39.8 18.0 13.0
(2) w/o GGC 77.0 81.3 65.5 82.2 70.1 65.7 73.9 28.6 22.7 84.5 74.7 70.3 92.9 74.5 80.1 46.9 7.6 8.3 54.1 37.6 24.9 38.9 14.8 10.8
(3) w/o CGC 75.4 80.9 63.6 94.8 85.9 87.6 78.2 0.5 0.5 44.9 39.5 24.6 53.3 13.4 10.5 42.3 5.5 3.8 48.6 34.2 23.7 35.3 13.3 8.9
(4) w/ normal CL 82.3 83.5 70.1 97.4 92.4 93.8 71.4 24.4 18.4 84.6 75.2 71.0 93.3 76.1 81.2 45.8 7.4 7.9 58.4 34.3 27.4 40.7 17.1 12.4
(5) w/ normal CC 69.6 78.5 57.9 95.6 87.5 89.4 80.1 34.9 35.5 79.8 72.2 64.8 92.9 75.3 80.2 46.6 7.9 8.4 58.4 33.3 28.2 35.3 14.1 10.0
(6) GMVC 82.5 83.5 70.4 97.3 92.0 93.3 80.2 32.6 34.9 87.9 79.6 75.8 93.4 76.2 81.3 47.7 9.1 9.4 60.1 36.4 31.0 42.3 19.3 14.4

Table 3: Clustering performance of the proposed GMVC framework using different components on multi-view and multi-graph datasets.

Datasets DHA
Metrics ACC NMI ARI
VGAE 7.5 ± 0.1 3.4 ± 0.5 2.1 ± 0.0
O2MAC 13.5 ± 0.6 18.7 ± 1.0 1.2 ± 0.3
MvAGC 50.6 ± 1.4 61.6 ±1.4 31.5 ± 2.2
MVGC 12.5 ± 0.7 16.6 ± 0.8 -0.3 ± 0.2
DuaLGR 65.6 ± 1.2 76.0 ± 0.3 52.6 ± 0.8
BTGF 47.2 ± 3.1 64.1 ± 2.4 34.0 ± 3.8
GMVC [ours] 82.5 ± 0.6 83.5 ± 0.4 70.4 ± 0.8

Table 4: Clustering performance of MVGC methods on DHA.

performance of MVGC methods on non-graph data. From the
results, we have the following conclusions: 1) Our GMVC is
compatible with MVGC tasks and achieves superior or com-
parable performance for the comparison methods. For ex-
ample, on ACM, our GMVC obtains 49% improvement from
the single-view method VGAE, and surpasses the recent deep
MVGC method BTGF by 3.2% in ACC values. This indi-
cates that our GMVC can effectively explore the multi-graph
information for clustering. 2) Previous MVGC methods usu-
ally are incompatible with MVC tasks whereas our GMVC
combines the advantages of MVC and MVGC. For instance,
we construct multi-graph input on DHA by the same way in
our GMVC, and then use MVGC methods to conduct clus-
tering as shown in Table 4. The results indicate that MVGC
methods might have very limited performance on non-graph
data, and thus our proposed unified framework of MVC and
MVGC could own wider application potential.

3.3 Ablation study
Table 3 displays the ablation studies for verifying the impor-
tance of each component in our GMVC framework.

Specifically, Item (1) “w/o AGC” denotes the variant of
GMVC which does not adopt the view-specific pre-training
with adaptive graph convolution, and it directly feeds the
raw data into the subsequent modules for multi-view clus-
tering. Item (2) “w/o GGC” is the framework without using
the graph-guided contrastive learning, and clustering perfor-
mance is achieved through training the CGC module. Item (3)

(a) NGs (Epoch 0) (b) NGs (Epoch 50) (c) NGs

(d) ACM (Epoch 0) (e) ACM (Epoch 50) (f) ACM

Figure 2: Visualization of global features and their correlation
graphs for NGs (a,b,c) and ACM (d,e,f) during the learning process.

“w/o CGC” is the framework without using the cluster-guided
contrastive clustering. Item (4) “w/ normal CL” denotes the
framework with the normal contrastive loss for multi-view
representation learning. Item (5) “w/ normal CC” is the
framework with the normal contrastive clustering loss. Com-
pared with our complete components, i.e., Item (6) GMVC,
the above five variants are respectively with incomplete com-
ponents and obtain suboptimal results on both multi-view
datasets and multi-graph datasets, thereby demonstrating the
importance of each component in our GMVC framework.

4 Model Analysis
In this part, we present the visualization and parameter anal-
ysis of our GMVC framework to understand its behaviors.

4.1 Multi-view and multi-graph representations
We take the multi-view dataset NGs and multi-graph dataset
ACM as examples and visualize their representation learning
processes by GMVC. In Figures 2(a,b,d,e), the global fea-
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(a) DHA (b) NGs (c) ACM (d) Chameleon

Figure 3: The training loss curve and clustering performance of GMVC on multi-view datasets (a,b) and multi-graph datasets (c,d).

(a) ACC (Left) and NMI (Right) vs. GGC parameter n (b) ACC vs. GGC parameter γ (c) NMI vs. GGC parameter γ

Figure 4: Clustering performance with different settings of GGC parameters on four multi-view datasets and four multi-graph datasets.

tures with the same class are plotted in the same color by
t-SNE. By comparing Figures 2(a,b) and Figures 2(d,e), we
can observe that the global features become more discrimi-
native from Epoch 0 to Epoch 50. The correlation graphs on
the global features also exhibit clear block diagonal structures
as shown in Figures 2(c,f), which indicates that GMVC has
captured the true class information from multiple views.

4.2 Training loss and performance
In Figure 3, we visualize the curves of loss as well as cluster-
ing performance during the model training process of GMVC.
It can be found that the loss curves of GMVC have the smooth
downward trend on both multi-view datasets and multi-graph
datasets. Additionally, the steady increase of clustering per-
formance curve (i.e., ACC, NMI, ARI) further validates that
the model gradually learns the correct cluster structures of
these datasets. This indicates that the model has good con-
vergence and compatibility for the two kinds of data.

4.3 Parameter analysis
In our GMVC framework, we employ the non-negative pa-
rameters n and γ to control the GGC loss as shown in
Eq. (16), where n selects the top n elements in each row
of A to identify the additional positive sample pairs, and
γ balances the contrastive losses between the original and
additional positive sample pairs. In order to investigate
the effects of n and γ, we conduct the parameter analy-
sis in Figure 4. Specifically, Figure 4(a) displays n in the

range of [0, 2, 4, 6, 8], and the corresponding clustering per-
formance is insensitive. In our experiments, we set n = 4
for all multi-view datasets and set n = 6 for all multi-
graph datasets. Figures 4(b,c) display γ within the range of
[10−3, 10−2, 10−1, 100, 101, 102, 103], where we find that γ
has the stability of clustering performance on the most of all
multi-view and multi-graph datasets. In our experiments, γ is
set within the range of [10−3, 10−1].

5 Conclusion

In existing research, Multi-View Clustering (MVC) and
Multi-View Graph Clustering (MVGC) are often studied sep-
arately, which prevents the advantages of these two ap-
proaches from being fully utilized and limits their applica-
tion domains. In this paper, we propose a novel framework of
Graph Embedded Contrastive Learning for Multi-View Clus-
tering (GMVC), which unifies MVC and MVGC into a single
methodology. GMVC achieves significant clustering perfor-
mance on both multi-view data and multi-graph data, where
the proposed components (i.e., view-specific pre-training,
graph-guided contrastive learning, and cluster-guided con-
trastive clustering) play crucial roles in the multi-view rep-
resentation learning and clustering processes for both data
types. As a result, we aim for our method to enable a uni-
fied perspective in addressing the subproblems of MVC and
MVGC, while we also hope it can inspire the community to
propose more unified methods for both MVC and MVGC.
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