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Abstract

We proposes a novel visual tokenizer by com-
bining high-level semantic tokens and low-level
pixel tokens to represent images, aiming to ad-
dress the challenges of image-to-sequence conver-
sion for Large Language Models (LLMs). Existing
visual tokenizers, such as VQ-VAE and diffusion-
based models, either struggle with token explo-
sion as image resolution increases or fail to cap-
ture detailed structural information. Our method
introduces a dual-token system: high-level seman-
tic tokens capture the main content of the image,
while low-level pixel tokens preserve structural de-
tails. By integrating these tokens in a hybrid archi-
tecture, we leverage a VQ-VAE branch to gener-
ate low-resolution guidance and a diffusion process
to reconstruct high-resolution images with both se-
mantic coherence and structural accuracy. This ap-
proach significantly reduces the number of required
tokens and enhances image reconstruction quality,
offering an efficient solution for tasks like image
generation and understanding based on LLMs.

1 Introduction
In natural language processing, Large Language Models
(LLMs) have demonstrated exceptional performance, largely
due to the Scale law [Kaplan et al., 2020; Henighan et al.,
2020; McCandlish et al., 2018], which allows them to ef-
fectively learn relationships within long sequences. This has
enabled them to excel in various text-based tasks. If other
modalities can also be converted into sequences, LLMs could
become a powerful tool for multimodal tasks. For example,
if images are transformed into a sequence of tokens, LLMs
could learn the relationships between these tokens, enabling
tasks like image generation and understanding.

A visual tokenizer converts images into token sequences,
aiming to achieve this conversion with minimal cost. The
goal is to use as few tokens as possible while retaining the es-
sential information during the transformation. The tokenizer
typically consists of an encoder, decoder, and a codebook.

∗Corresponding authors: Yong Luo, Xiantao Cai, Zheng He

The encoder transforms the image into a sequence of embed-
dings, which are then converted into discrete tokens using the
codebook. The decoder reconstructs the image from the token
sequence. The similarity between the reconstructed image
and the original is a direct measure of how much information
is lost during the conversion. Significant differences indicate
a larger information loss.

For LLMs, maintaining information fidelity during the
image-to-sequence conversion is crucial. Excessive informa-
tion loss can negatively impact downstream tasks, such as
poor alignment between generated images and text in image
generation tasks, or a lack of detail comprehension in image
understanding tasks.

Currently, two main types of visual tokenizers exist: VQ-
VAE-based [Van Den Oord et al., 2017] and diffusion-based
[Nichol and Dhariwal, 2021] approaches. VQ-VAE methods
divide an image into patches, which are processed by CNNs
or ViTs to convert each patch into a token. While this method
retains the overall structure of the image, the number of to-
kens increases exponentially with image resolution, making
LLM learning more difficult. Moreover, the fixed number of
tokens limits the generated image to a fixed resolution, reduc-
ing flexibility. In contrast, diffusion-based tokenizers use to-
kens that encode high-level semantic information, disregard-
ing pixel-level details. The number of tokens remains low,
and the image resolution is independent of the token count,
but the reconstructed image may differ from the original in
structural details, such as posture.

Inspired by these methods, we propose a dual-token ap-
proach: one set of tokens represents high-level semantic in-
formation, while another set captures lower-level pixel details
to control the image structure. For instance, in Figure 4, the
high-level semantic tokens could describe the main content,
such as ”A Doberman Pinscher lounging on a sunny porch
with its tongue out, next to a brick wall and a white door.”
However, these tokens might omit finer details like the dog’s
fur patterns, specific posture, or the exact position of the wall
and door. These details can be roughly captured by low-level
pixel tokens.

To achieve this dual-token representation and reconstruct
the image, we designed the architecture shown in Figure 1.
We use a SEED [Ge et al., 2023] encoder to obtain high-
level semantic tokens and a VQ-VAE (MoVQ [Zheng et al.,
2022]) branch to extract low-level pixel tokens. The final im-
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Method #Token Token
sematic Flex. Sim.

VQ-VAE more Pixel Level No Yes
Diffusion less High Level Yes No
Ours less High + Pixel Yes Yes

Table 1: Comparison between VQ-VAE based Tokenizer and Dif-
fusion based Tokenizer. Flex. and Sim. represent Flexibility and
Similarity respectively.

age is generated through a diffusion process: a low-resolution
image is created using pixel tokens, noise is added, and the
denoising process begins. High-level semantic tokens guide
this process to reconstruct the image.

This design offers several advantages: 1) VQ-VAE only
needs to generate a low-resolution guide image, so the num-
ber of tokens required (around 40-300) is far fewer than with
traditional VQ-VAE methods (which often need thousands of
tokens). This advantage becomes more pronounced when
generating ultra-high-resolution images, as diffusion recon-
struction is resolution-independent. 2) Our method solves the
problem of structural differences between the original and re-
constructed images when using only high-level semantic to-
kens. It achieves high similarity to the original image with
minimal additional token cost.

2 Related Works

In recent years, the field of image and video generation has
seen substantial progress, primarily driven by two major ap-
proaches: diffusion models and visual tokenization combined
with large language models (LLMs).

2.1 Diffusion Models

Diffusion models have emerged as a leading method for high-
quality image and video synthesis. The foundational work
by [Ho et al., 2020] on Denoising Diffusion Probabilistic
Models (DDPM) introduced a process where images are gen-
erated through iterative denoising from a noisy starting point,
setting a new standard in generative models. Building on
this, subsequent research has focused on improving the ef-
ficiency and quality of these models. Notably, Improved
DDPM [Nichol and Dhariwal, 2021] and ADM [Song et al.,
2020] refined the denoising process and loss functions, lead-
ing to more stable and higher-fidelity outputs.

Further advancements include the introduction of Latent
Diffusion Models (LDM) by [Rombach et al., 2022], which
significantly enhanced computational efficiency by applying
the diffusion process in a latent space rather than the pixel
space. This approach has been successfully implemented in
widely used models such as Stable Diffusion. More recently,
GenTron [Chen et al., 2024] has integrated Transformer ar-
chitectures with diffusion models, achieving state-of-the-art
results in text-to-image and text-to-video generation tasks,
demonstrating the potential of diffusion models in handling
complex generative tasks.

2.2 Visual Tokenization and LLMs
Parallel to the development of diffusion models, visual tok-
enization combined with large language models has emerged
as another promising approach. This method typically in-
volves encoding visual information into discrete tokens,
which are then processed by language models to generate
new images or videos. The VQ-VAE [Van Den Oord et al.,
2017] framework laid the groundwork for this approach by
introducing a method to quantize image representations into
discrete latent spaces.

Building on VQ-VAE, DALL-E [Ramesh et al., 2021] and
VQGAN [Esser et al., 2021] demonstrated the potential of
combining these tokenized representations with transformer-
based models to generate high-quality images from text
prompts. More recent efforts, such as OmniTokenizer, have
pushed this concept further by creating a unified tokeniza-
tion framework that can handle both images and videos. Om-
niTokenizer [Wang et al., 2024] utilizes a spatial-temporal
Transformer architecture, enabling the simultaneous process-
ing and tokenization of image and video data, which can then
be used in both language models and diffusion models for
generation tasks.

2.3 Visual Tokenization Approaches
Visual tokenization has followed two primary paths: those
based on VQ-VAE and those involving diffusion-based recon-
struction of quantized images. The VQ-VAE-2 [Razavi et al.,
2019] model advanced the original VQ-VAE by introducing
multi-scale architectures, improving the resolution and detail
in generated images. OmniTokenizer further extended this
by introducing a progressive training strategy that allows for
effective spatial and temporal representation learning, appli-
cable to both images and videos. Recently, TiTok model [Yu
et al., 2024] introduced a more efficient 1D tokenization ap-
proach, which significantly enhanced both image reconstruc-
tion and generation tasks. On the other hand, diffusion-based
tokenization approaches, exemplified by SEED [Ge et al.,
2023] and LaVIT [Jin et al., 2023], reconstruct images using
diffusion processes, only need fewer tokens than VQ-VAE
based methods, achieving higher efficiency and quality.

3 Method
Our proposed method is structured three primary compo-
nents: Low-Res Guide Branch, High Semantic Branch and
Diffusion Branch. This section will discuss the design and
function of each branch in detail.

3.1 Branch I: Low-Res Guided Branch
In this branch, we have emulated the design of MoVQ [Zheng
et al., 2022], witch is a state-of-the-art VQ-VAE based tok-
enizer, with modifications tailored to enhance performance
for our specific task. The structure of this branch consists of
three primary modules: the Encoder, the Vector Quantizer,
and the Decoder.

Encoder
The Encoder is responsible for compressing the input image
X ∈ RH×W×C , where H and W represent the height and
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Figure 1: Overview of the Ours architecture.

width of the image, and C represents the number of color
channels (typically 3 for RGB images). We increased the
compression rate of the Encoder compared to the MoVQ to
extract more relevant information from high-resolution im-
ages.

ZE = Encoder(X) ∈ RH′×W ′×D (1)

Here, ZE is the latent representation, H ′ and W ′ are the
downscaled dimensions, and D is the dimensionality of the
latent space.

Vector Quantizer
The latent representation ZE is then passed through a Vector
Quantizer, which discretizes ZE into a set of discrete latent
codes ZQ1

. The quantization process maps each vector in ZE

to the closest vector in a codebook of learnable embeddings.

ZQ1
= Quantize(ZE) ∈ RH′×W ′×D (2)

ZQ1
is the quantized latent representation, which is the token

sequence used for image generation.

Decoder
The Decoder is responsible for reconstructing the low-res
guide image from the quantized latent codes ZQ1

. Unlike
MoVQ, we adopted a smaller upsampling rate in the Decoder.

This modification is intended to reconstruct the original im-
age X̂ that has been resized to a smaller dimension.

X̂ = Decoder(ZQ1) ∈ RĤ×Ŵ×C (3)

Here, Ĥ and Ŵ represent the dimensions of the reconstructed
image, which are smaller than the original dimensions H and
W .

Fine-Tuning
We fine-tuned this branch on ImageNet for several epochs.
During this process, we accounted for the difference in size
between the reconstructed image and the original image.
Since the Decoder reconstructs an image of size Ĥ × Ŵ ,
which is smaller than the original image size H × W , the
original image X needs to be resized to match the dimensions
of the reconstructed image before calculating the loss.

Specifically, if the original input image size is 256 × 256,
and the reconstructed image size is 64 × 64, the original im-
age X is first resized to the 64× 64 resolution, resulting in a
resized image Xresized.

Xresized = Resize(X, (Ĥ, Ŵ )) ∈ RĤ×Ŵ×C (4)

We then compute the reconstruction loss between the resized
original image Xresized and the reconstructed image X̂. The
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reconstruction loss is typically measured using mean squared
error (MSE):

Lrecon =
1

Ĥ × Ŵ × C

Ĥ×Ŵ×C∑
i=1

(Xresized,i − X̂i)
2 (5)

This approach ensures that the reconstructed image at a lower
resolution retains as much fidelity as possible to the resized
original image, thereby enhancing the accuracy and quality
of the reconstruction.

3.2 Branch II: High Semantic Branch
The High Semantic Branch is designed following SEED [Ge
et al., 2023] to represent an image as a sequence of discrete
visual codes with high-level semantics. The tokenizer is also
based on a vector quantization (VQ) framework and employs
an encoder-decoder architecture to achieve this representa-
tion. The branch comprises a ViT image encoder, a Causal
Q-Former, a VQ codebook and a Reverse Q-Former.

Initially, a pre-trained ViT image encoder, derived from the
BLIP-2 model, processes the input image to generate a 2D
feature representation arranged as 16×16 tokens. The Causal
Q-Former then converts these features into a sequence of 32
tokens with causal dependencies, representing the high-level
semantic content of the image in a 1D format. Subsequently,
the VQ codebook quantizes these causal embeddings into 32
discrete visual codes. These codes maintain the causal struc-
ture and are well-suited for capturing the semantic essence of
the image. Finally, the Reverse Q-Former decodes these vi-
sual codes into 77 generation embeddings, which is used as
the condition for diffusion process.

Causal Q-Former
The training process for the Causal Q-Former is illustrated in
Figure 1. A set of 32 learnable query embeddings, along with
the image features produced by the pre-trained ViT encoder,
are fed into the Causal Q-Former. The Causal Q-Former em-
ploys self-attention layers with a causal mask, allowing each
query embedding to interact only with previous queries, and
cross-attention layers, enabling interaction with the image
features. The training is conducted using contrastive learn-
ing, fine-tuning the Causal Q-Former on 5 million image-text
pairs. The objective is to maximize the similarity between the
final causal embedding and the corresponding text features
while minimizing the similarity with text features from other
image-text pairs in the batch. The contrastive loss function is
given by:

Lcontrastive = − 1

N

N∑
i=1

[
log

exp(sim(zi, ti)/τ)∑N
j=1 exp(sim(zi, tj)/τ)

]
(6)

where zi represents the i-th causal embedding, ti is the cor-
responding text feature, and τ is a temperature parameter.

Quantization and De-tokenization
In the second stage, the causal embeddings are quantized into
discrete visual codes ZQ2

using the VQ codebook. This quan-
tization process involves mapping each causal embedding to
its nearest neighbor in the codebook. The quantized codes are
then decoded back into continuous causal embeddings using

a multi-layer Transformer decoder. During training, the co-
sine similarity between the decoder output and the original
causal embeddings is maximized:

Lcosine = − 1

N

N∑
i=1

zi · ẑi
∥zi∥∥ẑi∥

(7)

where ẑi represents the reconstructed embedding output by
the decoder.

Subsequently, the Reverse Q-Former decodes the discrete
visual codes into generation embeddings, which are further
optimized to align with the text features of a frozen Stable
Diffusion model using mean squared error (MSE) loss:

LMSE =
1

N

N∑
i=1

∥gi − ti∥2 (8)

where gi denotes the generation embedding, and ti is the cor-
responding text feature.

Through these two stages of training, the Diffusion to-
kenizer branch effectively aligns image and text features,
maintaining semantic consistency, which is crucial for both
generation and other downstream tasks.

3.3 Branch III: Diffusion Branch
In this stage, we start with VQ-VAE Guided image X̂, which
is first encoded into a latent representation z0 using a Varia-
tional Autoencoder (VAE). Next, we apply a Diffusion model
with DDIM inversion to add noise to this latent space. This
noisy latent representation zT becomes the starting point for
the denoising process.

The DDIM inversion process introduces noise to the latent
space step-by-step, represented as:

zt =
√
αtzt−1 +

√
1− αtϵθ(zt−1, t) (9)

where zt−1 is the latent variable at step t− 1, αt is the noise
schedule parameter at time step t, and ϵθ(zt−1, t) is the pre-
dicted noise at this step. The noise is gradually added to trans-
form z0 into zT .

Once the noisy latent zT is obtained, it serves as the initial
state for the Diffusion process. Under the guidance of con-
ditional semantic tokens g, the latent is gradually denoised
step-by-step to recover the original structure. The denoising
process at each step t can be expressed as:

zt−1 = f(zt,g, t) + ϵ (10)
where f(zt, c, t) is the denoising function guided by the con-
dition g, and ϵ is the residual noise. Through this iterative
process, we recover the final latent variable z′0, which is de-
coded back into a high-resolution image x̂ using the VAE de-
coder.

This process ensures that the generated image adheres to
the guiding conditions while preserving the structural in-
tegrity of the original image.

4 Experiment
4.1 Comparison with SOTA Methods
We have presented a comparison of our model with several
state-of-the-art (SOTA) models based on diffusion, with qual-
itative comparisons illustrated in Figure 2. It can be observed
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(a) Raw Image (b) Ours (c) SEED (d) LaVIT

Figure 2: Qualitative Comparisons with SEED and LaVIT

that SEED and Lavit, though preserving semantic similar-
ity with the original image during reconstruction, show sig-
nificant differences in structure (such as pose, orientation,
color, etc.). After structural guidance, our model shows no-
table improvement in structural reconstruction compared to
the former two. Table 2 displays the comparisons across sev-
eral pixel-level reconstruction metrics, including SSIM, and
PSNR. It’s important to note that SSIM and PSNR are more

inclined to assess pixel-level reconstruction similarity. Since
most diffusion-based models often forego pixel-level recon-
struction in favor of high-level semantic consistency, these
two metrics are not particularly meaningful for those mod-
els. However, since VQVAE-based models aim for pixel-
level reconstruction, comparing these two metrics is relevant.
Nonetheless, due to our model’s increased structural similar-
ity with the original image in its reconstruction results, it has
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Method SSIM↑ PSNR↑ comprassing rate #Tokens
VQ-VAE Based Methods

VAR-VAE [Tian et al., 2024] 0.48 24.77 16*16 675
MAGVIT2 [Yu et al., 2023] 0.38 23.94 16*16 675
MoVQ [Zheng et al., 2022] 0.23 17.54 ≈16*16*2 372
VQGAN [Esser et al., 2021] 0.19 16.37 ≈16*16*2 372

Diffusion Based Methods
SEED [Ge et al., 2023] 0.002 9.12 fix #tokens 32
LaVIT [Jin et al., 2023] 0.005 8.87 range 260-784
Ours 0.33 23.23 fix #tokens 372

Table 2: Comparison with SOTA Methods

Method ImageReward PickScore HPSV2
SEED [Ge et al., 2023] 27.32 0.35 18.65
LAVIT [Jin et al., 2023] 38.54 0.20 21.47
Ours 43.28 0.45 24.32

Table 3: Text Image Align Comparison

Method SEED LAVIT Ours
Avg Score 1.22 1.90 2.88

Table 4: User Study

also achieved better performance than SEED and Lavit, and
close to VQ-VAE based tokenizers. In addition, we adjusted
the number of tokens in MOVQ and VOGAN to align with
our model, facilitating a comparison of their pixel-level re-
construction quality. Specifically, we increased their com-
pression rate to 16×16 and then uniformly reduced the to-
kens to 372 by discarding half. During decoding, the tokens
were linearly interpolated back to their original quantity. Un-
der these circumstances, our model outperformed these two
VQVAE-based models in reconstruction quality, demonstrat-
ing the higher token efficiency of our approach.

Table 3 compares the semantic alignment between images
and text restored by different tokenizers. We used 5,000
image-text pairs from the COCO dataset, with captions serv-
ing as prompts, and evaluated the restored images. The met-
rics compared were PickScore [Kirstain et al., 2023], Im-
ageReward [Xu et al., 2023], and HPSV2 [Wu et al., 2023].
The results show that our method achieves better semantic
alignment with the text.

Since pixel-level restoration comparisons in Table 2 are not
very meaningful for diffusion based tokenizers, we conducted
a user voting experiment to compare the restoration results of
our model with those of SEED and LAVIT, both diffusion-
based tokenizers. We randomly sampled 25 sets of images
from ImageNet, and users ranked them based on similarity to
the original images, assigning scores of 3, 2, and 1 to the first,
second, and third places, respectively. Fifteen volunteers par-
ticipated in the voting, and the results are shown in Table 4. It
is evident that our method achieves significantly higher image
similarity compared to the other two methods. The 25 sets of
images used in this voting can be found in the appendix.

4.2 Ablation of Different Resolution of Guide
Image

The higher the resolution of the guiding images produced
by VQ-VAE, the closer the final images generated by the
Diffusion process will be to the original in terms of detail.
However, the clearer the guiding images are, the more to-
kens they require, which increases the learning difficulty for
the LLM. This section compares the impact of using guiding
images with different resolutions on the reconstruction pro-
cess. Guiding images with resolutions of 128, 64, 32, and 16
require 256, 64, 16, and 4 tokens, respectively. The intuitive
comparison of the reconstruction results is shown in Figure 3.
It can be observed that, even under the guidance of extremely
low-resolution images, the reconstructed images still retain
the main structure and bear a resemblance to the original im-
ages. This indicates that only a minimal cost is necessary to
correct the structural changes during the reconstruction pro-
cess by the Diffusion.

4.3 Comparison of Our VQ-VAE Guide Branch
with MoVQ

In this section, we compare the reconstruction performance
of the VQ-VAE branch and MoVQ in generating structure-
guided images. Although Diffusion resampling can tolerate a
certain degree of distortion in the guided images, higher qual-
ity guided images result in resampled images that are closer
to the original. Figure 4 presents a comparison of guided im-
ages generated at different resolutions. For ease of display,
all guided images were resized to 512x512. It is evident
that when reconstructing relatively high-resolution guided
images, our model achieves clearer detail reconstruction (e.g.,
facial features such as eyes in Figure 4). At extremely low
resolutions, MoVQ almost entirely loses the structural infor-
mation of the original image, while our model still retains the
general structure of the original image.

4.4 Comparison with Super Resolution Methods
In this section, we compare the method Real-ESRGAN
[Wang et al., 2021] using Super Resolution (SR) to upscaling
guide image with our method using Diffusion to re-rendering.
Figure 5 shows the results of different resolution guide im-
ages, outputted by our VQ-VAE, after being processed by ei-
ther SR method or Diffusion reconstruction. It is evident that
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(a) Raw Image (b) 128*128 (c) 64*64 (d) 32*32 (e) 16*16

Figure 3: Ablation on Using Different Resolution Guide Images for Reconstruction.

(a) M. 128*128 (b) O. 128*128 (c) M. 64*64 (d) O. 64*64

(e) M. 32*32 (f) O. 32*32 (g) M. 16*16 (h) O. 16*16

Figure 4: Different Resolution Guide Images. M. and O. mean
MOVQ and Ours respectively.

when the resolution of the guide image is relatively high, the
SR method performs better. However, as the resolution of the
guide image decreases, the performance of the SR method
significantly deteriorates, while Diffusion re-rendering still
manages to restore the basic structure of the objects. Ad-
ditionally, Diffusion not only sharpens the guide images but
also has a powerful ability to correct structural errors. To
demonstrate this, we used images with structural errors out-
putted by MoVQ (as shown in the figure 5, the dog’s face is
completely unrecognizable). It can be observed that the Dif-
fusion method still reconstructs the correct structure, whereas
the SR method makes the structural errors more pronounced.
This capability of Diffusion is crucial because LLMs can eas-
ily make mistakes in the number or order of tokens when gen-
erating outputs, leading to structural anomalies in the images
reconstructed by VQ-VAE. Diffusion re-rendering based on
high-level semantics can greatly mitigate this issue. More-
over, the number of tokens generated by our model for the

guide images is significantly fewer compared to images gen-
erated by the VQVAE Tokenizer alone, which greatly reduces
the learning difficulty for LLMs and, in turn, reduces the like-
lihood of structural distortions.

(a) M. 64*64 (b) Ours (c) SR

(d) M.128*128 (e) Ours (f) SR

Figure 5: Comparison with Super Resolution Methods. M. repre-
sents MOVQ model.

5 Conclusion

In this study, we reached the following conclusions: (1) The
tokens used to represent images can be decomposed into two
key components: high-level semantic information and pixel
detail information. This decomposition allows for a sig-
nificant reduction in the number of tokens while maintain-
ing the stability of the restored structure. (2) The Diffusion
model can use high-level semantic tokens as conditional input
and low-level pixel structure information as the initial latent,
thereby generating the restored image.
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davarapu, Luca Versari, Kihyuk Sohn, David Minnen,
Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Hauptmann, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint
arXiv:2310.05737, 2023.

[Yu et al., 2024] Qihang Yu, Mark Weber, Xueqing Deng,
Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
An image is worth 32 tokens for reconstruction and gener-
ation. arXiv preprint arXiv:2406.07550, 2024.

[Zheng et al., 2022] Chuanxia Zheng, Tung-Long Vuong,
Jianfei Cai, and Dinh Phung. Movq: Modulating quan-
tized vectors for high-fidelity image generation. Advances
in Neural Information Processing Systems, 35:23412–
23425, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


