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Abstract

Identifying effective interventions from the scien-
tific literature is challenging due to the high vol-
ume of publications, specialized terminology, and
inconsistent reporting formats, making manual cu-
ration laborious and prone to oversight. To address
this challenge, this paper proposes a novel frame-
work leveraging large language models (LLMs),
which integrates a progressive ontology prompting
(POP) algorithm with a dual-agent system, named
LLM-Duo. On the one hand, the POP algorithm
conducts a prioritized breadth-first search (BFS)
across a predefined ontology, generating structured
prompt templates and action sequences to guide
the automatic annotation process. On the other
hand, the LLM-Duo system features two special-
ized LLM agents, an explorer and an evaluator,
working collaboratively and adversarially to con-
tinuously refine annotation quality. We show-
case the real-world applicability of our framework
through a case study focused on speech-language
intervention discovery. Experimental results show
that our approach surpasses advanced baselines,
achieving more accurate and comprehensive anno-
tations through a fully automated process. Our ap-
proach successfully identified 2,421 interventions
from a corpus of 64,177 research articles in the
speech-language pathology domain, culminating in
the creation of a publicly accessible intervention
knowledge base with great potential to benefit the
speech-language pathology community.

1 Introduction

Evidence-based interventions refer to practices and treat-
ments grounded in systematic research and proven effec-
tive through controlled studies [Rutten er al., 2021]1[Melnyk
and Fineout-Overholt, 2022]. It emphasizes the use of evi-
dence from well-designed and well-conducted research as the
foundation for healthcare decision-making [Sackett, 1997].
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Intervention discovery from scientific literature enables re-
searchers to keep abreast of the latest advancements and fa-
cilitate valuable insights that can significantly enhance the
healthcare quality [Usai et al., 2018][Wang et al., 2023al.
However, due to the labor-intensive nature of human review,
only a small fraction of intervention knowledge is systemati-
cally collected and curated. In healthcare, one of the biggest
challenges for healthcare providers is the efficient identifica-
tion of relevant intervention evidence from an overwhelming
body of research, highlighting the urgent need for automated
knowledge extraction tools to streamline the process and en-
hance the accessibility of this valuable information.

In recent years, large language models (LLMs) have been
employed to categorize research papers, extract key findings,
summarize complex studies, and create conversational as-
sistants for question-answering and note generation, show-
ing their impressive ability in understanding and extracting
valuable insights from text [Achiam et al., 2023][Li et al.,
2024a]. Many studies have utilized LLMs to streamline vari-
ous subtasks involved in knowledge graph construction, such
as named entity recognition (NER), relation extraction (RE),
event extraction (EE), and entity linking (EL) [Wang er al.,
2023bl[Zhu et al., 2024]. Some research has also explored
the collaboration between LLMs and human annotators to
improve annotation quality [Kim ef al., 2024al[Wang et al.,
2024][Tang er al., 2024]. However, extracting intervention
knowledge from long-range, domain-specific literature re-
mains a significant challenge. On the one hand, developing
human-annotated datasets for training deep learning models
in NER and RE tasks requires specialized domain expertise to
accurately interpret the literature. On the other hand, mining
knowledge from long-range documents is a great challenge
due to the vast volume of content, the inherent ambiguity of
natural language, and the individual bias of human interpre-
tation [Ye et al., 2022]. Particularly in healthcare contexts,
these challenges are further compounded by the need for spe-
cialized therapeutic expertise, labor-intensive manual annota-
tion, and difficulties in maintaining consistency and scalabil-
ity [Zhao et al., 2021]. In this context, LLMs offer a promis-
ing alternative through in-context learning, enabling scalable
information extraction without the need for extensive human-
labeled data. Despite these advancements, fully automated
knowledge graph construction remains a challenge, particu-
larly when dealing with long-range documents. Most cur-
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rent knowledge graph construction approaches focus on short
texts, leaving significant potential for further development in
handling more complex, lengthy content.

In this paper, we address the challenge of automating in-
tervention discovery via LLMs by formulating it as a prompt
design and annotation scheduling problem with a prede-
fined intervention ontology graph structure and designing a
framework leveraging two LLM agents to iteratively enhance
the annotation quality. We introduce a progressive ontol-
ogy prompting (POP) algorithm that employs an outdegree-
prioritized breadth-first search (BFS) across the intervention
ontology to create a series of prompt templates and action se-
quences to guide the annotation process conducted by LLMs.
To enhance the annotation quality, we propose LLM-Duo, an
interactive annotation framework by leveraging the power of
LLMs while addressing the limitations of LLMs. Particularly,
it integrates two LLM agents working both collaboratively
and adversarially to refine annotation generation.

To showcase the practical impact of our approach, we
apply our method in a case study of speech-language in-
tervention discovery. We conduct experiments to compare
our intervention discovery framework with several advanced
baselines including long context LLM (i.e., GPT-4-Turbo
with 128k context window length), and RAG-based annota-
tion chatbot with advanced prompting techniques including
Chain-of-Thought (CoT) [Wei et al., 2022] and Self-Refine
[Madaan er al., 2024]. The experimental results demonstrate
that our method not only delivers more accurate and com-
prehensive annotations over these strong baselines but also
significantly accelerates the intervention discovery process.
Furthermore, through our framework, we successfully curate
a speech-language intervention knowledge base, providing
a valuable resource for the speech-language pathology
community. To our knowledge, this is the first intervention
knowledge base in the speech-language pathology field.

Related Work. Traditional approaches to automated knowl-
edge discovery typically rely on pipelines to handle various
NLP tasks such as named entity recognition, relation ex-
traction, coreference resolution, entity linking, and event de-
tection [Luan et al., 2018][Martins et al., 2019][Wei et al.,
2019][Zhong er al., 2023][Laurenzi et al., 2024]. Recent
advancements leverage LLMs to generate relational triplets
in zero/few-shot settings for knowledge graph construction,
achieving promising results [Wei er al., 2023][Sun et al.,
20241[He et al., 2024]. Some studies [Zhang and Soh,
2024][Carta et al., 2023][Vamsi et al., 20241[Zhu et al., 2024]
have further streamlined knowledge graph construction by
breaking it down into distinct phases, enabling LLMs to in-
fer knowledge graph schemas without relying on predefined
ontologies. However, these methods are often constrained
to short texts or have only been validated on tasks like en-
tity and relation extraction using human-annotated datasets,
such as DulE2.0 [Li et al, 2019] and DocRED [Yao et
al., 2019], without being proven effective in real-world ap-
plications. Moreover, domain-specific knowledge often ex-
hibits complex patterns that cannot be captured solely through
sentence-level syntactic structures. As a result, most existing
approaches [Du et al., 2020][Rossanez ef al., 2020][Alam et

al., 2023] are limited to handling abstracts and fail to extract
and summarize knowledge across long-range contexts.

2 Preliminaries

A knowledge graph (KG) is a semantic network structured as
an ontology, consisting of concepts and their relationships in
a clear, interpretable format at scale [Peng er al., 2023]. For
intervention knowledge discovery from literature, LLMs can
enhance this process by leveraging their capabilities to under-
stand long-range text. This allows for transforming unstruc-
tured data into structured formats, and populating the inter-
vention ontology to create the intervention knowledge graph.
In our methodology, the intervention KG ontology is
crafted by domain experts, which can be represented by a di-
rected acyclic graph (DAG) G = (£, R, F). Here £, R, and
F are sets of concepts, relationships, and semantic triples re-
spectively. F is a collection of triples (h,r,t) with a head
concept h € &£, a tail concept t € £, and a relation r € R
[Gruninger, 1995]. To effectively instruct LLMs to extract
intervention knowledge anchored to G automatically, the de-
sign of annotation prompts and the query sequences plays a
crucial role. We thereby frame the problem of automated in-
tervention knowledge discovery via LLMs as one of prompt
design and scheduling, described by the following equation:

f(G(E, R, F)) = {(Prompt;, Order;)|i € [1, N]|} ¢))

where f is a function that translates intervention KG ontology
into a set of annotation prompts and query sequences for the
LLMs. A common case of f is directly prompting LLMs to
generate triplets in a zero-shot/few-shot manner by including
the whole KG schema within the prompt such as the annota-
tion methods used in [Mihindukulasooriya ef al., 2023][Kom-
mineni et al., 2024]. However, those methods generate an-
notations in one shot and ignore the importance of contex-
tual correlations between concepts within their surrounding
neighborhood, resulting in incomplete annotations.

3 Methodology

In this section, we first introduce the POP algorithm that con-
verts an intervention KG ontology into a set of annotation
prompt templates and query orders, then propose an interac-
tive annotation framework based on two LLM agents to en-
able more convincing and accurate annotation generations.

3.1 Progressive Ontology Prompting

We develop a progressive ontology prompting (POP) algo-
rithm that employs a prioritized BFS on the intervention
ontology graph G(E, R, F) to generate a set of annotation
prompt templates and query sequences for LLMs. In our al-
gorithm, the prompt formulation and scheduling follow a pro-
gressive manner. As illustrated in Figure 1, the annotation
process begins at a source node (i.e., a concept node that only
has outgoing edges) and continues by traversing its neigh-
boring nodes in the order of a prioritized BFS. To allow for
quick accessing a large portion of the graph, we enhance BFS
by sorting neighboring nodes based on their out-to-in ratio
R(v), which is defined by:

_ H(rt)e Fylh =0
[{(h,r,t) € F}t = v

R(v) (@3
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Figure 1: Illustration of prompt design and scheduling based on the progressive ontology prompting algorithm.

Our algorithm selects the neighboring node with the maxi-
mum R value to visit in the next step. For instance, in the ex-
ample of Figure 1, visiting the ‘Patient’ node before the ‘Dis-
order’ node provides more context for the ‘Disorder’ concept
annotation. For each concept node v, we use the visited nodes
within its £ hop neighborhood as its context. The Prompt,
for annotating concept v is crafted based on its context and
the completed annotations within that context. The action or-
der Order, for Prompt, is determined by the sequence in
which node v is visited during the prioritized BFS traversal.

Our algorithm first follows prioritized BES traversal to cap-
ture the local k& hop context and visit order of concept node
v, then composes the annotation prompts Prompt, based on
its ontology substructure N (v) and completed annotations
within its context, which can be expressed as follows:

Prompt, + T,(Annotation(Ny(v))) )
T, + {Prefiz (Nk_1(u)) ®
Question ((v,e,u) | (v,e,u) € F) | u € Ni(v)} ()

, where & is the concatenation. Prompt, represents a set of

annotation prompts for node v, generated by applying com-
pleted annotations to the prompt template 7),. As illustrated
in Figure 1, the prompt template 7, consists of two parts: 1)
Question, an annotation question derived from the relation-
ship between node v and one of its neighboring nodes u; and
2) Prefix, a description based on the k£ — 1 hop path of neigh-
bor node u. We leverage few-shot learning to task LLMs in
generating prompt templates.

3.2 LLM-Duo Annotation Framework

To guarantee the integrity and reliability of LLM annotations,
we propose LLM-Duo, a dual-agent annotation system. The
central idea of a multi-agent system is to employ combina-
tions of LLMs that can converse with each other to collabo-
ratively accomplish tasks [Wu ez al., 2023]. Drawing inspira-
tion from the multi-agent debate idea in [Kim et al., 2024b],

] RAG
ooo |@| LLM-Duo @
doc
Explorer Evaluator
Assessment;

Schedule(Prompt)

Figure 2: Iterative annotation with two LLM agents under the LLM-
Duo framework.

we design a framework where agents work both collabora-
tively and adversarially to enhance the quality of annotations.
The architecture of LLM-Duo is shown in Figure 2, fea-
turing two LLM agents: the explorer and the evaluator. The
explorer is a chatbot performing annotation tasks using zero-
shot question answering (QA). To break the context window
limit of LLMs and ensure the generated annotations are faith-
ful to the provided literature content, RAG is employed in
explorer to reference relevant sources, reducing LLM hallu-
cinations. To improve the accuracy and reliability of the an-
notations, the evaluator LLM is set up to review and validate
the explorer’s responses, ensuring higher-quality results.
LLM-Duo will be tasked with annotation prompts follow-
ing the sequential order generated by the POP algorithm.
During each annotation cycle for a specific concept node,
when focusing on concepts that emphasize rationality (e.g.,
disorder, intervention efficacy), the explorer provides an an-
swer and an explanatory rationale to the evaluator. The eval-
uator then reviews the reasoning and offers feedback. Based
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Question1: Does this paper present any therapy/ intervention/treatment for
individuals having speech or language deficits?

: Yes i
: The paper discusses the tests of intonation-based speech:
treatment for minimally verbal children with autism. i

”””””” SYes
: the paper discusses two interventions for minimally verbal

children with Autism Spectrum Disorder (ASD): Auditory-Motor

Mapping Training (AMMT) and Speech Repetition Therapy (SRT)

Questionl: Analyze the following text:
'Answer': { }; 'Reason': {

b

' Disagree p
| Reasonl: The 'Reason' does not confirm that any particular methods are :
1 proposed or detailed, only that their effects are being tested.

Question2: Analyze the following text:
'Answer': { }; 'Reason': {
Do you agree with the answer based on the provided reason? Give your argument.

@ Answer2: Agree 1
Reason2: The 'Reason' clearly supports the 'Answer' as it states that the:
paper discusses therapies/interventions for minimally verbal children with |

Autism Spectrum Disorder. K

<Completeness>

Questionl: One intervention studied in this paper is Auditory-Motor
Mapping Training (AMMT). Can you describe this intervention in detail?

'

) : SRT is a control treatment designed to improve speech:

production accuracy in minimally verbal children with autism:

: SRT is a control treatment designed to improve speech’
production accuracy in minimally verbal children with autismi
spectrum disorder... [ SRT involves a series of structured steps to !
facilitate speech repetition and accuracy. These steps may include...] '

Figure 3: Annotation examples of speech-language

on this feedback, the explorer either refines its answer or, if in
disagreement, presents stronger evidence to defend its origi-
nal answer and challenge the evaluator’s judgment. For con-
cepts that emphasize completeness (e.g., intervention proce-
dure, therapy activity), the evaluator extracts the aspects cov-
ered in each round of the explorer’s answer, combines them
with aspects from previous rounds, and prompts the explorer
to expand further beyond the newly integrated aspect collec-
tion. This iterative process continues until the annotations
reach a consistent and comprehensive state. As the example
shown in Figure 3, by facilitating interactive loops between
two LLM agents, LLM-Duo enables more accurate and com-
plete annotations.

4 Experiments

4.1 Implementation

For LLM-Duo, the explorer is a chatbot built on LLM with
RAG, implemented with Llamaindex' framework. We use
OpenAl ‘text-embedding-3-large’? as the embedding model
and set the chunk size to 256 tokens with an overlapping size
of 128. Particularly, we use ‘FastCoref’ [Otmazgin et al.,
2022] to process text chunks for coreference resolution be-
fore text embedding. Additionally, we include the document
ID as metadata for chunks and apply a metadata filter in the
chat engine to ensure that the explorer only answers based

! https://www.llamaindex.ai
2 https://platform.openai.com/docs/guides/embeddings/embedding-models
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intervention discovery using the LLM-Duo framework.

on the specific document being annotated. We use Chroma®

as the vector database. We set the retrieval to be on the top
8 text chunks based on similarity scores reranked with Sen-
tence TransformerRerank* employing the ‘cross-encoder/ms-
marco-MiniLM-L-2-v2’5 model in Llamaindex. The evalu-
ator is an external LLM who does not share any document
context with the explorer.
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Figure 4: Ontology of speech-language intervention.

3 https://github.com/chroma-core/chroma

4https://docs.llamaindex.ai/en/stable/examples/node_postprocessor/
SentenceTransformerRerank
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-2-v2
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4.2 Case Study: Speech-language Intervention
Discovery

Speech-language therapy provides interventions for individ-
uals with speech-language deficits, enhancing their quality
of life across various life stages. When choosing an inter-
vention, evidence-based practice (EBP) is attractive as it in-
tegrates research evidence from literature into the decision-
making process to ensure high-quality patient care [Law et
al., 1996]. Intervention research, especially studies that offer
clear intervention frameworks and comprehensive case stud-
ies, are valuable references to guide EBP designs. Interven-
tion discovery aims to extensively gather speech-language in-
terventions from the literature corpus as references to facili-
tate EBP design. It involves identifying relevant studies and
extracting essential features of interventions including tar-
get disorder, procedure, efficacy, case study, therapy activity,
etc., which is extremely labor-intensive for human reviewers,
highlighting the efficiency of automating knowledge discov-
ery based on LLMs.

To verify the effectiveness of our method in a realistic sce-
nario, we employ our framework in a speech-language inter-
vention discovery setting. The ontology is shown in Figure
4. To enable a large-scale discovery, we cultivate a literature
base including 64,177 papers within the domain of speech-
language therapy.

4.3 Annotation Baselines

The core idea of our automated intervention framework is to
leverage the POP algorithm for guiding the annotation pro-
cess while utilizing LLM-Duo to refine initial annotations
by incorporating external feedback from another LLM. In-
stead of setting up another LLM for evaluation, recent stud-
ies demonstrate that LLMs can engage in self-correction to
enhance their responses autonomously [Liu ef al., 2024][Li
et al., 2024b]. Notable examples of this include Chain-of-
Thought (CoT) [Wei er al., 2022] and Self-Refine [Madaan
et al., 2024]. We separately equip the explorer chatbot based
on RAG with these two prompting methods for annotation
and denote them as CoT-RAG and Self-Refine-RAG. Addi-
tionally, in LLM-Duo, a potential substitution of explorer is
long-context LLM, which is capable of processing entire doc-
ument tokens instead of chunking and retrieval with RAG. We
refer to the LLM-Duo system as LLM-Duo-RAG when using
explorer built on RAG, and as LLM-Duo-LongContext when
utilizing long-context LLMs. Besides, we also compare with
methods that directly input paper text to LLMs for zero-shot
QA annotation without the evaluation feedback loop, includ-
ing ShortContext LLM, LongContext LLM, OpenAl Assis-
tant, and RAG.

4.4 Evaluation

In the experiment of comparing LLM-Duo with annotation
baselines, we report six types of metrics: 1) Consistency
Rounds (CR): the number of refine loops the method makes
before the annotation generation achieving consistency; 2)
Verbosity Index (VI): the number of covered aspects per 1k
tokens in the annotations, which is an important metric for
emphasizing content completeness; 3) Enumeration Quantity

(EQ): the number of items listed in the annotations (i.e., ther-
apy activities, therapy goals.); 4) Faithfulness (Faith): the ex-
tent of the annotation faithful to the provided literature liter-
ature, which is measured by FaithfulnessEvaluator® of Lla-
maindex. 5) Accuracy (ACC): the percentage of correct an-
notations in all LLM-generated annotations. 6) Cover: the
percentage of correct LLM-generated annotations to the total
mentioned concept entities in the provided literature.

5 Results

In this section, we first provide a detailed evaluation of our
progressive ontology prompting algorithm and the LLM-
Duo annotation framework. Then, we showcase the results
of speech-language intervention discoveries using our auto-
mated intervention discovery framework.

5.1 POP Algorithm Study

Context Size Analysis. In the POP algorithm, the context
size k determines the diversity and volume of information in-
cluded in the intervention annotation prompt. To assess the
impact of context size on annotation quality, we conducted
experiments using various k values to generate intervention
annotation prompts for LLM-Duo-RAG. Specifically, we an-
notate the ‘participant’ concept for the experiment, which was
based on a random selection of 8 speech-language pathology
literature.

The annotation accuracy is shown in Figure 5a. The re-
sults indicate that as the context size k increases, annotation
accuracy improves significantly, suggesting that a larger con-
text provides more informative prompts, thereby enhancing
annotation quality. Moreover, GPT-4-turbo consistently out-
performs GPT-3.5-turbo across all £ values, demonstrating
that more advanced language models can further improve an-
notation accuracy. Besides, we inspect the text chunks re-
trieved back by different informative annotation queries based
on various k values. We report the range of similarity scores
and token count distribution of retrieved-back chunks in Fig-
ure 5b. The similarity score represents the semantically rel-
evancy between retrieved texts to annotation queries. The
results show that for £ = 1, the retrieved text chunks gen-
erally have low similarity to the query, and the token count
decreases as the similarity score increases, leading to lower
annotation quality. In contrast, higher & values, especially
k = 2, yield more relevant retrievals. For k = 2, the to-
ken count increases with higher similarity scores, indicating
that richer and more relevant content is captured, resulting in
improved annotation quality.

Prioritized BFS Analysis. In the POP algorithm, we em-
ploy the out-to-in ratio to prioritize neighboring nodes dur-
ing BFS-based prompt creation and scheduling. This strat-
egy ensures that nodes with more outgoing edges are visited
first, allowing them to provide more context for annotating
other nodes. For example, one annotation sequence follow-
ing prioritized POP over the speech-language intervention
ontology is ‘TherapyActivity’— ‘TherapyGoal’— ‘Disorder’.
In this section, we compare the ‘Disorder’ annotation results
using the POP algorithm with and without prioritization, as

6hltps://docs.llamaindex.ai/en/stable/examples/evalualion/faithfulness,eval
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Figure 5: Evaluation of ‘participant’ annotation with POP of different context sizes.
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Methods LLM IR ICA IKC
CR ACC Cover | CR VI EQ Faith CR ACC

ShortContext GPT3.5-turbo - 36.9%  50% - 0.0249 546 0.9667 - 48.2%
OpenAl Assistant GPT4-turbo - 76.1%  69.0% - 0.0631 4.17 0.7857 - 53.3%
LongContext GPT4-turbo - 76.3% 57.1% - 0.0919 8.64 1.0 - 61.2%
LLM-Duo-LongContext GPT4-turbo 2.17 81.0% 68.7% | 2.5 0.0926 8.68 0.8571 | 1.31 69.6%
RAG GPT3.5-turbo - 47.6%  50% - 0.0319 796 0.8550 - 48.7%
CoT-RAG GPT3.5-turbo 1.04 78.6% 81% | 3.18 0.0771 10.37 0.7250 | 1.07 73.2%
Self-Refine-RAG GPT3.5-turbo 1.19 785% 544% | 2.85 0.0694 7.17 0.8125 | 1.12 54.8%

GPT3.5-turbo 1.84 100% 86.4% | 2.58 0.1159 13.71 0.9285 | 1.46 85.6%
LLM-Duo-RAG Llama3-instruct-70b 271 78.6% 55.6% | 259 0.0748 9.79 0.8648 | 1.52 61.0%

Mistral-instruct-8x22b | 2.30 81.9% 67.5% | 2.16 0.0763 9.87 0.8875 | 1.46 67.2%

Table 1: Comparison of annotation results with baselines using different LLM:s.

well as one-shot annotation without using POP, where the en-
tire KG schema is included on a single annotation prompt to
extract all triplets. The results are presented in Table 2. We
can observe that applying both the POP and prioritized BFS
notably enhances annotation performance.

LLM-Duo-RAG GPT3.5-turbo GPT4-turbo
POPX 68.18 72.73
POP/ Prioritized-BFSX 77.28 83.20
POPV Prioritized-BFS 81.82 86.37

Table 2: Comparison of annotation results with and without the POP
and prioritized BFS.

5.2 LLM-Duo with Baselines

In this section, we compare LLM-Duo with several advanced
baselines using annotations of 8 randomly selected papers
from our speech-language literature corpus. The evaluation
focuses on three key dimensions: 1) Intervention Recognition
(IR), identifying intervention entities within the literature; 2)
Intervention Aspect Summary (IAS), annotating the key as-
pects (e.g., procedure, therapy activity, therapy goals) of the
intervention by capturing and summarizing relevant informa-

tion from the paper; and 3) Intervention Knowledge Com-
pletion (IKC), linking interventions to theme classes (e.g.,
speech awareness, speech articulation, comprehension, foun-
dation skills, etc.) and setting concept nodes (e.g., home,
healthcare facilities, schools, teletherapy, etc.). We use hu-
man annotators for the IR and IKC tasks to generate gold-
standard results for comparison. In the IAS task, we only
ask human annotators to tag relevant text fragments related to
specific intervention aspects due to potential individual bias
in human interpretation.

The experimental results are reported in Table 1. It
should be noted that we implemented ‘ShortContext’ using
Llama3-instruct-70b (FP16) and Mistral-instruct-8x22b mod-
els (INT8). However, directly prompting these models with
full paper text fails to produce annotations in a zero-shot QA
setting. Their generations do not align with the annotation
questions. The results in Table 1 show that LLM-Duo-RAG
outperforms all baselines. Although GPT4-turbo has a 128k
context window length and is capable of generating annota-
tions, its annotation coverage remains inadequate. Integrat-
ing it with the LLM-Duo framework can significantly im-
prove both the accuracy and the comprehensiveness of the in-
tervention annotations. Additionally, compared with simple
RAG, self-correct prompting methods such as CoT and Self-
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Figure 6: Ablation study and annotated speech-language intervention statistics.

Disorder Interventions Intervention Examples

Aphasia 202 Phonological therapy, Semantic therapy, Syntax Stimulation Program, Melodic Intonation Therapy (MIT), Multimodal Speech Therapy with
tDCS, Cross-Language Generalization Therapy (CLGT), Word Learning Paradigm

Autism Spectrum Disorder 178 Personalized Idiom Intervention (PII), Classroom-wide peer tutoring, Idiom Isolation Intervention, Hanen More Than Words, Parent-Mediated
Communication-Focused Treatment, Picture Exchange Communication System (PECS)

Dysphagia 129 Swallowing Maneuver Therapy, Focal Vibration Therapy (FVT), Oral Neuromuscular Training and Vibrational Therapy, Prophylactic Swal-
lowing Intervention, High-speed jaw-opening exercise, Palatal Augmentation Prostheses (PAP)

Stuttering 91 Lidcombe Program, Syllable-timed speech, Electronic devices for stuttering, Computer software for stuttering, Bone Conduction Delayed
Feedback Therapy, Fluency Techniques and Fear Reduction, Cognitive Behavioral Therapy (CBT)

Phonological Disorder 74 Nonlinear Phonological Intervention Program, Metronome-paced Speech Therapy, Phonological Awareness and Articulatory Training (PAAT),
Phonological Meaning Therapy, Motor-based Intervention Approach

AgeGroup Interventions Intervention Examples

Children 745 Pharyngeal flap procedure, National Health Service (NHS) 1-week intensive course, Ultrasound Visual Biofeedback (U-VBF), Intensive Speech
Therapy, Community-Based Speech Therapy Models, Early Vocal Intervention, Auditory-Verbal Therapy (AVT)

School-age Children 571 Intensive Speech Therapy, Early Vocal Intervention, APD intervention, Auditory-Verbal Therapy (AVT), Multisensory Stimulation Therapy,
Oral Functional Training (OFT), Rhythmic Reading Training (RRT), Rapid Syllable Transition Treatment (ReST)

Older children 366 Semantic Categorization Therapy, Early Vocal Intervention, Rhythmic Reading Training (RRT), Speech Bulb Reduction Program, Intensive
speech and language therapy, Peer-Mediated Intervention, Lidcombe Program, Oral Functional Training (OFT)

Preschoolers 347 Early Vocal Intervention, Treatment-as-usual, The Lidcombe Program, Oral Functional Training (OFT), Speech Production Therapy with
Reward System, Phonological Interventions and Contrast Therapy, Cycles Phonological Remediation Approach

Adult 319 Pharyngeal flap procedure, Linguistic Retrieval Therapy (LRT), Oral Hydration Intervention, Physiologic Swallowing Therapy, Myofunctional

Intervention (OMT), Orthognathic speech therapy, Eye-Tongue Movement Training, Behavioral Voice Therapy

Table 3: Intervention-disorder examples in our discoveries.

Refine can significantly enhance intervention annotations, but
their performance is still worse than LLM-Duo-RAG. Instead
of utilizing costly GPT models, LLM-Duo-RAG, which em-
ploys open-source models including Llama3-instruct-70b and
Mistral-instruct-8x22b, can achieve comparable annotation
quality.

5.3 Ablation Study

In our implementation, the RAG technique serves as the back-
bone of explorer. We employ ‘FastCoref” for coreference res-
olution and rerank retrieved chunks by similarity score using
the ‘cross-encoder/ms-marco-MiniLM-L-2-v2 model’. This
section presents ablation studies for both components. We re-
port the accuracy of intervention recognition in this section.
As shown in Figure 6a, the results demonstrate that remov-
ing these components significantly decreases annotation ac-
curacy, showing the necessity of each module.

5.4 Speech-Language Intervention Discovery

Through our automated intervention discovery framework,
we identified 2,421 interventions supported by case stud-
ies from 64,177 literature in the speech-language pathology

domain. The statistics of discovered interventions are pre-
sented in Figure 6b and Figure 6¢c. More intervention ex-
amples are provided in Table 3. 19 clinicians and students
reviewed our annotations through online Google forms. We
have constructed the first intervention knowledge graph in the
speech-language pathology domain, which will be made pub-
licly accessible upon acceptance. This knowledge graph is
anticipated to be a valuable resource for domain experts, fa-
cilitating evidence-based clinical decision-making, question-
answering, and recommendation systems, ultimately con-
tributing to improved healthcare outcomes.

6 Conclusion

In this paper, we developed a novel LLM-based framework
for automatic intervention discovery from literature, featuring
a progressive ontology prompting algorithm and a dual-agent
system. The proposed method achieves superior performance
compared with advanced baselines, enabling more accurate
intervention discoveries. Our approach is adaptable to vari-
ous intervention ontologies in healthcare and offers practical
value to improve healthcare quality.
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