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Abstract
Aggregating multiple input rankings into a consen-
sus ranking is essential in various fields such as so-
cial choice theory, hiring, college admissions, web
search, and databases. A major challenge is that the
optimal consensus ranking might be biased against
individual candidates or groups, especially those
from marginalized communities. This concern has
led to recent studies focusing on fairness in rank
aggregation. The goal is to ensure that candidates
from different groups are fairly represented in the
top-k positions of the aggregated ranking.
We study this fair rank aggregation problem by
considering the Kendall tau as the underlying met-
ric. While we know of a polynomial-time approxi-
mation scheme (PTAS) for the classical rank aggre-
gation problem, the corresponding fair variant only
possesses a quite straightforward 3-approximation
algorithm due to Wei et al., SIGMOD’22, and
Chakraborty et al., NeurIPS’22, which finds closest
fair ranking for each input ranking and then simply
outputs the best one.
In this paper, we first provide a novel algorithm that
achieves (2 + ε)-approximation (for any ε > 0),
significantly improving over the 3-approximation
bound. Next, we provide a 2.881-approximation
fair rank aggregation algorithm that works irrespec-
tive of the fairness notion, given one can find a
closest fair ranking, beating the 3-approximation
bound. We complement our theoretical guaran-
tee by performing extensive experiments on various
real-world datasets to establish the effectiveness of
our algorithm further by comparing it with the per-
formance of state-of-the-art algorithms.

1 Introduction
Ranking a list of alternatives to prioritize desirable outcomes
among a set of candidates is ubiquitous across various appli-
cations, such as hiring, admissions, awarding scholarships,
and approving loans. When multiple voters provide prefer-
ence orders or rankings on candidates, which may conflict,
the task of producing a single consensus ranking is the clas-
sical rank aggregation problem. This problem is central to

many fields, from social choice theory [Brandt et al., 2016]
to information retrieval [Harman, 1992]. Its origins trace
back to the 18th century [Borda, 1781; Condorcet, 1785],
and it has been extensively studied from a computational
standpoint over the past few decades [Dwork et al., 2001;
Fagin et al., 2003; Gleich and Lim, 2011; Azari Soufiani et
al., 2013]. When formulated as an optimization problem, one
of the most popular versions seeks to find a consensus ranking
that minimizes the sum of distances to the input rankings [Ke-
meny, 1959; Young, 1988; Young and Levenglick, 1978;
Dwork et al., 2001; Ailon et al., 2008].

In this paper, we address the rank aggregation problem
with an additional fairness constraint on the final consensus
ranking. Ranking algorithms are commonly used to select the
top candidates for various opportunities and services, such as
admissions or scholarships in the education system, job hir-
ing, or the allocation of medical care during emergencies like
pandemics. In today’s context, it is essential for any rank-
ing algorithm to produce a fair ranking to ensure equitable
selection and to avoid the risk of reinforcing extreme ideolo-
gies or stereotypes about marginalized communities based on
sensitive attributes such as gender, race, or caste [Costello
et al., 2016; Kay et al., 2015; Bolukbasi et al., 2016]. For
example, systems like job and education reservations in In-
dia [Borooah, 2010] or affirmative action-based university
admissions in the USA [Deshpande, 2005] have been imple-
mented to address under-representation and discrimination.

We consider the notion of proportionate fairness, also
known as p-fairness [Baruah et al., 1996], which ensures
that each of the protected classes within the population is
fairly represented in the top “most relevant” (top-k) posi-
tions of the final consensus ranking. The study of propor-
tionate fairness in the context of rank aggregation was first
explored in [Wei et al., 2022] and [Chakraborty et al., 2022].
In this paper, we use the following definition of fair ranking
from [Chakraborty et al., 2022].1

Definition 1 (Fair Ranking). Consider a partition of d candi-
dates into g groups G1, · · · , Gg . For each group Gi (i ∈ [g]),
let us consider two parameters αi, βi ∈ [0, 1]. For ᾱ =
(α1, · · · , αg), β̄ = (β1, · · · , βg), and k ∈ [d], a ranking π
(on d candidates) is said to be (ᾱ, β̄)-k-fair if for each Gi:

1Note, the definition used in [Wei et al., 2022], though similar, is
slightly restrictive.
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• Minority Protection: The top-k positions π(1), . . . , π(k)
contain at least ⌊αi · k⌋ candidates from Gi, and

• Restricted Dominance: The top-k positions
π(1), . . . , π(k) contain at most ⌈βi · k⌉ candidates
from Gi.

It is important to note that other notions of fair ranking,
such as top-k statistical parity, have been considered previ-
ously [Kuhlman and Rundensteiner, 2020]. However, this ap-
proach is quite restrictive and does not satisfy the criteria for
proportionate fairness. For a concrete example demonstrating
why proportionate fairness is a much stronger concept than
statistical fairness, see [Wei et al., 2022].

Given a set of n rankings provided by voters on d candi-
dates, the fair rank aggregation problem asks to find a fair
consensus ranking that minimizes the sum of distances to the
input rankings. Various distance measures have been con-
sidered in the literature to capture the dissimilarity between
pairs of rankings, with the Kendall tau distance – which
counts the number of pairwise disagreements between two
rankings – being one of the most popular. [Wei et al., 2022]
and [Chakraborty et al., 2022] proposed the following simple
algorithm: Find a closest fair ranking for each input ranking
and then output the one with the minimum sum of distances.
A straightforward application of the triangle inequality shows
that this simple strategy can only achieve a 3-approximation
for the fair rank aggregation given that the closest fair rank-
ing problem can be solved optimally. Moreover, since the
final output ranking is close to one of the input rankings,
it is essentially influenced by the preference order of a sin-
gle voter. To date, there is no improvement over this 3-
factor approximation guarantee. It is also worth noting that
without any fairness constraint, the classical rank aggrega-
tion problem (known to be NP-hard [Bartholdi et al., 1989;
Dwork et al., 2002]) has an (1 + ε)-approximation algorithm
for any ε > 0 [Mathieu and Schudy, 2009].

1.1 Our Contribution
The main contribution of our paper is the development of
a new algorithm for the fair rank aggregation problem un-
der proportional fairness. Our algorithm achieves a (2 + ε)-
approximation, for any ε > 0. To demonstrate our result, we
design a two-stage procedure. First, we introduce a new prob-
lem of partitioning a colored graph in a colorful manner while
minimizing the cost of “backward” edges across the cut. We
develop a novel algorithm to solve this problem exactly when
the input graph is a weighted tournament that satisfies cer-
tain natural properties on edge weights. This problem can
be thought of as a variant of the constraint cut problem on
a special graph class, which is, in general, NP-hard. Differ-
ent cut problems find applications in other fairness questions
(e.g., [Dinitz et al., 2022]), and thus, our result on the variant
of the constraint cut problem could be of independent inter-
est. Next, we construct a weighted tournament graph from
the fair rank aggregation instance. We then apply the solution
of an optimal colorful partitioning of that tournament and use
the known PTAS for the rank aggregation problem on both
partitions separately to produce a fair ranking over the entire
set of candidates. Finally, we argue that the output ranking

attains (2 + ε)-approximation for any ε > 0.
We implement our algorithm and compare it against base-

lines on multiple standard datasets by varying different pa-
rameters. Our results show that the output of our algorithm
achieves a significantly better objective value (i.e., the sum
of distances) compared to state-of-the-art algorithms for fair
rank aggregation. Furthermore, although our theoretical anal-
ysis guarantees only a (2+ε)-approximation for our proposed
algorithm, it consistently performs much better in practice –
the output is almost always very close to an optimal solution.

Our next contribution is a generic fair rank aggregation al-
gorithm that achieves a 2.881-approximation. We emphasize
that our algorithm works irrespective of the fairness notion
under consideration as long as there is an efficient proce-
dure to compute a closest fair ranking for any input rank-
ing (even an approximate close fair ranking procedure suf-
fices albeit with worse approximation factor for the aggre-
gation problem, see the full version2). Thus, our algorithm
provides an approximation guarantee not only with respect
to a specific type of fairness but also concerning any plau-
sible definition of fairness. As an immediate corollary, we
achieve 2.881-approximation for the fair rank aggregation un-
der a stronger fairness notion like block fairness introduced
by [Chakraborty et al., 2022]. Further, our generic algorithm
works even if the group information – which candidate be-
longs to which group – is not known (e.g., as in robust fair-
ness [Kliachkin et al., 2024]). Ours is the first generic ap-
proximation algorithm that breaks below the straightforward
3-factor bound obtained by the naive use of the triangle in-
equality. We present our generic (deterministic) algorithm in
Section 5, whose running time can be improved significantly
using random sampling and coreset construction; however,
such a randomized procedure requires a much more intricate
analysis (see the full version for the details).

1.2 Other Related Works
The rank aggregation problem without any fairness constraint
has also been studied under different other metrics, including
Spearman footrule [Dwork et al., 2002], Ulam [Chakraborty
et al., 2021; Chakraborty et al., 2023]. [Chakraborty et al.,
2022] considered the rank aggregation problem with the fair-
ness constraint under both Spearman footrule and Ulam met-
ric, and showed a 3-approximation guarantee. For the Ulam
metric, they in fact provided a (3 − δ)-approximation result,
for some constant δ ≤ 2−30, albeit only for a constant num-
ber of groups.

Apart from the rank aggregation problem, other ranking
problems have also been studied under fairness. E.g., [Celis
et al., 2018] explored the problem of finding the closest pro-
portional fair ranking to a given ranking for metrics such as
Bradley-Terry, DCG, and Spearman footrule. Ensuring ro-
bust fairness in rankings has also been studied [Kliachkin et
al., 2024], where given an input ranking, the goal is to find
a close ranking that is more fair, even when the protected at-
tributes are not known. We emphasize that such an algorithm
may not necessarily be able to find a good aggregate ranking.

2The full version of this paper is available at
https://arxiv.org/abs/2505.10006
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The rank aggregation problem is essentially the 1-
clustering (1-median) problem, where the input is a set of
rankings. The past few years have witnessed a surge in re-
search on fair clustering [Huang et al., 2019; Chen et al.,
2019; Bera et al., 2019; Backurs et al., 2019]. However, we
must note that the notion of fairness in the general clustering
context differs from that in the rank aggregation.

2 Preliminaries
Notations. For any n ∈ N, let [n] denote the set
{1, 2, · · · , n}. We refer to the set of all rankings (or permuta-
tions) over [d] by Sd. We consider any permutation π ∈ Sd as
a sequence of numbers π(1), π(2), . . . , π(d) where the rank
of π(i) is i. For any two elements a, b ∈ [d] and a permuta-
tion π ∈ Sd, we use the notation a ≺π b to denote that the
rank of a is less than that of b in π.
Distance metric and fair rank aggregation. In this paper,
we consider the Kendall tau distance to measure the dissimi-
larity between any two rankings or permutations.
Definition 2 (Kendall tau distance). Given two permutations
π1, π2 ∈ Sd, the Kendall tau distance between them, denoted
by K(π1, π2), is the number of pairwise disagreements be-
tween π1 and π2, i.e.,

K(π1, π2) := |{(a, b) ∈ [d]× [d] | a ≺π1
b but b ≺π2

a}|
Next, we define the fair rank aggregation problem.

Definition 3. (Fair Rank Aggregation) Given a set S
of rankings over d candidates that are partitioned into g
groups G1, · · · , Gg , ᾱ = (α1, · · · , αg) ∈ [0, 1]g , β̄ =
(β1, · · · , βg) ∈ [0, 1]g , and k ∈ [d], the fair rank aggregation
problem asks to find a (ᾱ, β̄)-k-fair ranking σ ∈ Sd that min-
imizes the objective function Obj(S, σ) :=

∑
π∈S K(π, σ).

Note that in the above definition, the minimization is over
the set of all (ᾱ, β̄)-k-fair rankings in Sd. When the set S is
clear from context, for brevity, we simply refer to the objec-
tive value as Obj(σ). Let σ∗ be an optimal fair aggregated
rank, and OPT(S) := Obj(S, σ∗). We call a (ᾱ, β̄)-k fair
ranking σ̃ a c-approximate fair aggregate ranking (for some
c ≥ 1) for the set S iff Obj(S, σ̃) ≤ c · OPT(S).
Weighted tournament. A weighted tournament T =
(V,A) is a directed graph where for every pair of vertices
u, v ∈ V , both the edges (u, v) and (v, u) are present with
some non-negative weight. It is well-known that the rank ag-
gregation problem can be cast as feedback arc set problem on
a weighted tournament (see [Ailon et al., 2008]), where the
corresponding weighted tournament T = (V,A) with weight
function w : A→ R satisfies the following:

• Probability Constraints:

∀i, j ∈ V, w(i, j) + w(j, i) = 1, (1)

• Triangle Inequality:

∀i, j, k ∈ V, w(i, j) ≤ w(i, k) + w(j, k). (2)

For a weighted tournament T = (V,A) with weight func-
tion w : A → R, for any v ∈ V , the in-neighborhood of v is
defined as N(v) := {u ∈ V | (u, v) ∈ A}, and the weighted
in-degree of v is defined as δ(v) :=

∑
u∈N(v) w(u, v).

3 Colorful Bi-partition on Tournaments
In this section, we first introduce the colorful bi-partition
problem defined on a directed weighted graph with colored
vertices. Then, we provide an algorithm to solve that prob-
lem when the input graph is a tournament that satisfies both
the probability constraint and the triangle inequality. In the
next section, we discuss how to use the solution of the color-
ful bi-partition problem on tournaments to get an approxima-
tion algorithm for the fair rank aggregation problem.

Consider a weighted directed graph G = (V,A) with a
weight function w : A → R defined on arcs/edges and a
color function col : V → [g] (for some integer g ≥ 1)
defined on vertices, and ᾱ = (α1, · · · , αg) ∈ [0, 1]g , β̄ =
(β1, · · · , βg) ∈ [0, 1]g . We call a subset S ⊆ V (ᾱ, β̄)-
colorful if for each color i ∈ [g], S contains at least ⌊αi · |S|⌋
and at most ⌈βi · |S|⌉ many vertices of color i, i.e.,

∀i ∈ [g], ⌊αi · |S|⌋ ≤
∣∣S ∩ col−1(i)

∣∣ ≤ ⌈βi · |S|⌉.

Definition 4 (Colorful Bi-partition Problem). Given a
weighted colored directed graph G = (V,A) with w : A →
R, col : V → [g] (for some integer g ≥ 1), ᾱ ∈ [0, 1]g ,
β̄ ∈ [0, 1]g , and an integer k, the colorful bi-partition prob-
lem asks to find a partitioning of V into (disjoint) sets L and
V \ L such that (i) |L| = k, and (ii) L is (ᾱ, β̄)-colorful;
while minimizing the cost of the partition (L, V \ L) defined
as the total weights of the arcs going from V \ L to L, i.e.,
cost(L, V \ L) :=

∑
(y,x)∈A:x∈L,y∈V \L w(y, x).

Note, in the above problem, we want only L to be colorful,
so V \ L need not be colorful. Since specifying the set L
suffices to identify the partition (L, V \ L), for brevity, we
use cost(L) to denote cost(L, V \ L).

Next, we provide a (deterministic) algorithm to solve the
colorful bi-partition problem on tournaments, satisfying both
the probability constraint (Equation 1) and the triangle in-
equality constraint (Equation 2).
Theorem 5. There is an algorithm that, given a weighted col-
ored tournament T = (V,A) with w : A → R, col : V →
[g] (for some integer g ≥ 1), satisfying both the probabil-
ity and the triangle inequality constraints, and an integer k,
ᾱ ∈ [0, 1]g , β̄ ∈ [0, 1]g , finds an optimal colorful bi-partition
in time O(|A|+ |V | log |V |).

Description of the algorithm. Our colorful bi-partition
algorithm (Algorithm 1) for tournament T works as follows:
1. Sorting vertices of each color: For each color i ∈ [g],

arrange the vertices in non-decreasing order based on
their weighted in-degrees (Line 4).

2. Initial selection in L: To select the vertices in L: Take
the first ⌊αi · k⌋ vertices according to the sorted order of
the vertices of color i, ∀i ∈ [g] (Lines 5 – 11).

3. Filling up the set L: Order all the remaining vertices col-
lectively in the non-decreasing order of their weighted
in-degrees (Line 13), and continue adding elements to
L as per this sorted order. If adding an element causes
the number of elements from any color i to exceed the
⌈βi · k⌉ bound, skip the element and proceed to the next
in the collective ordering (Lines 14 – 21).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 COLORFUL BI-PARTITION

1: procedure COLBIPARTITION(T = (V,A), ᾱ, β̄, k)
2: Initialize an empty set L
3: for i← 1 to g do
4: Sort vertices of color i, i.e., in col−1(i), in non-

decreasing order by their weighted in-degrees and pro-
cess them in that sorted order

5: counti ← ⌊αi · k⌋
6: for each vertex v ∈ col−1(i) do
7: if counti > 0 then
8: Add vertex v to set L
9: counti ← counti − 1

10: end if
11: end for
12: end for
13: Sort remaining vertices (V \ L) collectively in non-

decreasing order by their weighted in-degrees and pro-
cess them in that sorted order

14: for each v ∈ V \ L do
15: if |L| ≤ k then
16: i← col(v)
17: if |L ∩ col−1(i)| ≤ ⌈βi · k⌉ then
18: Add vertex v to set L
19: end if
20: end if
21: end for
22: return The partition (L, V \ L)
23: end procedure

4. The final bi-partition: Once L is filled, the remaining
V \ L forms the other set of the bi-partition (Line 22).

We defer the running time analysis to the full version.

Approximation guarantee. Let us now introduce a few no-
tations that are useful for the analysis. Consider a graph
T = (V,A). For two sets X,Y ⊆ V , let A(X,Y ) denote
the set of arcs from X to Y in T , i.e.,

A(X,Y ) := {(x, y) ∈ A | x ∈ X, y ∈ Y } .

When X is the singleton set {x}, for notational convenience,
we use A(x, Y ) to denote A(X,Y ). For any subset of arcs
A′ ⊆ A, we use w(A′) to denote the sum of weights of the
arcs in A′, i.e., w(A′) :=

∑
(x,y)∈A′ w(x, y). Note, for any

partition (P, V \ P ), cost(P ) = w(A(V \ P, P )).

We first argue that if we have a vertex in V \ L with
weighted in-degree smaller than or equal to that of some ver-
tex in L, swapping them cannot lead to a new bi-partition with
greater cost.

Lemma 6. Let (L∗, R∗) be any (not necessarily colorful) bi-
partition. Suppose there exists x ∈ L∗ and y ∈ R∗ such that
δ(x) ≥ δ(y). Then for L̂ := (L∗ \ {x}) ∪ {y}, cost(L̂) ≤
cost(L∗).

By leveraging the probability constraints (Equation 1), we
show the above lemma by arguing that for the bi-partitions

c1 c2 x ck ck+1 y cd−1

c1 c2 y ck ck+1 x cd−1

cd

cd

(L∗, R∗)

(L̂, R̂)

k d− k

Figure 1: Vertices {c1, c2, . . . , cd} are sorted by their weighted in-
degrees. For the bi-partition (L∗, R∗), one of the edges in A(y, L∗)
is shown in cyan and one of the edges in A(R∗, x) is shown in blue.
For the bi-partition (L̂, R̂), the edge (x, y) is shown in red. Also,
one of the edges in A(x, L∗) is shown in orange and one of the
edges in A(R∗, y) is shown in violet.

(L∗, R∗) and (L̂, R̂) where R̂ := V \ L̂ (as depicted in Fig-
ure 1), w(A(R̂, L̂))−w(A(R∗, L∗)) = δ(y)− δ(x) ≤ 0. We
defer the proof to the full version, and by assuming the above
lemma, we prove the main result of this section.

Proof of Theorem 5. Let (L∗, R∗) be an (arbitrary) optimal
colorful bi-partition. Recall that the bi-partition output by Al-
gorithm 1 is (L,R). We first show that there exists a colorful
bi-partition L̂ (if not L∗) such that for all i ∈ [g], |col−1(i)∩
L̂| = |col−1(i) ∩ L| and cost(L̂) ≤ cost(L∗).

Consider some i ∈ [g] such that |col−1(i) ∩ L∗| >
|col−1(i)∩L| and some j ∈ [g] such that |col−1(j)∩L∗| <
|col−1(j) ∩ L|. Let x = argmaxu∈col−1(i)∩(L∗\L) δ(u),
and y = argminv∈col−1(j)∩(L\L∗) δ(v). We now argue
that δ(y) ≤ δ(x). Suppose y is added to L while exe-
cuting Line 18 of Algorithm 1. Then, as Algorithm 1 iter-
ates through the vertices in non-decreasing order of weighted
in-degrees in Lines 14 – 21, it must have added y to L,
and never encountered x before terminating. Therefore, it
must be that δ(y) ≤ δ(x). Suppose instead that y is added
to L while executing Line 8. As L∗ is colorful, we have
⌊αi · k⌋ ≤ |col−1(j) ∩ L∗| < |col−1(j) ∩ L|. Therefore
there must exist some y′ ∈ col−1(j) such that δ(y) ≤ δ(y′),
and y′ is added to L in our algorithm while executing Line
18. Then we conclude that δ(y) ≤ δ(y′) ≤ δ(x) (as in
Lines 14 – 21, it must have added y′ to L and never en-
countered x before terminating). Now, consider the partition
L′ = (L∗\{x})∪{y}. Observe, (L′, V \L′) is also a colorful
bi-partition. By Lemma 6, cost(L′) ≤ cost(L∗).

By using the above argument repeatedly, we obtain a color-
ful bi-partition (L̂, V \ L̂) such that ∀i∈[g], |col−1(i)∩ L̂| =
|col−1(i) ∩ L| and cost(L̂) ≤ cost(L∗).

We next prove that cost(L) ≤ cost(L̂). Suppose
L ̸= L̂. Then consider an i ∈ [g] such that col−1(i) ∩ L̂ ̸=
col−1(i) ∩ L. By construction, our algorithm always adds
vertices of color i to L by order of non-decreasing weighted
in-degree. This implies that there exists a v ∈ col−1(i)∩(L̂\
L) such that δ(v) ≥ miny∈col−1(i)∩(L\L̂) δ(y); otherwise, v

would have been added to L. Then for L̂′ = (L̂ \ {v})∪{y},
by Lemma 6, cost(L̂′) ≤ cost(L̂). By repeating this
swapping argument, we obtain the bi-partition (L,R). As
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each swap can only reduce the cost, we have that cost(L) ≤
cost(L̂) ≤ cost(L∗), showing that the output of Algo-
rithm 1 is an optimal colorful bi-partition.

4 Approximating the Fair Aggregate Ranking
In this section, we show our main result by designing an al-
gorithm that finds a (2+ ε)-approximate fair aggregated rank
for any ε > 0. In particular, we prove the following theorem.

Theorem 7. For any ε > 0, there exists a (2 + ε)-
approximation algorithm for the fair rank aggregation prob-
lem that runs in time O(d3 log d+nd2), where O(·) hides the
dependency on 1/ε.

To show the above result, we follow a two-step procedure.

• Step I: Create a weighted colored tournament T =
(V,A) on d vertices, which is an instance of the colorful
bi-partition problem, and then use Algorithm 1 to get an
optimal bi-partition (L, V \ L).

• Step II: Use (L, V \ L) and apply the known PTAS for
the rank aggregation problem without fairness constraint
on the portions of L and V \ L separately to get an ap-
proximate fair aggregated rank.

We start with proving the following theorem, which, to-
gether with a known PTAS for the rank aggregation problem
(without the fairness constraint), establishes Theorem 7.

Theorem 8. Suppose there is a t1(d, n)-time c1-
approximation algorithm A1 for some c1 ≥ 1 for the rank
aggregation problem, and a t2(d)-time c2-approximation
algorithm A2 for some c2 ≥ 1 for the colorful bi-partition
problem on tournaments satisfying both the probability
and the triangle inequality constraints. Then there exists a
(c1 + c2)-approximation algorithm for the fair rank aggrega-
tion problem with running time O(nd2 + t1(d, n) + t2(d)).

Description of the algorithm. Let us start by defining a
few useful notations. For any set of elements I ⊆ [d], let πI

represent the restriction of π to the elements in I . That is,
delete all elements that are not contained in I from π. E.g.,
for π = (2, 6, 3, 5, 1, 4) and I = {1, 2, 3}, πI = (2, 3, 1).

Suppose we are given a set S of rankings over [d], of size
n. We construct a weighted tournament graph T from the
rank aggregation instance by setting V = [d]. We set the col
function such that for all v ∈ V , col(v) = i if v ∈ Gi. For
every pair of elements a, b, let nab = |{π ∈ S | a ≺π b}|. Set
the weight of the edge (a, b) to be w(a, b) = nab/n. Observe
that the edge weights of T obey the probability constraint and
the triangle inequality constraint. Then we run the algorithm
A2 with the graph T and parameters ᾱ, β̄, k and obtain a par-
titioning L and V \ L. For brevity, let R := V \ L.

We then restrict the input rankings to L and R; let SL =
{πL | π ∈ S} and SR = {πR | π ∈ S}. We apply the rank
aggregation algorithmA1 on SL and SR separately, to obtain
πp
L and πp

R respectively. Construct πp by concatenating πp
L

with πp
R and return πp as the output aggregate ranking.

Proof sketch on approximation guarantee. The analy-
sis splits the contribution of pairs to the objective cost of πp

into pairs crossing the partitioning (L,R) (thus fixing their

pairwise order) and the pairs that are within either of the par-
titions. By selecting a partition that minimizes, in fact, c2-
approximates, the cost of pairs that cross it, the contribution
to the objective cost by such pairs can be upper bounded by
c2 · OPT. By ordering the two partitions according to a c1-
approximate optimal rank over its elements, the contribution
of such pairs can be upper bounded by c1 · OPT, leading to
an overall (c1 + c2)-approximation. We defer the formal de-
scription of the algorithm and analysis to the full version.

Theorem 9. [Mathieu and Schudy, 2009] There is a ran-
domized algorithm for the rank aggregation problem that,
given any ε > 0 and n rankings on d candidates, out-
puts a ranking with the cost at most (1 + ε)OPT in time
O( 1εd

3 log d) + d2Õ(ε−6) +O(nd2) with high probability.

Now, we are ready to prove our main result (Theorem 7).

Proof of Theorem 7. From Theorem 5, we have an algorithm
for the colorful bi-partition problem with approximation fac-
tor c2 = 1 and running time O(d2). From Theorem 9
we have an algorithm for rank aggregation with approxima-
tion factor c1 = 1 + ε for any ε > 0 and running time
O( 1εd

3 log d)+ d2Õ(ε−6) +O(nd2). Theorem 7 now follows
directly from Theorem 8.

We remark that we can derandomize our algorithm by al-
lowing an extra dÕ(ε−12) additive factor in the running time,
due to the current best (deterministic) PTAS for the rank ag-
gregation problem [Mathieu and Schudy, 2009].

5 Improved Fair Rank Aggregation Using
Closest Fair Ranking

In this section, we describe a generic algorithm for the fair
rank aggregation under the Kendall-tau metric that works ir-
respective of the definition of fairness under consideration.
The only thing we need to have is an efficient procedure to
solve the closest fair ranking problem.

Given a ranking π ∈ Sd, the closest fair ranking prob-
lem asks to find a fair ranking σ ∈ Sd that minimizes the
Kendall-tau distance K(π, σ). For a host of fairness notions
for which we are already aware of efficient closest fair rank-
ing algorithms, our generic algorithm immediately provides a
2.881-approximation to the corresponding fair rank aggrega-
tion problem, breaking below the only known straightforward
3-approximation guarantee.

Theorem 10. Suppose there is a t(d)-time algorithm A that
solves the closest fair ranking problem. Then, there exists
a 2.881-approximation algorithm for the fair rank aggrega-
tion problem with running time O(n3d3 log d + n3t(d) +
n4d log d).

The running time can be improved significantly, more
specifically, the dependency on n can be brought down to
(near-)linear, using random sampling and coreset construc-
tion (as detailed in the full version).

Implications to stricter fairness notions. Stronger fair-
ness notions than that of Definition 1 have been studied in
the context of fair rank aggregation, such as (ᾱ, β̄)-block-k-
fairness (see the full version of [Chakraborty et al., 2022]).
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They provide an O(d2)-time algorithm that finds a clos-
est (ᾱ, β̄)-block-k-fair ranking. Therefore, as an immediate
corollary of Theorem 10, we obtain a 2.881-approximation
algorithm for (ᾱ, β̄)-block-k-fair rank aggregation in time
O(n3d3 log d + n4d log d) (the running time can be reduced
using randomization), improving upon previously known 3-
approximation under this stricter fairness notion.

Description of the algorithm. Suppose we are given a set
S = {π1, · · · , πn}. Initialize L = ∅. For each πi in S, find a
closest fair ranking σi using A, and add σi to the set L.

Iterate through all distinct 3-tuples T := (πi, πj , πk) from
S. For each such tuple, construct an unweighted directed
tournament graph GT over [d] vertices as follows: For ev-
ery pair of elements (a, b), add the edge (a, b) if at least two
rankings in T order a before b; otherwise, add the edge (b, a).
Note, [Mathieu and Schudy, 2009] proposed an algorithm that
finds a (1+γ)-approximation (for any γ > 0) to the feedback
arc set problem on tournaments. Run this algorithm with
γ = 0.00001 on GT and delete the set of edges output by
the algorithm to obtain a directed acyclic graph G̃T . Let π̃T

be the ranking obtained by taking the topological ordering of
G̃T . Next, use A to find a closest fair ranking σ̃T to π̃T , and
add it to L. Finally, output a ranking from L that minimizes
the objective value (sum of distances to the input rankings).

Sketch of the analysis. We now provide a high-level
overview of our analysis. Let σ∗ be an (arbitrary) optimal fair
aggregate ranking, and let AVG := OPT/n. For any πi ∈ S,
let Ii be the set of inverted pairs with respect to σ∗. Now,
without loss of generality, assume no πi is “close” (compared
to AVG) to σ∗; otherwise, the corresponding closest fair rank-
ing σi gives a good approximation.

Next, for any three inputs πi, πj , πk, suppose “most” pairs
of candidates are inverted in at most one πr, r ∈ {i, j, k}
with respect to σ∗ (i.e., belong to at most one inverted-pair
set Ir, r ∈ {i, j, k}). Then, we can retrieve the correct or-
derings of most pairs in (unknown) σ∗ by taking a majority
vote from these three inputs. However, of course, due to the
presence of certain “bad” pairs (that are inverted in more than
one input), we may get cycles in the corresponding “major-
ity tournament”, and that necessitates considering solving the
feedback arc set. When such a “nice” three-input tuple ex-
ists, we can bound the size of an optimal feedback arc set and
eventually get a fair ranking very close to σ∗.

Now, suppose no such “nice” three-input tuple exists.
Then, there exist two inputs such that every other input has
a significant overlap in the inverted-pair sets with at least one
of these two inputs. Now, consider two such inputs closest to
(unknown) σ∗ (this is for the sake of the analysis, and thus,
algorithmically, we do not need to find these two inputs). One
of these inputs must have at least n/2 other inputs with large
overlap on inverted-pair sets. Then, we bound the objective
value attained by the corresponding closest fair ranking and
show that it achieves a good approximation guarantee.

We optimize multiple parameters that dictate closeness and
the size of bad pairs to deduce our claimed approximation
bound. We defer the formal description of the algorithm and
a detailed analysis to the full version.
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Figure 2: Football dataset. The x-axis is the value of the parameter
(n, d or k). The y-axis is the objective value on the left figures, and
the approximation ratio on the right figures.

6 Experiments
In this section, we provide an empirical evaluation of our al-
gorithm on real-world datasets. We compare our algorithm
against the performance of the best-known algorithms for
the fair rank aggregation problem. The implementation is in
Python 3.12 and experiments were performed on a laptop run-
ning Windows 11 using a Ryzen 6800HS processor and 16GB
of RAM. We also use Integer Linear Programming (ILP) to
find the optimal solution where possible for comparison. The
Integer Linear Programs are implemented with CVXPY [Di-
amond and Boyd, 2016], using SCIP [Bolusani et al., 2024]
as the solver. The data and code is available on Github3.

Datasets. We use two datasets introduced in previous work
studying fairness in rank aggregation. The first dataset
from [Kuhlman and Rundensteiner, 2020] is taken from a fan-
tasy sports website for American football, where experts pro-
vide performance rankings over a set of (real) football players
each week. The dataset contains rankings from experts across
16 weeks of the 2019 football season. In each week, the rank-
ing of 25 experts on a set of players is given. We follow their
work and divide the players into two groups based on the con-
ference the player’s team is in.

The second dataset from [Wei et al., 2022] contains the
rankings of 7 users over 268 movies. Each movie is placed
into groups based on its genre, leading to 8 groups. We also

3https://github.com/Aussiroth/Improved-Fair-Rank-Aggregation
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Figure 3: Movielens dataset. The x-axis is the value of the pa-
rameter (n, d or k). The y-axis is the objective value of the output
rankings.
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Figure 4: Reduced Movielens dataset. The x-axis is the value of k.
The y-axis is the objective value of output rankings on the left figure,
and the corresponding approximation ratio on the right figure.

preprocess the dataset to remove some movies to obtain a
smaller dataset. This reduced dataset contains movies from
the 4 largest genres and has 58 movies.

Algorithms. We implement our algorithm as described in
the previous sections. The approximation algorithm used to
solve rank aggregation is Kwiksort [Ailon et al., 2008], and
with Theorem 8, this implementation is, in theory, a 18/7-
approximation. The algorithm was chosen as it has good
asymptotic runtime and is easy to implement, making it much
more practical than the known PTAS.

We implement the best-known algorithm for this problem
in previous work as the baseline [Chakraborty et al., 2022]
(also as in [Wei et al., 2022]). Recall that the algorithm finds
a closest fair ranking for each input ranking and then out-
puts the one that gives the minimum objective value. We re-
fer to this algorithm as BESTFROMINPUT (BFI). This is a
3-approximation algorithm.

For all experiments, the values of αi, βi are selected to be
equal to the proportion of elements belonging to group i in the
dataset. This is a natural option, as it maintains the proportion
of elements from each group in the top-k.

Results. Figure 2 evaluates the algorithms for one instance
(week 4) of the football dataset. We perform experiments
that independently vary the number of input rankings n, the
number of players d, and the value of the parameter k. For
the experiments that vary n and d, we set k = 15. We see
that our algorithm consistently performs better than BEST-
FROMINPUT, finding a fair aggregate ranking with a lower
objective value in all of the instances, and is almost optimal.

Figure 3 evaluates the algorithms for the full Movielens
dataset. We also perform experiments independently varying
n, d, and k. For the experiments that vary n and d, we fix
the parameter k = 30. As the number of elements is too
large for the ILP to scale to, we only compare the objective
value of the ranking that is output by the two algorithms. Our
algorithm performs much better than BESTFROMINPUT in all
experiments.

Figure 4 evaluates the algorithms for the reduced Movie-
lens dataset. For this dataset, we focus on experiments for
different values of k. We observe that in comparison to the
football dataset, our algorithm with Kwiksort still performs
much better than BESTFROMINPUT, but noticeably worse
than optimal. We also plot an implementation of our algo-
rithm that uses ILP to solve rank aggregation optimally. This
performs better than using Kwiksort and is extremely close to
optimal. This suggests that our algorithm is able to select a
good set of top-k elements.

We also perform experiments where the values of αi, βi are
varied instead of setting them as the group’s proportion. For
all experiments varying n and d, we explore various values
for the parameter k. We conduct experiments on 15 other
instances of the football dataset as well. These experiments
show similar results and are available in the full version.

7 Conclusion and Future Work
In this work, we address the rank aggregation problem under
the proportional fairness constraint as introduced in [Wei et
al., 2022; Chakraborty et al., 2022]. We propose a novel algo-
rithm to return a fair consensus ranking and establish (through
theoretical analysis) that it achieves a (2 + ε)-approximation
for any ε > 0, thereby improving upon the current best 3-
factor approximation bound. Our experimental results further
show that our algorithm consistently produces nearly optimal
fair consensus rankings in practice. We also present a generic
2.881-approximation algorithm that works irrespective of the
fairness definition as long as there is an efficient procedure to
compute a closest fair ranking to any input.

An exciting open question is whether the approximation
can be further improved, ideally achieving a PTAS that
matches the current best approximation guarantee of the clas-
sical rank aggregation problem without fairness restrictions.
It is noteworthy that a 2-factor is unavoidable for our algo-
rithm (detailed in the full version), indicating that a funda-
mentally new approach may be required to enhance the ap-
proximation guarantee. Additionally, exploring other specific
stricter fairness notions and demonstrating a comparable ap-
proximation guarantee (beating the bound obtained by our
generic algorithm) for them presents another intriguing re-
search direction.
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