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Abstract

Multimodal aspect-based sentiment analysis aims
to extract aspects from different data sources and
recognize the corresponding sentiments. While
current research has broadly focused on syntax
relation-driven semantic comprehension, the im-
pact of the importance of different syntactic rela-
tions on semantic understanding has not been ade-
quately investigated. To address this issue, we pro-
pose a Sentiment-enhanced Multi-hop Connected
Graph Attention Network (MCG), aiming to en-
hance the discriminative capability of model for
sentiments and to delve into the syntactic relation-
ships within the text. Firstly, we design a con-
trastive sentiment-enhanced pre-training task that
expands the diversity and complexity of training
samples to improve the recognition of multiple sen-
timents. Secondly, we construct a multi-hop con-
nected syntactic dependency graph to deeply ex-
plore the rich syntactic dependencies in the text and
to reveal the differences among syntactic relations.
Moreover, we develop a multi-hop connected graph
attention mechanism that enables the model to fo-
cus on the key syntactic relations within the syntac-
tic structure, thereby enhancing the comprehension
and predictive capabilities of model in multimodal
sentiment analysis. Experimental results on two
benchmark datasets demonstrate that our method
outperforms state-of-the-art methods. The source
code is provided in the supplementary materials.

1 Introduction
With the rapid development of internet, multimodal data are
playing an increasingly important role in social events and
user attitude expression. Multimodal aspect-based sentiment
analysis (MABSA) has garnered increasing attention from re-
searchers due to its ability to accurately discern the sentiment
inclinations of various aspects within multimodal data. It typ-
ically encompasses three subtasks: joint multimodal aspect-
based sentiment analysis (JMASA), multimodal aspect term

∗Contact Author
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region 2

region 1

region 3

Crowned
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. SinkLiga2016
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ChampionsBarcelona

Figure 1: An example sentence contains multiple aspects with mul-
tiple sentiment polarities. a⃝ illustrates the syntactic dependency re-
lationships of the text, the aspect terms, and their corresponding sen-
timent polarities. b⃝ displays the targets in the image corresponding
to the aspects. c⃝ presents the syntactic structure of text in the form
of a tree diagram.

extraction (MATE), and multimodal aspect sentiment classi-
fication (MASC).

Early MABSA studies [Ju et al., 2021; Yu et al., 2022;
Li et al., 2024b] enhanced the integration of cross-modal in-
formation through modality alignment techniques. For in-
stance, JML [Ju et al., 2021] utilized cross-modal relation
detection, while DTCA [Yu et al., 2022] adopted a dual-
encoder transformer with cross-modal alignment. However,
these methods overlooked the fine-grained associations be-
tween aspects and opinions. To address this issue, AoM
[Zhou et al., 2023] introduced aspect-oriented attention mod-
ules and graph convolutional networks, and AETS [Zhu et al.,
2025] developed an aspect-enhanced module to increase sen-
sitivity to aspects, but their performance suffers in scenarios
with sparse data. Current research improves sentiment detec-
tion by parsing the syntactic structure of text. AESAL [Zhu et
al., 2024] proposed an adaptive syntactic learning mechanism
relying on word distance to evaluate semantic relationships,
overlooking the differences in syntactic structure connectiv-
ity, which may affect the understanding of text semantics.

While these studies have demonstrated promising perfor-
mance, our analysis reveals two challenges in MABSA: 1)
In multimodal multi-sentiment scenarios, the sentiment
polarity of aspect terms can be nuanced and complex,
challenging models to make accurate judgments with lim-
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ited data. As shown in Fig. 1 a⃝, there are three aspects
“Barcelona”, “La Liga” and “Suarez”, with corresponding
sentiments of “positive”, “neutral” and “negative”. How-
ever, due to the influence of “Sink”, “Suarez” is misjudged
as negative. Integrating visual information (Fig. 1 b⃝) in pre-
training tasks for sentiment enhancement can significantly
improve the model’s ability to accurately distinguish senti-
ments, especially in data-limited multi-sentiment task. 2)
Differences in syntactic relationships revealed by syntac-
tic connectedness have different effects on MABSA. As
shown in the syntactic dependency tree in Fig. 1 c⃝, syntac-
tic connectivities like “Crowned-Champions”, “Champions-
Liga” and “Champions-Sink” are involved in multiple syntac-
tic relationships, demonstrating strong syntactic connectiv-
ity and encompassing significant connections with aspect and
sentiment words. This intricate syntactic structure is crucial
for the precise identification of aspects and sentiment analy-
sis. In contrast, the connectivity of “Liga-La”, “Sink-Suarez”
is relatively lower, with the syntactic relationships being of
lesser importance. Different syntactic relationships have a
certain impact on the understanding of the text. Therefore,
it is crucial to pay full attention to the importance of multiple
sentiments and syntactic relations for MABSA task.

To address these issues, we propose a sentiment-enhanced
multi-hop connected graph attention network (MCG) for
MABSA. The method enhances the sensitivity of model to
sentiments and fully considers the importance differences
driven by syntactic structure through a multi-hop connected
graph attention mechanism. Specifically, we firstly construct
sentiment-enhanced pre-training based on positive and nega-
tive samples to increase the diversity and complexity of train-
ing samples, thereby improving the ability to distinguish mul-
tiple sentiments. Secondly, we constructed a multi-hop con-
nected syntactic dependency graph to capture the importance
of different syntactic relationships, and utilized the attention
mechanism of the multi-hop connected graph to effectively
highlight key relationships in the syntactic structure. Our
contributions are as follows:

• We are the first to consider the impact of syntactic rela-
tion differences based on connectivity for MABSA task
and propose a sentiment-enhanced multi-hop connected
graph attention network that analyzes the importance of
key syntactic relations.

• We design a sentiment-enhanced pre-training task that
expands the diversity of training samples and enhances
the discriminative ability for multiple sentiments.

• We introduce a multi-hop graph attention mechanism to
capture sentence structure and semantics by constructing
syntactic dependency graphs and focusing on important
syntactic relations for deeper text understanding.

• Experimental results on three tasks (JMASA,MATE and
MASC) across two benchmark datasets indicate that
MCG achieves state-of-the-art performance.

2 Related Work
Multimodal Aspect-Based Sentiment Analysis is a task that
is both challenging and requires multiple processing, ne-

cessitating models that can deeply understand multimodal
data and effectively extract sentiment cues [Ye et al., 2022;
Zhang et al., 2023]. Early research primarily relied on at-
tention mechanisms to achieve alignment between different
modalities. For instance, JML [Ju et al., 2021] optimizes the
utilization of visual information by constructing an auxiliary
text-image relation detection module and employed a hierar-
chical framework to facilitate multimodal interaction between
MATE and MASC. DTCA [Yu et al., 2022] introduces two
auxiliary tasks to enhance cross-attention performance and
aligned text and image modalities by minimizing the Wasser-
stein distance between them. VLP-MABSA [Ling et al.,
2022] innovatively transformes MABSA into a text genera-
tion task, incorporating, in addition to conventional masked
language modeling and masked region modeling tasks, pre-
training tasks such as text aspect-opinion extraction, visual
aspect-opinion generation, and multimodal sentiment predic-
tion, to more finely identify aspects, opinions, and their cross-
modal consistency.

Existing research focuses on aspect enhancement and syn-
tax mining. CMMT [Yang et al., 2022] uses two auxiliary
tasks to learn intra-modal representations for aspects or sen-
timent perception and introduces a text-guided cross-modal
interaction module to dynamically control the contribution of
visual information to each word’s representation. AoM [Zhou
et al., 2023] designs an aspect-oriented attention module to
select text labels and image patches relevant to aspect seman-
tics simultaneously, incorporating sentiment embeddings into
aspect semantics. Atlantis [Xiao et al., 2024] enhances mul-
timodal data with visual aesthetic attributes. AESAL [Zhu et
al., 2024] develops an aspect enhancement module to learn
aspect correlations in multimodal input data and a syntax-
adaptive learning mechanism for syntactic relationships.

Despite the significant progress made, previous studies
have overlooked the handling of diverse sentiments and dif-
ferent syntactic relationships. To address these issues, this
paper introduces the MCG model, which enhances the senti-
ment discriminative capability of model through contrastive
sentiment pre-training and employs the multi-hop connected
graph attention mechanism to capture the significance of dif-
ferent syntactic relationships within syntactic structures.

3 Method
In this section, we first introduce the task formulation, fol-
lowed by a detailed description of the proposed sentiment-
enhanced multi-hop connected graph attention network
(MCG). The overall framework is shown in Fig. 2, and
the network consists of the following components: fea-
ture extraction, sentiment-enhanced pre-training, multi-hop
connected syntactic dependency graph, multi-hop connected
graph attention, and the prediction.

3.1 Task Formulation
We assume the dataset D = {(Ti, Vi, Ai, Si)

K
i=1} , which

contains K samples. Each sample x ∈ D includes the text
T = {t1, t2, · · · , tn}, the image V ∈ R3×H×W , aspect terms
A = {a1, a2, · · · , am} and their corresponding sentiments
S = {s1, s2, · · · , sm}, where n represents the number of
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Multi-hop Connected Syntactic Dependency Graph
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Figure 2: The overall framework of MCG.

words, 3, H , W denote the number of channels, height, width
of the image, and m represents the number of aspects and sen-
timents. si ∈ {POS,NEU,NEG}, POS,NEU,NEG de-
note positive, neutral, and negative, respectively. We define
the input and output for the three sub-tasks MATE, MASC,
and JMASA as follows:

MATE: input = [{t1, t2, · · · , tn}, V ]; output =
[a1, a2, · · · , am].

MASC: input = [{t1, t2, · · · , tn}, V, a1, a2, · · · , am];
output = [s1, s2, · · · , sm].

JMASA: input = [{t1, t2, · · · , tn}, V ]; output =
[{a1, s1}, {a2, s2}, · · · , {am, sm}].

3.2 Feature Extraction
Given the superior performance of RoBERTa [Liu et al.,
2019] for text representation and ViT [Dosovitskiy et al.,
2020] for visual representation, we utilize RoBERTa and ViT
to encode text and images, respectively. Specifically, we ap-
pend the special tokens [cls] and [sep] to the beginning and
end of the text to indicate the start and end of a sentence, with
[cls] also used to mark the beginning of the image. In Equa-
tions (1) and (2), we feed the text and image into RoBERTa
and ViT to derive the hidden layer states and for text and im-
age. During this process, we use an MLP to adjust the dimen-
sions of image to align with the text representation.

Ht = RoBERTa(T ) (1)

Hv = MLP (V iT (V )) (2)
Ht, Hv ∈ Rn×d, n denotes the number of words and d

denotes the hidden state dimension.

Figure 3: The framework of sentiment-enhanced pre-training.

3.3 Sentiment-enhanced Pre-training
In order to improve the discriminative capability of model
in the domain of multiple sentiments recognition, we devise
a contrastive sentiment-enhanced pre-training task, with the
specific architecture depicted in Fig. 3.

For each training sample x, we employ the following strat-
egy for sample processing. First, we append the aspect
term ai and its corresponding sentiment label si to the end
of the text, forming a positive training sample P by in-
serting a special delimiter “<s>”. Next, we randomly se-
lect a non-real sentiment label si from a collection of la-
bels, which differs from the real sentiment label si (where
si ∈ {POS,NEU,NEG} and si ̸= si), and combine it
with the aspect term ai to generate a negative training sample
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N . During this process, we treat (P, V ) as a positive train-
ing pair and (N,V ) as a negative training pair. Subsequently,
the positive and negative training pairs are input into the fea-
ture extraction module to obtain text embeddings and image
embeddings. These two embedding vectors are then concate-
nated, and a cross-entropy loss function L∫ is employed to
increase the distance between the positive and negative train-
ing pairs as in Equation (3).

L∫ = −B log(B̂)− (1−B) log(1− B̂) (3)

B represents the true label of the sample pair, and B̂ is the
probability that the model predicts the sample pair as positive
sample.

The method of randomly selecting a non-real sentiment la-
bel as a negative example helps to balance positive sentiment
information and noise (including irrelevant or misleading in-
formation), thereby encouraging the model to focus on the
key differences between positive and negative training pairs.
This design strategy significantly improves the performance
in two aspects: Firstly, as a data augmentation technique, it
increases the complexity and diversity of the dataset. Sec-
ondly, by enhancing the discrimination between positive and
negative training pairs, it enhances the ability of model to dis-
criminate between ambiguous sentiments and multiple senti-
ment categories.

3.4 Multi-hop Connected Syntactic Dependency
Graph

The syntactic dependency graph highlights syntactic relation-
ships in sentences. AESAL [Zhu et al., 2024] evaluates these
relationships by node proximity, suggesting that closer nodes
are more significantly associated. However, in semantic com-
prehension, nodes with more connections are often more cru-
cial [Borge-Holthoefer and Arenas, 2010], due to their in-
volvement in multiple syntactic relationships and higher con-
nectivity. Thus, we build a multi-hop syntactic dependency
graph to analyze connectivity, capturing variations in syntac-
tic relationships for a deeper semantic understanding of text.

We represent the significance of different syntactic rela-
tionships in the syntactic dependency tree through the con-
nectivity of the graph. Specifically, we first use the spaCy1

library to obtain the syntactic dependency tree and convert
it into an undirected graph G. The adjacency matrix M ∈
Rn×n of graph G represents its connectivity, where n is the
number of words. Mk represents the number of paths of
length k, and Mk

ij represents the number of paths of length
k from node i to node j. The proof is given in Theorem 1.
Theorem 1. For any graph G with adjacency matrix M , the
element Mk

ij represents the number of paths of length k from
vertex i to vertex j.

We perform kth power operations on the syntactic de-
pendency graph and normalize it according to the following
Equations (4) and (5) to obtain the weights of syntactic rela-
tionships:

Norm(M) = D̃
1
2 (M + I)D̃− 1

2 (4)

1https://spacy.io/

（a）𝑀1 （b）𝑀2 （c）𝑀3 （d）𝑀4

（e）𝑀5 （f）𝑀6 （g）𝑀7 （h）𝑀8

Figure 4: Normalized weight matrices from M1 to M8 for the syn-
tactic dependency graph of Fig. 1 a⃝. Blue indicates lower weight
values, red denotes higher weight values.

M̃ = {M̃1, M̃2, · · · , M̃k}
= {Norm(M1),Norm(M2), · · · ,Norm(Mk)}

(5)

Here, I is the identity matrix, D is the degree matrix of
M + I , and D̃ is the diagonal matrix. M̃1, M̃2, ..., M̃k

represent the weights of syntactic dependency relationships
from first-hop to kth-hop, M̃ denotes the weight of the multi-
hop syntactic dependency graph. Through experiment, we
found that the length of syntactic relations typically ranges
between 1 and 8, which corresponds to k ∈ {1, 2, ..., 8}.

As shown in Fig. 4, we present the normalized graph of
M1-M8 for the example in Fig. 1 a⃝. In the syntactic depen-
dency tree, the importance of different nodes can be measured
by their connectivity in the graph. It is observed that syntac-
tic relationships like “Champions-Champions”, “Crowned-
Champions”, “Sink-Champions” and “Liga-Champions”
have larger values. This is because words like “Champions”,
“Crowned”, “Sink” and “Liga” are involved in more syntac-
tic relationships, resulting in stronger connectivity. In our
method, by calculating the connectivity of different orders,
we can more accurately capture these important syntactic re-
lationships.

3.5 Multi-hop Connected Graph Attention
To effectively highlight the role of key syntactic relationships
in the syntactic structure, particularly those that play a core
role in aspect and sentiment expression, we propose a multi-
hop connected graph attention mechanism based on the multi-
head cross-attention mechanism. This mechanism enhances
the focus on local contexts while also considering the flow
of information in a broader context, aiding in the capture of
deep semantic associations.

We employ a multi-head cross-attention mechanism to ob-
tain a multi-head attention matrix MA for text and image,
capturing their interactive relationships. We first define the
single-head cross-attention matrix function (CF ) in Equation
(6). In Equations (7) and (8), we define the multi-head cross-
attention matrix function (MCF ) with k heads, and obtain a
multi-head attention matrix MA that matches the M̃ .

CF (Q,K) = Softmax(
QWQ × (KWK)T√

dk
) (6)
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MCF (Q,K) = {CF 1(Q,K), CF 2(Q,K), · · · ,
CF k(Q,K)}

(7)

MA = MCF (Ht, Hv) (8)

where Q,K denotes the query and key vectors. WQ and WK

are learnable parameters, and dk denotes the dimension of k.
After that, in Equation (9), we use the multi-hop syntactic

dependency graph weights M̃ in combination with the multi-
head attention matrix MA to obtain the multi-hop connected
graph attention MC. In this way, the model enhances the re-
finement of the unimodal intra-features while also optimizing
the interactions of the cross-modal features.

MC = M̃ ⊙MA (9)

where ⊙ denotes element-by-element multiplication.
Finally, as shown in Equation (10), we multiply the multi-

hop connected graph attention MC with the value vector to
obtain the multi-modal fusion feature Hf with multi-hop syn-
tactic dependency graph information.

Hf = MCHvWv (10)

Here, Wv is the learnable parameter.

3.6 Prediction
As shown in Equations (11) and (12), we use a two-layer
MLP as the predictor and use relu as the activation function
and cross-entropy loss as the objective function.

ŷ = Softmax(ReLU(HfW1 + b1)W2 + b2) (11)

L = −
∑

yilog(ŷi) (12)

where W1,W2,b1,b2 are the learnable parameters, ŷ is the pre-
dicted outcome, and y is the true label.

4 Experiment
In this section, we verify the validity and superiority of our
proposed MCG through comparative experiments and abla-
tion experiments on JMASA, MATE and MASC tasks.

4.1 Experiment Data and Setup
Dataset: we use two multimodal benchmark datasets,
Twitter-2015 and Twitter-2017 [Yu and Jiang, 2019], for our
experiments. These two Twitter datasets collect user posts
published on Twitter during 2014-2015 and 2016-2017, re-
spectively. Table 1 summarizes the datasets.

Experiment Setup: Our experiments are implemented in
the PyTorch framework using NVIDIA 3090 GPUs, with the
learning rate set to 2e-5, the hidden layer dimension to 768,
and the dropout set to 0.1.

Evaluation Metrics: On the JMASA task and the MATE
task, we evaluate our model using Micro-F1 (F1), Precision
(P) and Recall (R). And on the MASC task, we use Accuracy
(Acc) and Micro-F1 (F1) following previous studies [Zhu et
al., 2024; Zhou et al., 2023].

Label Twitter-2015 Twitter-2017

Train Dev Test Train Dev Test

Positive 928 303 317 1,508 515 493
Neutral 1,883 670 607 1,638 517 573

Negative 368 149 113 416 144 168
Total Aspects 3,179 1,122 1,037 3,562 1,176 1,234
Total Sentence 2,101 727 674 1,746 577 587

# multi sentiment 1,257 1,690

Table 1: Statistics of the Twitter-2015 and Twitter-2017 datasets. “#
multi sentiment” in the last line denotes the number of sentences
with multiple sentiment.

4.2 Baselines
We compare MCG with four types of methods.

Methods for textual ABSA. 1) SPAN [Hu et al., 2019]
identifies opinion targets with their sentiments. 2) D-GCN
[Chen et al., 2020] utilizes GCN [Wu et al., 2020a] to model
syntactic dependencies. 3) BART [Yan et al., 2021] ad-
dresses seven ABSA subtasks.

Methods for JMASA. 1) UMT-collapse [Yu et al., 2020],
OSCGA-collapse [Wu et al., 2020b] and Rpbert-collapse
[Sun et al., 2021] use the same visual input to collapse in-
dividual tokens. 2) UMT+TomBERT, OSCGA+TomBERT
are two pipelines that combine UMT, OSCGA and TomBERT
[Yu and Jiang, 2019]. 3) JML [Ju et al., 2021] introduces hi-
erarchical text-image relation detection with auxiliary mod-
ules for joint MATE-MASC optimization. 4) VLP- MABSA
[Ling et al., 2022] is a multimodal framework employing five
dedicated pretraining tasks to model aspect features, opinion
expressions and cross-modal alignment. 5) CMMT [Yang et
al., 2022] is a cross-modal learning approach that regulates
multimodal information interaction through gating mecha-
nisms. 6) AoM [Zhou et al., 2023] is an aspect-oriented
method that simultaneously detects aspect-relevant semantic
information and sentiment features from multimodal inputs.
7) Atlantis [Xiao et al., 2024] is a framework that augments
multimodal representations using visual aesthetic character-
istics. 8) AESAL [Zhu et al., 2024] is a method featuring
an aspect correlation learning module and a syntax-adaptive
mechanism for multimodal input processing. 9) GLM-4V-
Plus [Hong et al., 2024], Llama-3.2-11B-Vision-Instruct
(Llama-3.2) [AI@Meta, 2024], and llama3-llava-next-8b-hf
(LLaVA-NeXT) [Li et al., 2024a], all advanced large lan-
guage models(LLMs), were meticulously directed to perform
specific tasks in our experiments through carefully crafted
prompt information.

Methods for MATE. 1) RAN [Wu et al., 2020b] specifi-
cally emphasizes aligning text with object regions. 2) UMT
[Yu et al., 2020] effectively uses text-based entity span de-
tection as an auxiliary task. 3) OS-CGA [Wu et al., 2020b]
primarily focus on aligning visual objects with entities.

Methods for MASC. 1) ESAFN [Yu et al., 2019] im-
ploys LSTM networks to perform sentiment analysis at the
entity level. 2) TomBERT [Yu and Jiang, 2019] is a target-
oriented multimodal utilizes BERT architecture to generate
aspect-aware text representations. 3) CapTrBERT [Khan
and Fu, 2021] translates images into text and constructs an
auxiliary sentence for fusion, enhancing cross-modal interac-
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Methods Venue Twitter-2015 Twitter-2017

P R F1 P R F1

Text-based
SPAN* ACL 2020 53.7 53.9 53.8 59.6 61.7 60.6

D-GCN* COLING 2020 58.3 58.8 59.4 64.2 64.1 64.1
BART* ACL 2021 62.9 65.0 63.9 65.2 65.6 65.4

Multimodal

UMT+TomBERT* ACL 2020, IJCAI 2019 58.4 61.3 59.8 62.3 62.4 62.4
OSCGA+TomBERT* ACM MM 2020, IJCAI 2019 61.7 63.4 62.5 63.4 64.0 63.7

OSCGA-collapse* ACM MM 2020 63.1 63.7 63.1 63.5 63.5 63.5
RpBERT-collapse* AAAI 2021 49.3 46.9 48.0 57.0 55.4 56.2

UMT-collapse* ACL 2020 61.0 60.4 61.6 60.8 60.0 61.7
JML EMNLP 2021 65.0 63.2 64.1 66.5 65.5 66.0

VLP-MABSA ACL 2022 65.1 68.3 66.6 66.9 69.2 68.0
CMMT IPM 2022 64.6 68.7 66.5 67.6 69.4 68.5
AoM ACL 2023 67.9 69.3 68.6 68.4 71.0 69.7

Atlantis Inf. Fusion 2024 65.6 69.2 67.3 68.6 70.3 69.4
AESAL IJCAI 2024 68.7 70.4 69.5 69.4 74.8 72.0
MCG Ours 71.3 70.5 70.9 77.2 78.8 77.1

LLMs
GLM-4V-Plus Zhipu AI 2024 55.4 64.2 56.9 61.7 61.0 59.9

Llama-3.2 Meta AI 2024 42.5 52.0 44.3 50.8 54.9 50.9
LLaVA-NeXT Meta AI 2024 38.4 56.1 42.1 48.2 59.9 50.7

Table 2: Results of different models on JMASA on the two Twitter datasets. Our model MCG almost achieves the current optimal results on
JMASA. The best results are bold-typed and the second best ones are underlined. * denotes the results from [Zhu et al., 2024].

Methods Twitter-2015 Twitter-2017

P R F1 P R F1

RAN* 80.5 81.5 81.0 90.7 90.7 90.0
UMT* 77.8 81.7 79.7 86.7 86.8 86.7

OSCGA* 81.7 82.1 81.9 90.2 90.7 90.4
JML 83.6 81.2 82.4 92.0 90.7 91.4

VLP-MABSA 83.6 87.9 85.7 90.8 92.6 91.7
CMMT 83.9 88.1 85.9 92.2 93.9 93.1
AoM 84.6 87.9 86.2 91.8 92.8 92.3

Atlantis 84.2 87.7 86.1 91.8 93.2 92.7
AESAL 90.2 90.6 90.4 93.1 96.4 94.7
MCG 91.5 91.1 91.3 93.6 97.3 95.4

GLM-4V-Plus 57.2 74.1 64.6 68.4 79.2 73.4
Llama-3.2 44.4 67.4 53.5 53.1 66.6 59.1

LLaVA-NeXT 39.0 71.2 50.4 55.9 73.1 63.3

Table 3: Results of different methods for MATE. Our model MCG
achieves the current optimal results on MATE. * denotes the results
from [Zhu et al., 2024].

tion through generated captions.

4.3 Experiment Results
In this section, we show the excellent performance of MCG.

Performance on JMASA. As shown in Table 2, first,
MCG significantly surpasses all text-based models, indicating
that detecting richer visual and textual information is effec-
tive. Second, MCG also outperforms all multimodal methods
across various metrics. In particular, compared to the second-
best AESAL, the P value increased by 2.6% on Twitter-2015
and by 7.8% on Twitter-2017. These results demonstrate that
the identification of syntactic relationships based on syntactic

Methods Venue Twitter-2015 Twitter-2017

Acc F1 Acc F1

ESAFN* ACM 2019 73.4 67.4 67.8 64.2
TomBERT* IJCAI 2019 77.2 71.8 70.5 68.0

CapTrBERT* ACM 2021 78.0 73.2 72.3 70.2
JML EMNLP 2021 78.7 - 72.3 -

VLP-MABSA ACL 2022 78.6 73.8 73.8 71.8
CMMT IPM 2022 77.9 - 73.8 -
AoM ACL 2023 80.2 75.9 76.4 75.0

Atlantis Inf. Fusion 2024 79.3 - 74.2 -
AESAL IJCAI 2024 80.1 75.2 78.8 75.9
MCG Ours 81.4 79.3 80.1 79.0

GLM-4V-Plus Zhipu AI 2024 68.7 68.8 62.6 62.5
Llama-3.2 Meta AI 2024 59.9 59.8 51.2 51.1

LLaVA-NeXT Meta AI 2024 65.0 64.9 57.5 57.6

Table 4: Results of different models on MASC task. Our model
MCG achieves the current optimal results on MASC. * denotes the
results from [Zhu et al., 2024].

connectivity is more effective than AESAL that rely solely
on distance. Last, compared to LLMs, which requires as-
pect identification before sentiment determination, MCG can
more accurately recognize both aspect and sentiment simul-
taneously, significantly reducing the task burden and demon-
strating stronger task coherence.

Performance on MATE. As shown in Table 3, MCG
achieved satisfactory results on the MATE task. First, MCG
achieved optimal results across all metrics. These results
demonstrate that MCG more accurately identifies core syn-
tactic nodes through connectivity, facilitating the capture of
syntactic structures that contain aspect terms and thereby en-
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JMASA MATE MASC

Methods Twitter-2015 Twitter-2017 Twitter-2015 Twitter-2017 Twitter-2015 Twitter-2017

P R F1 P R F1 P R F1 P R F1 Acc F1 Acc F1

Full 71.3 70.5 70.9 77.2 78.8 77.1 88.2 94.1 90.9 93.3 96.3 94.8 81.4 79.3 80.1 79.0
W/o Img 63.4 68.1 65.2 69.6 76.2 72.6 86.4 92.1 89.7 88.2 97.3 92.3 80.3 68.2 79.0 72.7
W/o SEP 69.9 70.7 70.3 74.2 74.6 73.3 87.2 94.0 90.3 91.7 97.5 94.4 79.4 74.6 78.8 73.0

W/o MCGA 68.5 70.1 67.6 76.6 77.9 74.8 87.6 93.2 89.7 90.3 95.4 93.5 80.6 72.7 79.1 77.3

Table 5: Comparison of the performance of the complete model and its ablation methods on JMASA, MATE and MASC.

hancing aspect extraction. Second, compared to LLMs, our
multi-hop syntactic dependency graph better leverages con-
textual information to identify correct aspects.

Performance on MASC. Table 4 highlights MCG’s top
performance on the MASC. First, on Twitter-2015, it boosts
the F1 score by 3.4% over the runner-up AoM model, and by
3.1% compared to AESAL on Twitter-2017. This improve-
ment is due to sentiment-enhanced pre-training, enhancing
the model’s sentiment differentiation. Second, MCG sur-
passes LLMs in identifying fine-grained sentiments.

4.4 Ablation Study
In this section, to demonstrate the effectiveness of each mod-
ule of MCG, we compare the variants of MCG in terms of
image (Img), sentiment-enhanced pre-training (SEP), multi-
hop connected graph attention (MCGA).

W/o Img is a variant of MCG that removes image infor-
mation but utilizes textual information. W/o SEP is a variant
of MCG that does not use sentiment-enhanced pre-training.
W/o MCGA is a variant of MCG that removes multi-hop
connected graph attention and only uses cross attention.

As shown in Table 5, we found that: 1) Visual information
enhances the accuracy of aspect word and sentiment recog-
nition when interacting with textual data. MCG outperforms
W/o Img across all three tasks, highlighting the effectiveness
of visual inputs. 2) SEP can improve the capacity of multiple
sentiment discrimination. Taking the MASC as an example,
on the two datasets, MCG improves the Acc and F1 values
by 2%, 4.7%, 1.3%, and 6%, respectively, compared to W/o
SEP, demonstrating its effectiveness. 3) MCGA captures the
importance of different syntactic relationships, enhancing fo-
cus on both local context and global information. On MATE,
metrics for W/o MCGA decrease on both datasets, proving
MCGA’s effectiveness in highlighting key syntactic relations
for text semantic understanding.

4.5 Case Study
Fig. 5 illustrates two examples of predictions using JML,
CMMT, and MCG to further substantiate the efficacy of
MCG. In Example (a), JML failed to fully recognize “Fifth
Harmony” and misjudged the sentiment for the “BBMAs”.
CMMT incorrectly predicted the sentiment for the “BBMAs”.
However, MCG successfully determine this sentiment, which
is attributed to our sentiment-enhanced pre-training task. In
Example (b), both JML and CMMT provided incorrect sen-
timent judgments for “Darrelle Revis”, with JML failing to
identify the aspect term “cowboys” and its sentiment, and
CMMT erroneously identifying “CBs” as “rookie CBs”. Ours

Text
Image

(a) Fifth Harmony ' s seats at the
@ BBMAs ! They are in front of
Kelly Rowland and behind Kesha !

(b) Dez Bryant believes in rookie
CBs despite Darrelle Revis tweet
# cowboys # NFL .

True Label
(Fifth Harmony, POS)

(BBMAs, NEU) 

(Kelly Rowland, POS)

(Kesha, POS)

Dez Bryant, NEU)

(CBs, POS) 

(Darrelle Revis, NEU)

(cowboys, NEU) 

(NFL, NEU)

JML
(Harmony, POS)(×,√)

(BBMAs, POS)(√,×)

(Kelly Rowland, POS)(√,√)

(Kesha, POS)(√,√)

(Dez Bryant, NEU)(√,√)

(CBs, POS)(√,√)

(Darrelle Revis, NEG)(√, ×)

(-, -)(×, ×)

(NFL, NEU)(√,√)

CMMT
(Fifth Harmony, POS)(√,√)

(BBMAs, POS)(√, ×)

(Kelly Rowland, POS)(√,√)

(Kesha, POS)(√,√)

(Dez Bryant, NEU)(√,√)

(rookie CBs, POS)(×,√)

(Darrelle Revis, NEG)(√, ×)

(cowboys, NEU)(√,√)

(NFL, NEU)(√,√)

Ours
(Fifth Harmony, POS) (√,√)

(BBMAs, NEU) (√,√)

(Kelly Rowland, POS) (√,√)

(Kesha, POS) (√,√)

(Dez Bryant, NEU) (√,√)

(CBs, POS) (√,√)

(Darrelle Revis, NEU) (√,√)

(cowboys, NEU) (√,√)

(NFL, NEU) (√,√)

Figure 5: Predictions of different methods on two test samples.

MCG, however, identified all aspect terms in both cases and
provided correct sentiment predictions. This demonstrates
the effectiveness of utilizing multi-hop connected graph at-
tention to focus on key syntactic relationships for MABSA.

5 Conclusion
This paper introduces a sentiment-enhanced multi-hop con-
nected graph attention network for MABSA. Firstly, we con-
struct positive and negative samples to perform comparative
sentiment pre-training, thereby enhancing the diversity of the
training samples and improving the multiple sentiment dis-
crimination capability. Secondly, we build a multi-hop con-
nected syntactic dependency graph to capture diverse syntac-
tic relationships, and utilize the multi-hop connection graph
attention mechanism to emphasize significant syntactic rela-
tionships within the syntactic structure. Lastly, we conduct
three tasks on two widely used datasets, and the experimental
results validate the effectiveness of our method. Additionally,
we examine the model’s capability to address nuanced senti-
ment expressions through extensive empirical evaluations.
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