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Abstract

In this paper, we propose a new model to learn
Adaptive Kernel-based Representations (AKBR)
for graph classification. Unlike state-of-the-art
R-convolution graph kernels that are defined by
merely counting any pair of isomorphic substruc-
tures between graphs and cannot provide an end-
to-end learning mechanism for the classifier, the
proposed AKBR approach aims to define an end-
to-end representation learning model to construct
an adaptive kernel matrix for graphs. To this
end, we commence by leveraging a novel feature-
channel attention mechanism to capture the in-
terdependencies between different substructure in-
variants of original graphs. The proposed AKBR
model can thus effectively identify the structural
importance of different substructures, and compute
the R-convolution kernel between pairwise graphs
associated with the more significant substructures
specified by their structural attentions. Further-
more, the proposed AKBR model employs all sam-
ple graphs as the prototype graphs, naturally pro-
viding an end-to-end learning architecture between
the kernel computation as well as the classifier. Ex-
perimental results show that the proposed AKBR
model outperforms existing state-of-the-art graph
kernels and deep learning methods on standard
graph benchmarks.

1 Introduction
Graph-based representations are powerful tools for encapsu-
lating structured data characterized by pairwise relationships
among its components [Zambon et al., 2018], and have been
widely employed in various research fields, such as the anal-
ysis of social networks [Bai et al., 2020b], financial transac-
tions [Bai et al., 2020a] and biological networks [Gasteiger et
al., 2021]. The main challenge arising in graph data analysis

∗Corresponding Author: Lixin Cui

is how to learn representative numeric characteristics for dis-
crete graph structures. One of the most effective methods for
learning graph-structured data is to employ graph kernels.

Broadly speaking, graph kernels aim to describe the struc-
tural information in a high-dimension Hilbert space, typi-
cally defining a positive definite similarity measure between
graphs. [Haussler and et al., 1999] proposed a generic way,
namely the R-convolution framework, to define graph ker-
nels. This is achieved by decomposing two graphs into sub-
structures and evaluating the similarity between the pairs of
substructures. Specifically, given two sample graphs Gp and
Gq , assume S = {g1, ..., gM} is the set of their all possi-
ble substructures based on a specified graph decomposing ap-
proach, the R-convolution kernel KR between Gp and Gq is
defined as

KR(Gp, Gq) =
∑
g⃗p∈S

∑
g⃗q∈S

k(g⃗p, g⃗q), (1)

where the function k is defined as the Dirac kernel, and
k(g⃗p, g⃗q) is equal to 1 if the substructures g⃗q and g⃗q are iso-
morphic to each other, and 0 otherwise.

In recent years, the R-convolution framework has proven
to be an effective way to define novel graph kernels and most
state-of-the-art R-convolution graph kernels can be catego-
rized into three main categories, i.e., the R-convolution ker-
nels based on the walks, paths, and subgraph or subtree struc-
tures. For instance, the Random Walk Graph Kernel (RWGK)
is proposed by [Gärtner et al., 2003] based on the similar-
ity measures between random walks. However, the random
walks suffer from the notorious tottering problem and allow
the repetitive visiting of vertices, leading to significant in-
formation redundancy for the RWGK kernel. [Borgwardt
and Kriegel, 2005] have proposed a Shortest Path Graph
Kernel (SPGK) by counting the pairs of shortest paths with
the same length. Since the shortest paths are typically non-
backtrack paths and can be computed in a polynomial time,
the SPGK kernel can significantly overcome the drawbacks of
the RWGK kernel. To capture more structural information,
thus some subgraph-based or subtree-based R-convolution
graph kernels have been developed. For instance, [Sher-
vashidze et al., 2009] have proposed a Graphlet Count Graph
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Kernel (GCGK) by counting the frequency of graphlet sub-
graphs of sizes 3, 4 and 5. Since the GCGK kernel cannot ac-
commodate the vertex attributes, [Shervashidze et al., 2011]
have further developed the Weisfeiler-Lehman Subtree Ker-
nel (WLSK) based on subtree invariants. Specifically, the
WLSK kernel is defined by counting the number of pairwise
isomorphic subtrees through an iterative aggregation of node
neighbor labels, effectively enabling labeled graph classifica-
tion. Moreover, since the WLSK kernel can efficiently and
gradually aggregate the local topological substructure infor-
mation (i.e., the vertex labels corresponding to subtree in-
variants) between neighbor vertices to further extract sub-
trees of large sizes, this kernel not only has better computa-
tional efficiency but also has superior effectiveness for graph
classification, being one of the most popular graph kernels
by now. Other graph kernels based on the R-convolution
also include (1) the Wasserstein Weisfeiler-Lehman Subtree
Kernel [Togninalli et al., 2019], (2) the Subgraph Alignment
Kernel [Kriege and Mutzel, 2012], (3) the Message Passing
Graph Kernels [Nikolentzos and Vazirgiannis, 2018] etc.

Although state-of-the-art R-convolution graph kernels
have demonstrated their performance on graph classification
tasks, they still suffer from three common problems. First,
these R-convolution graph kernels only focus on measuring
the similarity or the isomorphism between all pairs of sub-
structures, completely disregarding the importance of differ-
ent substructures. As a result, some redundant structural in-
formation that is unsuitable for graph classification may also
be considered. Second, these R-convolution graph kernels
focus solely on the similarity between each pair of graphs,
neglecting the common patterns shared among all sample
graphs. Third, all these R-convolution graph kernels tend to
employ the C-SVM classifier [Cortes and Vapnik, 1995] for
classification, and the phase of training the classifier is en-
tirely separated from that of the kernel construction. This lim-
itation may restrict the performance of existing R-convolution
graph kernels. To overcome the first shortcoming, [Aziz et
al., 2020] have employed the feature selection method to dis-
card redundant substructure patterns associated with zero for
the GCGK kernel, significantly improving the classification
performance. However, this kernel method requires manually
enumerating all possible graphlet substructure sets to com-
pute the mean and variance, and still cannot provide an end-
to-end learning framework to adaptively compute the kernel-
based similarity. Overall, defining effective kernel-based ap-
proaches for graph classification remains challenging.

The objective of this work is to address the drawbacks of
the aforementioned R-convolution graph kernels, by develop-
ing a novel framework to compute the Adaptive Kernel-based
Representations (AKBR) for graph classification. One key in-
novation of the proposed AKBR model is that it can provide
an end-to-end kernel-based learning framework to discrimi-
nate significant substructures and thus compute an adaptive
kernel matrix between graphs. The main contributions are
summarized as threefold.

First, to resolve the problem of ignoring the importance
of different substructures that arise in existing R-convolution
graph kernels, we propose to employ the attention mechanism
as a means of feature selection to assign different weights to

the substructures represented as features. We model the inter-
dependency of different substructure-based features using the
feature-channel attention mechanism to focus on the essential
part of the substructure-based feature vectors of graphs.

Second, inspired by the graph dissimilarity or similarity
embedding method presented by [Bunke and Riesen, 2008;
Bai et al., 2013], the resulting kernel matrix can be seen as a
kind of kernel-based similarity embedding vectors of all sam-
ple graphs. As a result, the proposed AKBR model can adap-
tively discriminate the structural importance of different sub-
structures, and further compute the adaptive kernel-based rep-
resentations for graph classification, significantly overcoming
the three aforementioned theoretical drawbacks arising in ex-
isting R-convolution graph kernels.

Third, we evaluate the proposed AKBR model on graph
classification tasks. The experimental results demonstrate
that the proposed model can significantly outperform state-
of-the-art graph kernels and graph deep learning methods.

2 Related Works
In this section, we review some state-of-the-art R-convolution
kernels and some classical Graph Neural Networks (GNNs).
Besides, we theoretically analyze the drawbacks arising in
these existing approaches, enlightening the proposed method.

2.1 Classical R-convolution Kernels
We briefly review two classical R-convolution kernels,
including WLSK [Shervashidze et al., 2011] and the
SPGK [Borgwardt and Kriegel, 2005]. We commence by
introducing the definition of the WLSK kernel that focuses
on aggregating the structural information from neighbor-
ing vertices iteratively to capture1 subtree invariants through
the classical Weisfeiler-Lehman Subtree-Invariant (WL-SI)
method [Weisfeiler and Lehman, 1968]. Given two sample
graphs Gp and Gq , assume l0(u) represents the initial label
of vertex u. Specifically, for unlabeled graphs, the degree of
each vertex is considered as the initial label. Then, for each
iteration i, the WLSK constructs the multi-set label Li

N for
each vertex u by aggregating and sorting the labels of u as
well as its neighborhood vertices, i.e.,

Li
N (u) = sort({li−1(v)|v ∈ N (u)}), (2)

where N (u) is the set of the neighborhood vertices of u. The
WLSK kernel merges the multi-set label Li

N of each vertex u
and into a new label li(u) through a Hash function as

li(u) = Hash(li−1(u),Li−1
N (u)), (3)

where Hash is the hash mapping function that relabels Li
N as

a new single positive integer, and each li(u) corresponds to
a subtree rooted at u of height i. The iteration i ends when
the number of iterations is met to the largest one (i.e., Imax).
The WLSK kernel KWL(Gp, Gq) between the pair of graphs
Gp and Gq can be defined by counting the number of shared
pairwise isomorphic subtrees corresponding by li(u), i.e.,

KWL(Gp, Gq) =

Imax∑
i=0

|Li|∑
j=0

N (Gp, l
j
i )N (Gq, l

j
i ), (4)
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where Imax denotes the maximum number of the iteration i,
lji ∈ Li is the j-th vertex label of Li, and N (Gp, l

j
i ) repre-

sents the number of the subtrees corresponded by the label lji
and appearing in Gp.

The idea of the SPGK kernel is to compare the similarity
between a pair of graphs by counting the number of shared
shortest paths with the same lengths. The first step of comput-
ing the SPGK kernel is to extract all shortest paths from each
graph by using the classical Floyd algorithm [Floyd, 1962].
Given the pair of graphs Gp and Gq , the SPGK is defined as

KSP(Gp, Gq) =
∑
si∈S

N (Gp, si)N (Gq, si), (5)

where si ∈ S is the shortest path of length i, S is the set of all
possible shortest paths appearing in all graphs, and N (Gp, si)
represents the number of si appearing in Gp.

Remarks. Although the WLSK and SPGK kernels associ-
ated with the C-Support Vector Machine (C-SVM) [Chang
and Lin, 2011] have effective performance for graph classi-
fication, they still suffer from the theoretical drawbacks we
discussed in Section 1.

2.2 Classical Graph Neural Networks
One way to overcome the aforementioned problems of R-
convolution graph kernels is to adopt the GNN models, that
are developed by generalizing the classical Neural Networks
to the graph domain based on the spectral or spatial strat-
egy [Bai et al., 2022b; Cui et al., 2024]. Since the spectral-
based GNN models usually require that the graphs should
have the same size, and are only suitable for node classifi-
cation [Bruna et al., 2014]. The spatial-based GNN mod-
els are widely developed for graph classification. Under
this scenario, the Graph Isomorphism Network (GIN) pro-
posed by [Xu et al., 2019] exhibits the same expressive power
with the WLSK kernel. The Diffusion Convolution Neu-
ral Network (DCNN) [Atwood and Towsley, 2016] uses dif-
ferent weights to propagate the neighborhood information
from different hops to the center. The Graph Convolution
Neural Network (PATCHY-SAN) [Niepert et al., 2016] ex-
tracts the features by converting the graph structure into fixed-
sized patches. The Deep Graph Convolution Neural Network
(DGCNN) [Zhang et al., 2018] sorts the nodes based on the
substructure information extracted from the last graph convo-
lutional layer and preserves predetermined numbers of nodes,
resulting in the fixed-sized grid structure for the traditional
convolution operation.

Remarks. Although the above GNNs can naturally provide
an end-to-end framework, it is not available for classical R-
convolution kernels. These GNNs still suffer from some sim-
ilar drawbacks. First, the GIN and DCNN models tend to
directly sum up the local vertex features as the global graph
representation through the SumPool operation, discarding the
importance of the different local structure information re-
siding on different nodes. Second, the PATCHY-SAN and
DCNN models only preserve the local structure information
residing on the top-ranked nodes based on the SortPool oper-
ation, resulting in significant information loss. In fact, these

drawbacks also appear in other alternative GNNs, influencing
the performance of graph classification.

Several works have also explored the intersection be-
tween graph kernels and graph-based deep learning meth-
ods. Specifically, GNTK [Du et al., 2019] bridges graph ker-
nels and graph neural networks (GNNs) by modeling smooth
functions defined over graphs. KerGNN [Feng et al., 2022]
introduces trainable hidden graphs as filters to refine node
embeddings, while RWNN [Nikolentzos and Vazirgiannis,
2020] utilizes random walk kernels to measure similarities
between input graphs and hidden structures. However, these
approaches generally require increased parameters, thereby
incurring higher computational costs.

3 The Proposed AKBR Model for Graphs
In this section, we develop a novel Adaptive Kernel-based
Representations (AKBR) model. We introduce the detailed
definition of the proposed AKBR model.

3.1 The Framework of the AKBR Model
We commence by defining the framework of the proposed
AKBR model. Specifically, the computational architecture
is shown in Figure 1, mainly consisting of three procedures.
First, we construct the feature vector φ(Gi) for each sample
graph Gi based on the substructure invariants extracted with
a specific R-convolution graph kernel. In this work, we pro-
pose to adopt the classical WLSK and SPGK kernels for the
proposed framework. This is because the subtree and short-
est path substructures are effective in representing the struc-
tural characteristics of the original graphs. Second, we em-
ploy an attention layer to assign different weights to different
substructures, and the critical features will be associated with
larger weights through the attention mechanism. Third, the
resulting kernel matrix between pairwise graphs can be com-
puted as the dot product between their attention-based sub-
structure feature vectors. Inspired by the graph dissimilar-
ity or similarity embedding method presented by [Bunke and
Riesen, 2008; Bai et al., 2013], we employ the resulting ker-
nel matrix as the kernel-based similarity embedding vectors
of all sample graphs.

As a result, the framework of the proposed AKBR model
can provide an end-to-end learning architecture between the
kernel computation as well as the classifier, i.e., the proposed
AKBR model can adaptively compute the kernel matrix asso-
ciated with the most effective substructure invariants.

3.2 The Definition of the AKBR Model
In this subsection, we provide a detailed explanation of the
computation process for each step.

The Construction of Substructure Invariants
We employ the classical WLSK and SPGK kernels to extract
the subtrees and the shortest paths as the substructure invari-
ants. For the WLSK kernel, the subtree-based feature vector
φWL(G) of a sample graph G is defined as

φWL(G) = [n(G, l1), . . . , n(G, li), . . . , n(G, l|L|)], (6)

where li is the vertex label defined by Eq.(3) and corresponds
to a subtree invariant, each element n(G, li) is the number of
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Figure 1: The Framework of the Proposed AKBR Model.

the corresponding subtree invariants appearing in G, and |L|
is a positive integer and refers to the number of all distinct
subtree invariant labels. Similarly, for the SPGK kernel, the
feature vector φSP(G) of the graph G is defined as

φSP(G) = [n(G, s1), . . . , n(G, si), . . . , n(G, s|S|)], (7)

where each element n(G, si) is the number of the shortest
paths with the length si in the graph G, and |S| denotes the
greatest length of the shortest paths over all graphs. With
the substructure-based feature vectors of all graphs in G =
{G1, . . . , GN} to hand, we can derive the feature matrix X ∈
RN×L for the entire graph dataset G, i.e.,

X(·) =


φ(·)(G1)

...
φ(·)(Gj)

...
φ(·)(GN )

 , (8)

where N denotes the number of graphs, L denotes the dimen-
sion of each feature vector φ(Gj) for the graph Gj ∈ G, and
(·) corresponds to either the WLSK or the SPGK kernel.

Attention Mechanism for Feature Selection
As we have stated previously, some substructure-based fea-
tures may be more prevalent in some graphs. These fea-
tures naturally encapsulate more significant and discrimina-
tive structural information for classification. Thus, assigning
a more substantial weight to these features is preferred. As
a result, it is necessary to perform a thorough examination to
evaluate the importance of different features across all graphs.
To this end, we propose to employ the attention mechanism
as a means of feature selection, and adaptively identify the
most effective features of the feature matrix X(·) ∈ RN×L.

There have been various types of attention mechanisms,
including the self-attention [Vaswani et al., 2017], the exter-
nal attention [Guo et al., 2022], and channel attention [Hu et
al., 2018]. Inspired by the recent attention-based work [Hu
et al., 2018] that proposes to squeeze the global spatial in-
formation into a channel descriptor, we commence by using

Figure 2: One Illustrative Instance of the Channel Attention Mecha-
nism for Feature Selection.

the SumPooling operation to aggregate the information of all
graphs and squeeze them into a feature channel. Given the
feature matrix X(·) ∈ RN×L of all graphs in G, the aggrega-
tion information h ∈ R1×L can be calculated as

hl = Faggregate(xl) =
1

N

N∑
i=1

xl,i, (9)

where hl is the l-th element of h. With h to hand, we use
three fully connected linear layers associated with the non-
linear activation function to calculate the attention scores.
Specifically, we use W1 ∈ RL×C to denote the weight of
the first fully connected layer and W2 ∈ RC×L to represent
the weight of the second dense layer, where C denotes the
hidden feature dimension.

The resulting attention-based scoring matrix α ∈ RN×L

for the feature matrix X(·) ∈ RN×L can be computed as

α = softmax(W2σ(W1h)), (10)

where σ is the ReLU function, and α is the attention score.
With attention-based scoring matrix α that encapsulates

adaptive weights for the different features of each graph, the
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Figure 3: One Illustrative Instance of the Kernel-based Embedding.

substructure-based feature matrix X(·) can be updated as the
weighted substructure-based feature matrix X′

(·) by multi-
plying the attention scores, i.e.,

X′
(·) = α⊗X(·), (11)

where ⊗ refers to the feature-wise multiplication. An in-
stance of the attention mechanism for feature selection is
shown in Figure2. In summary, the attention mechanism can
assign substructures of each graph with different weights ac-
cording to their importance.

The Kernel-based Graph Embedding Vectors
Based on the definition provided in [Shervashidze et al.,
2011], any R-convolution graph kernel can be computed as
the dot product between the substructure-based feature vec-
tors of pairwise graphs. For an instance, the WLSK kernel
KWL defined by Eq.(4) between a pair of graphs Gp and Gq

can be rewritten as

KWL(Gp, Gq) = ⟨φWL(Gp), φWL(Gq)⟩, (12)

where each φWL(Gp) is the substructure-based feature vec-
tor defined by Eq.(6). With the attention score computed by
Eq.(11) to hand, we can compute the kernel value between
weighted substructures as

KWL(Gp, Gq) = ⟨α⊗ φWL(Gp), α⊗ φWL(Gq)⟩. (13)

Thus, the attention-based kernel matrix can be computed.
Specifically, [Bunke and Riesen, 2008] has proposed a
(dis)similarity graph embedding method that can embed or
convert each graph structure into a vector, so that any stan-
dard machine learning and pattern recognition for vectors can
be directly employed. In this paper, we propose to employ all
sample graphs as the prototype graphs and use the graph ker-
nel as the means of the similarity between each sample graph
G and each prototype graph Gp

q ∈ G (including G itself).
Thus, the kernel-based embedding vector ϕ(·)(G) of G can
be defined as

ϕ(·)(G) = [K(·)(G,Gp
1), . . . ,K(·)(G,Gp

q), . . . ,K(·)(G,Gp
N )],
(14)

where each element K(·)(G,Gp
q) represents the kernel value

between G and the prototype graph Gp
q , and (·) indicates that

Eq.(14) can be computed with either the WLSK kernel or the
SPGK kernel. Clearly, if G ∈ G is the j-th sample graph
Gj ∈ G (i.e., G = Gj), the kernel-based embedding vector
ϕ(·)(G) is essentially the j-th row of the kernel matrix K(·).
As a result, the kernel matrix K(·) can be theoretically seen as
the kernel-based embedding vectors over all graphs from G.

An instance of the kernel-based graph embedding is shown in
Figure 3, where Gp

i denotes the i-th prototype graph.
Since the attention-based weights for computing the kernel

matrix and the trainable parameter matrix for the classifier
can be adaptively updated when the loss is backpropagated,
the computational framework of the proposed AKBR model
can naturally provide an end-to-end learning mechanism.

3.3 Complexity Analysis
With |V | and |E| as the average number of nodes and edges,
N is the number of graphs, Tmax is the number of iterations
in WLSK, d is the largest feature dimension. For the SPGK,
we can extract all shortest paths in O(|V |2 log |V |+ |V ||E|)
time by using Johnson’s algorithm. Since 0 < |E| ≤
|V |(|V | − 1)/2, this approach only reaches cubic complexity
for fully connected graphs. For WLSK, the time complexities
of computing explicit feature vector and feature attention are
O(Tmax|E|) and O(Nd+ d2). Moreover, the time complex-
ity of the classifier is O(N2d). Thus, the total time complex-
ities of AKBR(SP) and AKBR(WL) are O(N(|V |2 log |V |+
|V ||E|) +N2d) and O(Tmax|E|+ d2 +N2d).

Datasets # graphs Mean # Node # classes

MUTAG 188 17.93 2
PTC(MR) 344 25.56 2
PROTEINS 1113 39.06 2
D&D 1178 284.30 2
FRANKENSTEIN 4337 16.90 2
IMDB-B 1000 19.77 2
IMDB-M 1500 13.00 3
Shock 150 13.16 10
OGBG-MOLBACE 1513 34.10 2
OGBG-MOLBBBP 2039 24.06 2

Table 1: Information of the graph datasets

4 Experiments
In this section, we evaluate the performance of the proposed
AKBR model against state-of-the-art graph kernels and deep
learning methods. We use ten standard graph datasets ex-
tracted from bioinformatics (Bio), social networks (SN), and
computer vision (CV). The OGBG-MOLBACE and OGBG-
MOLBBBP datasets are selected from Open Graph Bench-
mark [Hu et al., 2020]. The Shock dataset can be ob-
tained from [Siddiqi et al., 1999]. Other datasets from bioin-
formatics and social networks can be directly downloaded
from [Morris et al., 2020]. We provide the graph number and
the average graph size of each dataset in Table 1. Our code is
publicly available1.

4.1 Comparisons with Graph Kernels
Experimental Settings
We compare the performance of the proposed AKBR model
with several state-of-the-art graph kernels for graph classi-
fication tasks as Table 2: the Graphlet Count Graph Ker-
nel (GCGK) with graphlet of size 3 [Shervashidze et al.,
2009], the Random Walk Graph Kernel (RWGK) [Gärtner et

1https://github.com/Sophia0830BNU/AKBR
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Datasets MUTAG PTC(MR) PROTEINS IMDB-B IMDB-M Shock

GCGK3 82.04±0.39 55.41±0.59 71.67±0.55 65.87±0.98 45.42±0.87 26.93±0.63
RWGK 80.77±0.72 55.91±0.37 74.20±0.40 67.94±0.77 46.72±0.30 2.31±1.13
WL-OA 84.5±1.70 63.6±1.5 76.4±0.4 – – –
GAWL 87.3±6.3 – 74.7±3.0 74.5±4.1 51.7±5.2 –
HTAK – – – 72.9±0.2 50.2±0.2 –
DHGAK – 66.6±7.7 76.6±4.3 75.3±2.7 52.1±2.4 –

SPGK 83.38±0.81 55.52±0.46 75.10±0.50 71.26±1.04 51.33±0.57 37.88±0.93
CORE SP 88.29±1.55 59.06±0.93 – 72.62±0.59 49.43±0.42 –
AKBR(SP) 87.81±1.15 65.83±1.27 75.40±2.10 75.19±0.47 52.61±0.44 41.22±3.98
WLSK 82.88±0.57 58.26±0.47 73.52±0.43 71.88±0.77 49.50±0.49 36.40±1.00
CORE WL 87.47±1.08 59.43±1.20 – 74.02±0.42 51.35±0.48 –
AKBR(WL) 89.47±0.56 68.35±1.08 77.97±0.43 75.35±0.57 52.06±0.49 44.43±3.01

Table 2: Classification accuracy (in %±standard error) comparisons with graph kernels.

al., 2003], the Shortest Path Graph Kernel (SPGK) [Borg-
wardt and Kriegel, 2005], the Shortest Path Kernel based on
Core Variants (CORE SP) [Nikolentzos et al., 2018a], the
Weisfeiler-Lehman Subtree Kernel (WLSK) [Shervashidze
et al., 2011], the WLSK kernel associated with Core Vari-
ants (CORE WL) [Nikolentzos et al., 2018b], the Valid Op-
timal Assignment Kernel (WL-OA) [Kriege et al., 2016], the
Graph Alignment Kernels using Weisfeiler and Leman Hier-
archies (GAWL) [Nikolentzos and Vazirgiannis, 2023], a new
graph kernel that aligns vertices transitively between graph
pairs (HTAK) [Bai et al., 2022a] and the Deep Hierarchical
Graph Alignment Kernels (DHGAK) leveraging natural lan-
guage embeddings [Tang et al., 2024]. We perform a 10-fold
cross-validation and repeat the experiments ten times, and the
average accuracy is reported in Table 2. Since some meth-
ods are not evaluated by the original paper on some datasets,
we do not provide these results. We use the AKBR(SP)
and AKBR(WL) to represent the AKBR model based on the
SPGK and the WLSK.

Experimental Results and Analysis
Compared to the classical graph kernels, the family of the
proposed AKBR models achieves highly competitive accu-
racies in Table 2. Specifically, we observe that the family
of the proposed AKBR(WL) can outperform state-of-the-art
graph kernels on all datasets. On the other hand, the pro-
posed AKBR(SP) also significantly outperforms the original
SPGK and Core SP kernels. These observations demonstrate
that the theoretical advantages of the proposed AKBR model,
i.e., adaptively identifying the importance of different sub-
structures and computing the adaptive kernel matrix through
an end-to-end learning framework can tremendously improve
the classification performance.

4.2 Comparisons with Deep Learning
Experimental Settings
We further compare the family of our proposed AKBR mod-
els with some state-of-the-art graph deep learning methods
as Table 4, including the Deep Graph Convolution Neu-
ral Network (DGCNN) [Zhang et al., 2018], the Diffu-
sion Convolution Neural Network (DCNN) [Atwood and
Towsley, 2016], the PATCHY-SAN based Graph Convolu-
tion Neural Network (PATCHY-SAN) [Niepert et al., 2016],

the Deep Graphlet Kernel (DGK) [Yanardag and Vish-
wanathan, 2015], the Random Walk Graph Neural Networks
(RWNN) [Nikolentzos and Vazirgiannis, 2020], the Graph
Isomorphism Network (GIN) [Xu et al., 2019], the WL-based
GNNs (3WL-GNN) [Morris et al., 2019], an instantiation of
generalized message-passing framework (GraphSNN) [Wi-
jesinghe and Wang, 2022], the GNNs with positional encod-
ing (GatedGCN-LSPE) [Dwivedi et al., 2022], the Graph
Convolution Network (GCN) [Kipf and Welling, 2017], the
Union Subgraph Neural Networks (UnionSNN) [Xu et al.,
2024] and the the masked-attention ML-model using soft-
max kernel (GKAT) [Choromanski et al., 2022]. For these
baseline methods, they are also evaluated using the same 10-
fold cross-validation strategy as ours, thus we directly report
the results from the original papers. We also evaluate the
performance of the proposed AKBR method on the OGBG-
MOLBACE and OGBG-MOLBBBP datasets. The results are
reported in Table 3.

Model OGBG-MOLBACE OGBG-MOLBBBP

GraphSAGE 77.41±1.19 60.78±2.43
GraphSNN – 62.84±0.36
UnionSNN – 68.28±1.47
GIN 76.41±2.68 69.88±1.70
GCN 79.15±1.44 68.87±1.51

AKBR(WL) 79.45±0.53 70.39±1.45

Table 3: ROC-AUC score(± standard deviation) of the different ap-
proaches on OGBG-MOLBACE and OGBG-MOLBBBP datasets.

Experimental Results and Analysis
Table 4 demonstrates that the proposed AKBR(WL) model
consistently outperforms alternative graph deep learning
methods across seven TUDatasets. Furthermore, we also
evaluate the proposed AKBR(WL) method on OGBG-
MOLBACE and OGBG-MOLBBBP datasets. The results
are shown in Table 3. We can observe that the proposed
AKBR(WL) model achieves the highest ROC-AUC scores
on the ogbg-molbace and ogbg-molbbbp datasets, reinforc-
ing its effectiveness. In fact, similar to our methods, all these
alternative graph deep learning methods can also provide an
end-to-end learning framework, but typically stack more lay-
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Datasets MUTAG PTC(MR) PROTEINS IMDB-B IMDB-M DD FRANK

DGCNN 85.83±1.66 58.59±2.47 75.54±0.94 70.03±0.86 47.83±0.85 79.37±0.94 63.44±0.65
DCNN 66.98 56.60 61.29±1.60 49.06±1.37 46.72±0.30 58.09±0.53 –
PATCHY-SAN 88.95±4.37 62.29±5.68 75.00±2.51 71.00±2.29 45.23±2.84 76.27±2.64 –
DGK 82.66±1.45 60.08±2.55 71.68±0.50 66.96±0.56 44.55±0.52 78.50±0.22 –
3WL-GNN 84.06±6.62 60.9 60.18±6.35 74.2 49.5 74.84±2.63 58.68±1.93
RWNN 88.1±4.8 – 74.7±3.3 70.6±4.4 48.8±2.9 77.6±4.7 –
GraphSNN 84.04±4.09 61.63±2.8 71.78±4.11 74.81±3.5 – 76.03±2.59 67.17±2.25
GatedGCN-LSPE 88.33±3.88 – 73.94±2.72 70.03±5.15 46.47±4.00 76.74±2.04 67.74±2.65
GIN 84.7±6.7 64.29±1.26 74.3±3.3 71.23±3.9 48.53±3.3 75.3±2.9 66.50±2.37
UnionSNN 87.31±5.29 – 75.02±2.50 – – 77.00±2.37 67.83±1.99
GKAT – – 75.80±3.70 71.40±2.60 47.5±4.5 78.6±3.4 –

AKBR(WL) 89.47±0.56 68.35±1.08 77.97±0.43 75.35±0.57 52.06±0.49 80.02±0.42 71.25±0.23

Table 4: Classification accuracy (in %±standard error) comparisons with deep learning methods.

ers than our model does. However, the proposed method still
has better classification performance than these graph deep
learning methods, again demonstrating the effectiveness of
the kernel-based framework.

(a) PROTEINS (b) MUTAG

Figure 4: The evaluation for AKBR(WL) of iterations 1 to 5.

4.3 In-depth Discussions of the AKBR Model
To better analyze the advantages of the proposed AKBR
model beyond standard benchmarks, we conduct an in-depth
discussion focusing on its internal mechanisms and perfor-
mance sensitivity.

Method Iter MUTAG PROTEINS DD

WL

1 40 300 253231
2 214 21262 586248
3 786 56938 920338
4 1983 94878 1254664
5 3749 133531 OOM
6 5916 172457 OOM
7 8319 211521 OOM
8 10830 250662 OOM
9 13390 289842 OOM

10 15969 329045 OOM

SP – 15 64 84

Table 5: Comparison of substructure counts for WLSK and SPGK.

Q: How sensitive is the model to the number of iterations?
We explore how the classification accuracies of the proposed

AKBR(WL) vary with different iterations ranging from 1 to
5 on the PROTEINS and MUTAG datasets, and the results
are shown in Figure 4. Each model has been trained for 500
epochs on the first fold. We report curves with standard er-
ror computed on 40 runs for each iteration. Specifically, we
find that AKBR(WL) with iteration 1 has the optimal perfor-
mance. This is due to the fact that as the number of iterations
increases, the number of substructures grows exponentially,
resulting in a large amount of redundant information. To il-
lustrate this conclusion more intuitively, we count the number
of substructures generated by AKBR(WL) across iterations 1
to 10 as shown in Table 5.

Model MUTAG PROTEINS IMDB-B

AKBR SA 86.10±2.18 72.04±1.03 70.93±1.06
AKBR MHSA 85.85±2.24 70.44±1.32 71.32±1.30
AKBR CA 89.47±0.56 77.97±0.43 75.35±0.57

Table 6: Ablation study on different attention mechanisms.

Q: How does the Channel Attention affect the perfor-
mance of the proposed model? We first conduct the ab-
lation study of the AKBR with or without channel attention
on four representative datasets. Figure 5 shows the accu-
racy and standard deviation across ten runs of ten-fold cross-
validation. When the Channel Attention is removed, the ac-
curacy of the AKBR significantly decreases, demonstrating
the importance of channel attention.

Furthermore, to more intuitively demonstrate the effec-
tiveness of the channel attention mechanism, we incorpo-
rate Self-Attention and Multi-Head Self-Attention [Vaswani
et al., 2017] (with the number of heads set to 4) to the ex-
periment, as shown in Table 6. To more intuitively demon-
strate the effect of the attention mechanism, we also visualize
the top four substructures with the highest attention scores
in Figure 6. These substructures are representative of graph
labels, indicating that our proposed channel attention effec-
tively selects critical features, thereby enhancing the classifi-
cation performance of the model.

Moreover, Table 5 shows that as the number of iterations
increases, the number of substructures grows exponentially.
Consequently, the weight assigned to each substructure in-
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Figure 5: The ablation study of AKBR with or without channel at-
tention. w/o CA(WL) denotes AKBR(WL) without channel atten-
tion, w/o CA(SP) denotes AKBR(SP) without channel attention.

variant becomes smaller. This further explains why the per-
formance of AKBR(WL) declines with additional iterations.

(a) MUTAG (b) PROTEINS

(c) PTC MR (d) FRANK

Figure 6: The top four significant substructures for four datasets.

Q: Whether our proposed model can integrate other R-
convolution graph kernels? Our proposed method is com-
patible with any R-convolution graph kernel. We choose
the WLSK and SPGK because their associated subtree and
shortest path substructures can be efficiently extracted and
are known to represent meaningful structural information.
To verify that our method is indeed applicable to other R-
convolution graph kernels, we evaluate the AKBR model with
the Random Walk Graph Kernel (RWGK), i.e., the AKBR
(RW). As shown in Table 7, AKBR(RW) also achieves su-
perior performance compared to the original RWGK, demon-
strating that the proposed AKBR framework can be seam-
lessly integrated with various R-convolution kernels and con-
sistently enhance their effectiveness.
Q: Whether the number of prototype graphs impacts the
performance of the model? We conduct an experiment to
evaluate the impact of the number of prototype graphs. The
experimental results are shown as 8, the performance remains
stable as the number of prototype graphs increases from 200
to 800 across all datasets. Note that, we select the graph with

Method MUTAG PROTEINS IMDB-B

RWGK 80.77±0.72 74.20±0.40 67.94±0.77
AKBR(RW) 86.33±1.91 77.04±0.53 75.64±0.48

Table 7: Performance comparison with Random Walk Graph Kernel.

the highest Shannon entropy as the prototype graph [Bai et
al., 2013]. For example, on the DD dataset, the accuracy
varies from 74.12% to 74.57%. These minimal variations in-
dicate that the proposed method is robust to changes in the
number of prototype graphs and maintains consistent perfor-
mance, demonstrating strong generalization capability.

Number of prototypes PROTEINS DD FRANK

200 75.92 ± 0.67 74.12 ± 0.93 70.40 ± 0.34
400 75.90 ± 0.43 74.48 ± 0.78 70.49 ± 0.44
600 76.14 ± 0.43 74.57 ± 0.63 70.91 ± 0.30
800 75.94 ± 0.29 74.27 ± 0.37 70.51 ± 0.43

Table 8: Impact of the prototype graph number.

Q: Whether the AKBR(s) deliver superior efficiency com-
pared with existing deep learning methods? We conduct
an experiment to compare the total time cost of AKBR(WL)
with that of deep learning methods. The results are shown
in Table 9. For large-scale datasets, e.g., DD, our proposed
AKBR model runs over 6.17 times faster than UnionSNN.
This is because AKBR does not require a large number of net-
work layers, further proving that our proposed model struc-
ture is simple yet effective.

Model PROTEINS DD FRANK

3WL-GNN 6h3m36s 75h15m15s 19h18m36s
GraphSNN 4h3m 30h27m 5h45m36s
GatedGCN-LSPE 1h19m48s 3h39m 2h33m
GIN 31m48s 1h48m36s 2h0m36s
UnionSNN 1h18m36s 3h36m36s 2h27m36s
AKBR(WL) 42s 35m4s 1m3s

Table 9: Time cost for a single run with 10-fold-CV.

5 Conclusion
In this paper, we have proposed a novel AKBR model that
can extract more effective substructure-based features and
adaptively compute the kernel matrix for graph classification
through an end-to-end learning framework. Thus, the pro-
posed AKBR model can significantly address the shortcom-
ings arising in existing R-convolution graph kernels. Experi-
mental results show that our proposed AKBR model outper-
forms the existing state-of-the-art graph kernels and graph
deep learning methods. In future work, we plan to extend
our framework to incorporate a broader range of graph ker-
nels, such as quantum walk-based kernels [Bai et al., 2025;
Bai et al., 2024; Bai et al., 2023], further enhancing its ap-
plicability and effectiveness. In addition, we will explore the
hybrid graph kernels, to better capture complementary struc-
tural information from diverse perspectives.
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