Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

POLO: An LLM-Powered Project-Level Code Performance Optimization
Framework

Jiameng Bai', Ruoyi Xu!, Sai Wu'"?* | Dingyu Yang®, Junbo Zhao! and Gang Chen!
!College of Computer Science and Technology, Zhejiang University
?Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security
3The State Key Laboratory of Blockchain and Data Security, Zhejiang University
{baijiameng, noyexception, wusai, yangdingyu, j.zhao, cg} @zju.edu.cn

Abstract

Program performance optimization is essential for
achieving high execution efficiency, yet it remains
a challenging task that requires expertise in both
software and hardware. Large Language Models
(LLMs), trained on high-quality code from plat-
forms like GitHub and other open-source sources,
have shown promise in generating optimized code
for simple snippets. However, current LLM-based
solutions often fall short when tackling project-level
programs due to the complexity of call graphs and
the intricate interactions among functions. In this
paper, we emulate the process a human expert might
follow when optimizing project-level programs and
introduce a three-phase framework POLO (PrOject-
Level Optimizer) to address this limitation. First,
we profile the program to identify performance
bottlenecks using an iterative weighting algorithm.
Next, we conduct structural analysis by scanning the
project and generating a graph that represents the
program’s structure. Finally, two LLM agents col-
laborate in iterative cycles to rewrite and optimize
the code at these hotspots, gradually improving per-
formance. We conduct experiments on open-source
and proprietary projects. The results demonstrate
that POLO accurately identifies performance bottle-
necks and successfully applies optimizations. Under
the O3 compilation flag, the optimized programs
achieved speedups ranging from 1.34x to 21.5x.

1 Introduction

Program performance issues, often referred to as performance
bugs, are defects that arise from inefficient programming prac-
tices, such as the use of suboptimal data structures. These
defects lead to excessive processing overhead and unnecessary
resource allocation. Even worse, performance bugs typically
do not cause program malfunctions, making them difficult to
detect and particularly elusive [Nistor et al., 2013]. While
tools like FlameGraph [Gregg, 2016] and Valgrind [Nether-
cote and Seward, 2007] are available for performance analysis,
fixing performance bugs requires more advanced expertise

*Corresponding author.

2. Preallocate memory
3. Simplifying code logic

1. Data Structure Optimization]

Project-level
Optimization

HotSpot:A.cpp HotSpot:A.cpp|
.. st K &value,

onst K &value, std::list<Node
{ std

> &prevList) {
->height-1; (head_->height);
head_;p != nullptr;

trh1){ ->height-1; h>=0: --h){

= nullptr &&
! Th1)){
> ;)
ist[h] = p; }}
cla : public {
class : public void search(const K &value,
void (const K& value, std::vector<Node *> &prevList);

std::list<Node*>& prevList);

1 IAffected functions: C.cpp, D.cpp
JAffected functions: C.cpp, D.cpp (...) {
.] Sidiive <

> prevList(head_-

(key, prevList);

(. {) {
std::list<Node*> list;
search(key, list);

- A

ve > prevList(head_-
>height);
search(key, previList);

return equals(key, list.front()); return equals(key, previList.front());

Figure 1: An example of project-level program optimization. All
modules affected by changes to search must be adapted.

than simply writing the code, making it a highly challenging
task. Sometimes, performance issues may arise from workload
variability or deployment environment. In this paper, we focus
on performance problems caused by inefficient implementa-
tions at the source code level. Bottlenecks due to other factors
are beyond the scope of this paper.

Traditional methods typically focus on specific types
of defects, such as inefficient loops [Song and Lu, 2017,
Xiao et al., 2013], redundant computations [Della Toffola
et al., 2015], etc. With recent advances in generative language
models, researchers [Chen er al., 2024; Shypula et al., 2023]
have started collecting pre- and post-optimization code to
fine-tune LLMs for addressing a wider range of performance
issues. However, these efforts generally focus on optimizing
individual functions (e.g., LeetCode problems) or even spe-
cific lines, making them insufficient to meet the project-level
optimization demands in real-world scenarios.

Recently, some works have shifted their focus to function-
level optimization. For example, DeepPerf [Garg ef al., 2022]
collects code snippets of the same function before and af-
ter optimization in C# projects to fine-tune code models. Its
follow-up, RAPGen [Garg er al., 2023], retrieves knowledge

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Global Correlation Detection

AST claess "func\ . Glass Response:

.
_ffunc)
H ‘\ k J

7unc --,global
4 h

AST A

AST ‘f"a'"

1. The optimized hotspot function is:

(func)

(3
B
B T h
AST ‘funcK S ’func §truct r
B
FuncRank . \
ﬁ ? @ 6‘ ‘b / 1‘

ain
Runmng Q;n
Q
Prolect Proflllng £2 (d 4/\ K \

Runtime Local Hotspot Detection

2. The affected modules:

3. The optimization strategy:
3.1. Optimized data structure;
3.2. Optimized internal logic.

: [Extract Context \ \ !

enerator

Decision
[1:\\ {;'A ent
Agen A y 2. Continue the optimization. (
Optimize Update Execute

Code Rewrite with LLM Agents
Prompt Template

Response:

1. Accept this optimization.
P P! (

@

Synthesize Synthesize

PSG PCG

E- 3. The next optimization strategy:
! 3.1. The hot function search calls the
— lessThan function multiple times. (

Program Consider inlining it. Project

Next optimization strategy-

Global

) Library ('7: Function variable

0 " Class/Struct
— function

Figure 2: Overview of the POLO framework.

from pre-built databases and leverages large models to per-
form optimizations based on historical examples. However,
RAPGen’s reliance on code matching limits it to handling
additions, deletions, and modifications related to the misuse
of common C# API. This approach requires a knowledge base
constructed from before-and-after optimization changes in
code snippets of specific functions, which incurs significant
costs for collection and maintenance. Besides, it is challenging
to adapt it to other types of bugs and programming languages.

In the absence of a dedicated knowledge base for the project,
we must rely on common sense and practical experience for
code optimization. Fortunately, LLMs, having been trained
on vast repositories of projects written in various languages,
possess a general understanding of what well-optimized code
looks like. If we can effectively guide LLMs during program
optimization, we can establish a zero-shot method for per-
formance debugging. As illustrated in Fig. 1, we begin by
reviewing how a human expert approaches project-level code
optimizations and identify the challenges:

* Profiling and Hotspot Identification: In Fig. 1, the opti-
mization is centered around the hotspot search. The
key to effective optimization is profiling the program to
identify the hotspot that most impacts performance. It
is crucial as execution paths and bottlenecks vary across
programs. In complex programs, the call graph can be
intricate, making it challenging to pinpoint the hotspot.

* Project-Level Correlation Detection: For project-level
performance optimization, it is essential to understand
the context of a hotspot function, including its position
in the program and relationships with other modules. In
Fig. 1, the hotspot search calls the 1lessThan. It is
invoked by containsKey and remove, and is a mem-
ber of the SkipList class. These insights provide a
comprehensive understanding of the program’s structure,
enabling more effective optimization by the expert.

* Code Rewrite: After identifying the chain of bottlenecks,
we attempt to rewrite the code to improve performance.
However, this is a non-trivial task. The program shown
in Fig. 1 can be optimized in various aspects, includ-
ing data structures, memory allocation, and code logic.
The diverse nature of performance issues across different

projects requires a human expert to possess a broad range
of skills and knowledge across multiple domains. This
is the most challenging aspect of optimization, as it de-
mands expertise in multiple areas to effectively address
and resolve these varied performance issues.

In this paper, we propose the POLO (PrOject-Level Opti-
mizer) to tackle the challenge of project-level code optimiza-
tion by simulating the optimization process of a human expert.
POLO is organized into the following three modules:

Runtime Local Hotspot Detection: Program hotspots can
only be identified after actual execution, necessitating the use
of runtime analysis to detect local hotspots, as discussed in
Sec. 3.1. By running the program under real workloads and
using instrumentation tools, POLO can capture the program’s
runtime behavior, ensuring the detection of genuine perfor-
mance bottlenecks. To model the program’s runtime states,
we employ a meticulously designed finite state machine to
automatically parse profiling results and construct a directed
graph, the Program Call Graph (PCG), in which nodes repre-
sent functions and edges denote function call relationships. To
precisely identify hotspot, we apply a PageRank-like method,
Func_Rank, on the PCG to rank the functions, considering
both their execution time and impact within the call stack.

Global Correlation Detection: Runtime analysis alone
cannot reveal the complete structure of the program. For exam-
ple, if there are numerous “if-else”” branches and some are not
executed during runtime, critical information will be missing.
A comprehensive understanding of the program’s structure
is essential for grasping its functionality and semantics. As
discussed in Sec. 3.2, we perform a static analysis of the entire
project, constructing a Program Structure Graph (PSG) that
represents the structural information of the program, where
nodes denote key elements and edges represent their relation-
ships. The nodes and edges sufficiently encapsulate program
information to facilitate subsequent optimization.

Code Rewrite with LLM Agents: LLMs, as program-
ming experts, have already achieved significant success in
code generation [Zhu er al., 2024; Zheng et al., 2023b;
Zheng et al., 2023a; Ni et al., 2023]. We leverage multi-
ple agents in an interactive and iterative manner to perform
optimization. The Generator Agent extracts neighboring nodes
of the hotspot from PSG and PCG, crafts prompts, and inter-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Elements (Nodes) Relations (Edges)
Attribute

referer, referee

Type Attribute Type

Correlation Class/Struct

analysis Function

Global/Static
variable

name, body, template, file Static refer

name, parameter, return type, body,

template, file Inheritance

superclassOf, subclassOf

name, value, file Ownership hasmember, ismember

Runtime .
Function

. custom, library, time, file
analysis

Dynamic call caller, callee, frequency

Table 1: All elements and relations extracted from global correlation
analysis and local runtime analysis.

acts with the LLM to generate optimized code. The Decision
Agent executes the modified program, evaluates performance
changes, and decides on further optimization or improvement
directions. This iterative loop ensures optimizations are guided
by real-time performance impact for targeted improvements.
Overall, the contributions of this paper are as follows:

* To the best of our knowledge, POLO is the first end-
to-end project-level program optimization framework,
encompassing global program analysis, local hotspot de-
tection, and the code rewriting capabilities of large mod-
els, enabling us to make a exploration into the relatively
underexplored field of performance optimization.

We propose using the Program Structure Graph (PSG) to
model project architecture, incorporating richly attributed
nodes and edges to facilitate a comprehensive understand-
ing of the program’s semantic context. We advocate for
an automated system to manage information during the
runtime, constructing a Program Call Graph (PCG). By
applying a PageRank-like algorithm to this graph, our
profiling process can effectively identify hotspot.

We propose a collaborative, iterative method involving
two LLM agents to optimize programs based on hotspots
and program context. In each optimization cycle, the
agent continuously senses performance changes from
the environment, deciding whether to accept the current
optimization and guiding subsequent optimizations.

We conduct experiments on six open-source and private
projects. The results indicate that POLO successfully
identifies and optimizes hotspot, achieving speedups rang-
ing from 1.34x to 21.5x under the O3 compilation flag.

2 Related Work

2.1 LLMs for Code Generation

Generative language models have achieved remarkable accom-
plishments [Yu ez al., 2024; Yang et al., 2023; Du et al., 2024,
Huang et al., 2023; Liu et al., 2024b; Liu et al., 2024a;
Wang et al., 2024; Zan et al., 2022] in the automated code
generation field. They are capable of generating code based
on user instructions or the context of the program. Cur-
rently, there are many generative models specifically tailored
for code generation, like CodeBert [Feng er al., 2020] and
CodeLlama [Roziere erf al., 2023]. The large language models
(LLMs), represented by GPT 4 [Achiam et al., 20231, have fur-
ther propelled research to its peak. LLMs have been proven to
effectively understand and generate code. They have achieved
notable results on code benchmarks. However, it is worth
noting that these benchmarks focus on the ability to generate

ob=(5) Function <checkEqual> Construct Program Call Graph
fl=(238) /path/to/Probe.c
fn=(1044) checkEqual
cfi=(235) d| new dl_add_
cfn=(1046) consTuple L 4 D to_list
calls=150 n \0 2

‘9//
* 10944
--f-_u-(235) empty line. fi/fe] check
cfi= Equal
Ipath/to/Vector.c :i
of=(988) insertVector <N I %
SE:|!330=9130 y info /"¢ { ‘cons\ P finsert
cfr:l=(7302) dl_new_obj calls cfilcfl Tuple ‘Vector‘
calls=:
cfi=(26) i /L
cfn=(82) di_add_to_list allee) ofn allee) leraw / y Custgm
== id file ./ function _/ function

Figure 3: A finite state machine that designed for the profiling tool.

a single code file. Considering that real-world codes typi-
cally exist at the project-level, initiatives like CodePlan [Bairi
et al., 2024] have begun to leverage LLMs for project-level
code migration tasks. RepoAgent [Luo er al., 2024] explores
the documentation generation task. Nevertheless, such tasks
remain relatively unexplored.

2.2 Performance Optimization

Performance optimization, also referred to performance bug
repair, involves correcting code that causes poor performance
due to inefficient data structures or unnecessary operations.
Early methods aim to address specific types of performance
deficiencies, such as inefficient loops [Song and Lu, 2017,
Xiao et al., 2013], suboptimal data structures [Xu et al., 2010],
and redundant computations [Della Toffola et al., 2015]. Gen-
erative models have brought new directions for performance
optimization. PIE4Perf [Shypula et al., 2023] and Super-
sonic [Chen et al., 2024] collect pre- and post-optimization
versions of numerous C++ programming solutions and fine-
tune existing generative models to perform optimization.
SBLLM [Gao et al., 2024] iterates the optimization process
from the perspective of search. However, their optimizations
are mainly within single files (On the algorithm competition
platform, e.g., AtCoder and Codeforces), which cannot meet
the requirements of project-level performance repair in real-
world scenarios. Recently, DeepPERF [Garg et al., 2022] and
Rapgen [Garg et al., 2023] have begun attempting program
optimizations for C# language. DeepPEREF collects pre- and
post-optimization code pairs and fine-tunes the code language
models. Similarly, RAPGen utilizes the same code pairs to
build an optimization knowledge base to generate prompts for
LLM:s to perform optimizations. However, it focuses primarily
on fixing misuse of common C# API and lacks the capabil-
ity to optimize other types of bugs. Overall, project-level
optimization remains a relatively unexplored area.

3 Method

The architecture of POLO is shown in Fig. 2, consisting of
Runtime Local Hotspot Detection, Global Correlation De-
tection, and Code Rewrite with LLM Agents.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

3.1 Runtime Local Hotspot Detection

We use the Callgrind profiling tool [Weidendorfer, 2012] for
dynamic analysis. Unfortunately, the profiling results gener-
ated by Callgrind are not human readable. To enable further
analysis of runtime critical information, we thoroughly ana-
lyze Callgrind’s output and develop a Finite State Machine
(FSM) for automated parsing. As shown in Fig. 3, the left
side displays the highly simplified version of Callgrind out-
put. We employ the FSM on the right side to parse each file,
function, and call information involved at runtime line by line.
Despite the highly varied output of Callgrind due to its built-in
compression methods, our FSM can extract the execution cost
and call relationships for each function, including those from
numerous standard and third-party libraries.

Based on the parsed call information, we define the di-
rected graph, referred to as the Program Call Graph (PCG),
to represent the intricate call relationships within the pro-
gram. Formally, PCG = (V¢, E¢), where V¢ is the set of
functions executed during the program’s running (including
library functions), and E° represents the dependencies be-
tween these functions. Both nodes and edges contain rich
attributes. For example, the node checkEqual in Fig. 3
is characterized by A = {name : “checkEqual”,type :
“custom”,time : 25%}, which indicates that i € V° is
a custom function, and its execution time contributes 25%
of the total cost (excluding its calling relationships). The
Af; = {type : “caller”, count : 100, time : 20%} describes
an edge (¢,j) € E°, where function ¢ (the caller) invokes
function j (the callee) 100 times, and the call from ¢ to j
contributes 20% of the total execution cost.

Considering cases where time-consuming function is caused
by errors in their callers/callees or where non-optimizable li-
brary functions become performance bottlenecks, it is evident
that relying solely on function execution time is insufficient
for hotspot identification. A thorough analysis of the lengthy
call stack and execution duration is necessary to pinpoint
hotspots effectively. To address this, we propose a PageRank-
like ranking method: Func_Rank. We draw inspiration from
the PageRank [Page et al., 1999] algorithm. Func_Rank si-
multaneously considers both the time-consuming nature of
functions and their influence within the PCG. Specifically, we
analogize functions to web pages, with function calls viewed
as links between them, and the execution cost of the function
representing its inherent influence. The called functions prop-
agate time cost to their callers. Formally, we first compute the
weights for edges of the callee type. The weight is shown as:

AS; [time]
Wjs = < 1
EuGcaller(j) Aju[tlme]
s.t. - Af[type] == “callee”

where A;?u is the set of edges from node j to node u, and
AS, [time] denotes the time cost for this invocation. Here,
caller(j) represents the set of nodes that call j.

We use I; to represent the final score of the function i,
which is derived from the function’s real execution cost and
its influence within the call graph. This value is used to rank

/path/to/Skip_list.h:

L~

N
lequals) ’Sfe,e
\,,,,/VE@\/ —
TSR

remove

y@e‘v head
o=

©! —

/path/to/Skip_list.cpp

/path/to/Abstract_map.h:

(‘add \delet;\
Class/Struct [:T}éunction Global variablé\w,
Figure 4: An example of program structure graph.
and identify hotspot functions.
I, = (1 — a) Af[time] + o Z wjil;) 2)

j€Ecallee(i)

where j is a callee of node i. « is the dumping factor, which
balances the functions’ execution time and the influence prop-
agated from other nodes, with a default value of 0.5. We apply
the above equation iteratively until the values converge.

3.2 Global Correlation Detection

Conducting a global static analysis of the project is necessary.
It not only aids in understanding the context of functions but
also ensures proper adaptation of functions in the call stack
impacted by optimizations involving changes to function sig-
natures. Languages like C++ are among the most challenging
due to their support for multiple programming paradigms,
template and other advanced features. Its status as the pri-
mary choice for performance-critical algorithm motivates us
to select it as the example for program analysis in this work.

We use Clang’s LibTooling [Team, 2007] to construct an
Abstract Syntax Tree (AST) for each source file. The nodes of
the ASTs are analyzed through recursive traversal, extracting
both node attributes and relationships. The analysis process
is detailed in the Algorithm 1 in Appendix A. As shown in
Table 1, we extract Classes, Functions, Global variables, and
their attributes. Class is used to define a custom data type.
Function, being the basic building block of a program, is a
key targets for optimization. Global variable is used to store
essential information shared across various modules.

We define a directed graph, referred to as the Program
Structure Graph (PSG), to represent the structural relation-
ships within the program, as illustrated in Fig. 4. Formally,
the graph is denoted as PSG = (V*, E®), where V* repre-
sents the set of vertices, each corresponding to a function,
class, or global variable identified through program analy-
sis. The edges, E*, capture the relationships between these
vertices. Each vertex u € V? is associated with a set of
attributes A, which describe its properties. For instance,
A = {type : “function”,name : “Search”, ...} indicates
that the vertex u represents a function named “Search”. To
handle potential naming conflicts, each vertex also includes
a namespace attribute, ensuring uniqueness among functions
with identical names. Similarly, edges (u, v) € E* are anno-
tated with attributes A?, , which describe the attribute of the

uv?

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Generator Agent : Prompt Template

Task: As a programmer, you need to optimize the hotspot .
Use a Chain-of-Thought approach to understand the code and its contexts,
and then optimize the given hotspot function
Context:
When the project is runnln
ﬂThe hots ot calls times: ““code snippet’ "
eThe calls hotspot {100) times: " “code snippet’ "
During the code static analysis phase:
The hotspot references 8 ““code snippet” "
The node} references hotspot: ““code snippet "
Class {node) that hotspot belongs to: ““code snippet” "
Based on these contexts, optimize the hotspot function :
" “code snippet® "
Here is the response template:
Optimized hotspot function:

Affected functions:
\ ## Optimization strategy:

J

S
.

T
IF strategy)
1s Not None)

Decision Agent : Prompt Template

Task: As an advanced programmer, you need to make optimization
decisions based on program performance changes.

1. Decide whether to accept optimization based on performance changes;
2. Decide whether to continue optimization based on current code.

**After optimization, the performance changes from to :

After this optimzation, the current codes are:
**Hotspot function ({4l %] is : “code snippet’ "
Context:

- Updated Context from PSG

Here is the response template:
Accept or reject this optimization.
Continue or end the optimization.
If continue, output the next optimization strategy.

v

Figure 5: Prompt templates for the Generator Agent and Decision Agent.

relationship between vertices u and v. For instance, an edge
Az = {type : “ismember”} implies that there is an edge
(u,v) € E° between nodes u and v, where the relationship
u — v indicating u is member of v; conversely, v — w is the
“hasmember”, indicating v is parent of . This information
facilitates the extraction and assembly of each element in sub-
sequent steps, such as constructing a function’s signature from
its template, name, return type, and parameter list.

3.3 Code Rewrite with LLM Agents

As shown in Fig. 2, we adopt two LLLM agents for iterative
optimization: Generator Agent and Decision Agent. Human
programmers are sometimes limited by their own knowledge
domains and may inadvertently write inefficient code. Lever-
aging Generator Agent as a code generator can mitigate these
issues by unleashing their comprehensive and advanced pro-
gramming capabilities. Decision Agent incorporates perfor-
mance changes as feedback. It can effectively guide the LLM
to optimize while avoiding negatively impact code.

Generator Agent
An important fact is that the context of function aids LLM
in better understanding its functionality, thereby facilitating
optimization. Additionally, the context helps the LLM com-
prehend the call stack of hotspot and their connections with
other modules, enabling broader optimization rather than fo-
cusing solely on isolated code segments. Hence, we extract the
neighboring nodes of the hotspot function as program context.

Prompt Synthesis. For the hotspot node w, its set of neigh-
boring nodes and associated edges from PSG and PCG are
denoted as N"™°%(u) = {v € VS UV® | (u,v) € E* U E°}
and N°¥9¢(u) = {e = (u,v) | e € E° U E°}. We obtain
the neighboring nodes and their attributes as: {(v, 4,) | v €
N7ode(y)}, Taking the search node in the Fig. 4 as an ex-
ample, we can derive its context lessThan, remove, and
SkipList from N"°%(y). Based on the edge attributes in
Ned9¢(y), we can derive that search has a call relationship
with lessThan and is a member of SkipList. We synthe-
size neighboring nodes into different prompts based on the
types of edges. The detailed template is shown in Fig. 5.

As shown in Fig. 5, the dynamic relationships are included
in parts (1) 2) of the prompt, while the static relationships

are covered in parts 3) @) (5. Finally, the hotspot function
itself (¢) and the return format follow, completing the template
synthesis. Since each node has attributes, we can concatenate
the attributes (return type, name, parameters, body) to form
the code snippet in the template.

Optimize with LLM. We send the assembled prompt to the
LLM to optimize the hotspot. We intentionally inject the node
ID of each node into the synthesized prompt and require the
LLM’s output to include the ID, which is given in the PSG. By
parsing the response, we can automatically write the modified
code back into the source files. It facilitates cross-file and
cross-function modifications, making the optimization process
process more seamless and efficient.

Decision Agent

The code generated by the Generator can impact performance
both positively and negatively. Unnecessary optimizations
may degrade performance. Therefore, tracking performance
changes is crucial to retain only beneficial optimizations.
Program Execution and PSG Update. The program
needs to be re-executed to assess the performance. We record
both the pre- and post-optimization performances. Mean-
while, since the function bodies, and other modules may have
changed, the PSG needs to be updated to reflect the newest ver-
sion of program. This ensures that the PSG synchronizes the
modified program, maintaining consistency for future steps.
Make Decision. As shown in Fig. 5, we track prompt
changes and retrieve the current hotspot context based on the
updated PSG. The LLM decides whether to accept or reject
these changes, and whether to continue or terminate the op-
timization. If it continues, it provides additional strategies,
which are passed to the Generator Agent for program optimiza-
tion. This iterative process persists, with the Decision Agent
evaluating each cycle, until further optimization is deemed
unnecessary, at which point the process terminates.

4 Experiments

In real world, the compile level OO is used during development,
and O3 enables aggressive optimizations, aiming to produce
highly optimized code for production needs. We consider
both the 00 and O3 flags. The goal is to verify whether the

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Level Project

Quant [Smidt, 2012] C++ 5 1 9 315 Quantitative Trade Framework
AStar (Private) C+ 10 9 18 484 A* search Algorithm

SkipList (Private) C++ 6 7 44 886 SkipList Implementation

AES [Conte, 2015] [¢ 3 0 31 1409 Crypto Algorithm

KGraph [DBAIWangGroup, 20211~ Ci+ 8 22 109 3937 Nearest Neighbor Search
MiniSQL (Private) C++ 129 130 772 15915 Small Database System

Language File Class Functions Lines Type

Easy
Medium

Hard

Table 2: Projects Used in the Experiments.

Project Data Correctness Speed Test Coverage
Quant provided v ' 85.71%
AStar [Sturtevant, 2012] v v 83.17%
SkipList provided v ' 91.36%
AES [Bell er al., 19901 v v 93.69%
KGraph Audio [Group, 20061, SiftIM [Jegou et al., 2010] v v -
MiniSQL provided v v 83.73%

Table 3: Details of the correctness and performance testing.

optimizations produced by POLO surpass what the compiler
can accomplish. We focus on the following questions:

RQ1: Overall Effectiveness. Is POLO capable of optimiz-
ing real projects, especially with the O3 flag enabled?

RQ2: Baseline Compare. How does POLO compare to the
existing state-of-the-art C++ program optimization methods?

RQ3: Ablation Study. How does the POLO perform with-
out context or multiple rounds of agents’ interactions?

RQ4: Case Study. What specific optimization techniques
does POLO employ to optimize different programs?

4.1 Experiment Settings

Projects. The six C/C++ projects, summarized in Table 2, fo-
cus on algorithmic domains like SkipList and A* search, where
performance is critical. They are classified into three levels
based on lines of code: easy (< 500), medium (> 500, <
2000), and hard (> 2000), to assess the effectiveness in han-
dling projects of varying scales. Notably, no existing dataset in
project-level optimization. Related tasks—project-level code
migration [Bairi et al., 2024], code generation [Zhang ef al.,
2023], and document generation [Luo et al., 2024]—have used
6, 6, and 9 projects, respectively. Thus, we believe the number
of projects in our study is reasonable, given the effort required
for performance testing and correctness validation.
Correctness and Performance testing. Functional verifica-
tion is a crucial step. The performance gains are meaningful
only if it passes the functional tests of the origin version.
Furthermore, it is necessary to provide domain-specific per-
formance tests for each project. Table 3 presents the tests
for each project. We also measured the code coverage of the
correctness test program, which is above 80% in most cases.

. SkipList MiniSQL KGraph AES (ecb) AStar
z A 2001mp _ Hg 0000 |E 7
ESOO :: % 500017 y ::
(5] o ° of
o Y @ HER B o
w0 0 o0 060
Z 7 78
o100 5 50001 71
g ; %
& o MEE E
03 03

Origin SuperSonic GPT4-hot &= GPT4-file B POLO

Figure 6: Comparison with baseline methods.

Evaluation metrics. Real-world projects have no absolute
ground truth code. Therefore, we use the actual execution
time of the program as the evaluation metric. Additionally,
we also adopt the metric from the [Chen et al., 2024], where
the performance improvement (PI) is denoted as the ratio
of the execution times of the origin (origin) and optimized
version (optimized), defined as PI= %. Each project
is executed five times, and the average execute time is reported.
Implementation details. To balance effectiveness and cost,
we use GPT-4o [OpenAl, 2024] as the default LLM agent. We
set the (temperature: 0.2) to ensure the results are as determin-
istic and reproducible as possible. We use separate instances
of the LLM as the Generator Agent and the Decision Agent
to ensure role separation and avoid context entanglement. For
each code optimization, we adopt a Top-N selection criteria,
i.e., generating N results and selecting the best one among
them. In our experiments, N=5. Occasionally, the LLM may
generate compilation bugs, at which point we re-query the
LLM to correct it. Our results show that the LLM does not
produce a significant number of errors in optimization tasks.
Because it refines the initial version of the code, rather than
writing code from scratch. In the worst case, it generates code
identical to the origin version, with no improvements.

4.2 RQ1: Overall Effectiveness

The object of RQ1 is to validate the effectiveness of POLO in
real-world projects. For all projects, we conduct tests using
both 00 and 03 flags. The goal is to assess whether the opti-
mizations generated by POLO outperform those achieved by
the compiler. The results in Table 4 demonstrate that POLO
can significantly enhance project-level performance, achieving
speedups ranging from several times to tens of times. Some
optimizations even span across functions and files. We will
further elaborate on the optimization through detailed case
study. (Sec. 4.5). Notably, for data structures and algorithms
projects (e.g., SkipList and AStar), the optimization effects are
especially pronounced. For data processing and query-based
projects (e.g., Minisql and KGraph), the optimized program
demonstrates substantial performance gains across different
data loads, including Audio and Sift1M datasets. In the Quant
project, performance bottlenecks due to improper use of third-
party libraries are addressed, leading to a significant improve-
ment. For the AES project, POLO still achieves substantial
improvements across various encryption modes.

4.3 RQ2: Baseline Compare

Unfortunately, we are unable to find an end-to-end system sim-
ilar to POLO that spans from hotspot detection to optimization.
Therefore, we manually inject the hotspot into baselines.

Supersonic [Chen et al., 2024]: Tt uses a Seq2Seq model
trained on pre- and post-optimization C/C++ code. Its train-
ing data is crawled from platforms like Codeforces, AIZU,
and AtCoder. GPT4-hot: we use the more advanced GPT-4
Turbo [Achiam er al., 2023], and send only the hotspot to
the model as the prompt. GPT4-file: We provide the entire
C++ file without explicitly marking the hotspot function to the
GPT-4 Turbo. Notably, sending the hotspot for optimization
to GPT-4 is a widely adopted baseline in this field, as seen
in [Chen et al., 2024; Garg et al., 2023].

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

. 00 03
Projects Origin (ms) __ Optimized (ms) PI (%) Origin (ms) __ Optimized (ms) PI (%)
SkipList 794.6 255.5 3.11x 140.7 44.1 3.19x
Quant 671.9 30.9 21.7 x 178.7 8.3 21.5%
AStar 55925.2 36853 1.52x 8527.6 5844.6 1.46 x
MiniSQL 8260 1107.8 7.45 % 4133.8 977.6 4.23x
Audio 193.6 124.3 1.56 < 78.5 37.8 2.08 x
KGraph .
SiftiM 38671.8 28422.2 1.36x 14222.5 9096.5 1.56x
ECB 3083.3 3298.1 0.93 x 1336.6 996.9 1.34x
AES CBC 3136.7 3330.0 0.94 x 1323.7 989.0 1.34x
CTR 3141.1 3340.1 0.94 x 1326.1 989.8 1.34x
Table 4: The overall effectiveness of POLO.
The results are shown in Fig. 6. Due to the simplic- KGraph AStar AES (ecb)

ity of Quant’s changes (Appendix B.1), the baseline’s op-
timized code matches POLO’s and is omitted from the figure.
Our method consistently outperforms all baselines. Notably,
Supersonic demonstrates minimal optimization across most
projects, with only minor changes (e.g., adding #pragma
GCC optimize ("unroll-loops"))and no substantial
function-level modifications. This limitation may stem from
its training data, which is from Online Judge platforms, mak-
ing it less suited for project-level optimizations. GPT4-hot
can optimize function-level logic, but it becomes ineffective
for project like SkipList, which require cross-function mod-
ifications. GPT4-file shows improvements in specific cases,
especially when the hotspot and its context are within the
same file, but it is limited for project like AStar, which require
cross-file modifications.

4.4 RQ3: Ablation Study

Effect of multi-agent: Our framework relies on multi-round
interactions between two agents to optimize the program. As
shown in Table 5, we break down each individual optimiza-
tion step and provide a detailed discussion of the changes. In
the Quant project, significant optimization is achieved in the
first round, and the optimized code is already highly efficient.
Consequently, the Decision Agent opts to terminate the opti-
mization process early. The MiniSQL project also achieved
substantial optimization results in the first round, with only
marginal improvements in the second round compared to the
first. For all other projects, multiple rounds of optimization
yield further improvements. In the second round of interac-
tions, substantial gains are observed for SkipList and AES.
During the third round, although execution times improve
under 00, performance under O3 declines. This is due to opti-
mizations in these projects, such as inlining caller functions,
which underperform compared to the compiler’s native inlin-
ing strategies. The Decision Agent identifies this slowdown
and rejects the optimization attempt. For AStar and KGraph,
optimal results are achieved after the third round of interac-
tion. Throughout multi-round optimization, an interesting
pattern emerges: during the initial rounds, the LLM focuses
on optimizing the internal logic of the hotspot. Afterwards, it
gradually adopts a more global perspective, performing cross-
function changes or utilizing more advanced instruction sets.

2000

D)

Speed (ms)

0

03 03 0
w/o Context

&
@l
o

3
)

(@)

r 03
Origin B w/ Context

Figure 7: The impact of incorporating context information.

SkipList:main
. At [cma(..)] [sma(..)] [add | [remove()] [contains]
otspo

hotspot
(ist>..] [lessThan]
time-consu = ime= uming
unbound(...) [beigin()] [less<>...] [value(...)]

Figure 8: The runtime call graphs for the Quant and SkipList.

Effect of context: In Sec. 3.3, we synthesize neighboring
nodes of the hotspot in the PSG to create a prompt. To eval-
uate the impact of context nodes, we compare two methods:
one with (“w/ context™) and one without the context (“w/o
context”) information. For a controlled comparison, we ap-
ply a single round of optimization, omitting the multi-round
agent interactions. As shown in Fig. 7, “w/ context” performs
similarly or better than the “w/o context” method. For intra-
function optimizations like Quant and AES, the context-aware
advantage is minimal, while for cross-function optimizations
like SkipList and AStar, it significantly outperforms the “w/o
context” method. In the AES project, both the “w/ context”
and “w/o context” versions produce nearly identical optimized
code after the initial optimization. To further refine both ver-
sions, we apply the multi-round agent strategy. The results
are indicated by the Step 2 marker. Following this additional
optimization, analysis reveals that the context-aware method
achieves improvement by utilizing external function.

Our framework offers three key benefits: (1) Multi-agent
and multi-round interactions enable more advanced optimiza-
tion strategies, and (2) Decision Agent-environment interac-
tion evaluates optimization effectiveness based on program
feedback. (3) Context information is crucial for LLMs to

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

. 00 (ms) 03 (ms)

Projects
Step 0 Step 1 Step 2 Step 3 Step 0 Step 1 Step 2 Step 3
SkipList 794.63 508.73 255.54 226.13 140.67 62.23 44.13 50.69
Quant 671.90 30.97 - - 178.70 8.31 - -
AStar 55925.2 49189 43573.4 36853 8527.6 7536 7203.4 5844.6
MiniSQL 8260 1112.8 1107.8 1115 4133.8 989.8 977.6 985.4
KGraph Audio 193.6 174.02 125.36 124.25 78.5 48.2 38.79 37.80
Sift1M 38671.8 34622.4 28540.92 28422.2 14222.5 9835.45 9352.83 9096.51
ECB 3083.29 3813.72 3298.06 2759.26 1336.59 1245.92 996.87 1110.29
AES CBC 3136.65 3859.24 3330.01 2758.77 1323.74 1229.13 989.04 1092.31
CTR 3141.04 3870.70 3340.12 2782.09 1326.12 1236.10 989.81 1091.39

Table 5: Results of each step in the multi-round interactions. Step 0 is the original program. The best results are highlighted in bold.

void SkiplList<>::search(const K &value,
std::1list<Node *> &prevList) {
int h = head_->height-1;
for(Node *p=head_;p!=nullptr;p=p->next[h]){
if(lessThan(value,p)){
p = p->prev[h];
prevList.push_front(p);
h--3

void SkipList<>::search(const K &value,
std::vector<Node *> &prevList) {
int h = head ->height - 1;
Node *p = head ;
prevList.resize(head_->height, nullptr);
while (h >= @) {
while (p->next[h] != nullptr &%
!lessThan(value, p->next[h])) {
p = p->next[h];

void SkipList<>::search(const K &value,
std::vector<Node *> &prevList) {

. // Remains the same
}

std::optional<V> SkipList<>:
static thread_local std:
. // Remains the same

cput(...) {
:vector<Node*> list;

¥

if(h<@) break;

h--;
} } }
}
std::optional<V> SkipList<>::put(...) {
std::list<Node*> list;
search(key, list);
. // Details omitted

1
prevList[h] = p;

std::optional<V> SkipList<>::put(...) {

std::vector<Node*> list;
... // Remains the same

std::optional<V> SkipList<>:
static thread local std:
. // Remains the same

iget(...) {
:vector<Node*> list;

¥

bool SkipList<>::remove(...) {
static thread_local std::vector<Node*> list;
. // Remains the same

Figure 9: Case study of SkipList.

devise comprehensive project-level optimization strategies.

Effect of hotspot detection: We use Quant and SkipList as
case studies to demonstrate the effectiveness of Func_Rank
in identifying true hotspot functions. The key question we
address is whether Func_Rank outperforms a naive baseline
that simply selects the most time-consuming function as the
hotspot. As shown in Fig. 8, the function with the longest
execution time often lies on the call path to the actual hotspot,
but is not the hotspot itself. In contrast, our approach analyzes
the full call chain to accurately localize the true bottleneck.

4.5 RQ4: Case Study

This section illustrates how POLO optimizes projects step
by step, complementing quantitative results with process-
level insights. For additional case studies, please see the
Appendix B.1.

SkipList: Fig. 9 shows the optimization in SkipList. In
Step 1, we replace std::1ist with std: :vector, as
the latter’s contiguous memory allocation improves cache lo-
cality, reducing cache misses. Modern processors’ prefetching
mechanisms further enhance cache hit rates. The internal
loop logic is also optimized. In Step 2, due to the high fre-
quency of calls to put and get, the camulative cost of repeat-
edly allocating and deallocating memory for the temporary
std: :vector<Node*> becomes a performance bottle-
neck. By declaring the vector as static thread-local,
memory is allocated only once and reused across function
calls, effectively eliminating unnecessary allocation overhead.

AStar: Fig. 14 (see Appendix B.1) shows that the initial code
frequently allocates and deallocates memory with each call
to getNeighbors, as it creates a new std: : vector to
retrieve neighboring nodes for movement cost calculations.
In Step 1, the function is modified to use a fixed-size ar-
ray, returning only the count of valid neighbors, thus elim-
inating dynamic memory overhead and improving perfor-
mance. Further optimizations include preallocating space
in the unordered-map using reserve to reduce resiz-
ing costs, encapsulating priority queue operations in lambda
functions for modularity, and inlining getNeighbors to
decrease function call overhead. We use objdump disassem-
bly tool to confirm that the previous code does not inline
this function even under O3 optimization, demonstrating the
effectiveness of the manual inlining.

5 Conclusion

We present POLO, a novel framework for project-level pro-
gram optimization. It identifies performance bottlenecks
through dynamic analysis and a finite state machine that con-
structs the program call graph, followed by a function ranking
algorithm to locate hotspots. Comprehensive static analysis
extracts contextual information around these key elements.
Subsequently, we propose a collaborative multi-agent method,
where specialized agents interact over multiple rounds to itera-
tively improve performance based on feedback. Experiments
on real-world projects demonstrate that POLO achieves signif-
icant speedups, even on top of the —O3 optimization level.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This work has been supported by Zhejiang Province “Jianbing”
Key R&D Project of China (No0.2025C01010).

References

[Achiam et al., 2023] Josh Achiam, Steven Adler, Sandhini
Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[Bairi ef al., 2024] Ramakrishna Bairi, Atharv Sonwane,
Aditya Kanade, Vageesh D. C., Arun Iyer, Suresh
Parthasarathy, Sriram Rajamani, B. Ashok, and Shashank
Shet. Codeplan: Repository-level coding using llms and
planning. Proc. ACM Softw. Eng., 1(FSE), July 2024.

[Bell er al., 1990] Timothy Bell, John Cleary, and Tan Wit-
ten. Calgary corpus. https://www.data-compression.info/
Corpora/CalgaryCorpus/, 1990. Accessed: October 20,
2024.

[Chen et al., 2024] Zimin Chen, Sen Fang, and Martin Mon-
perrus. Supersonic: Learning to generate source code opti-
mizations in c¢/c++. IEEE Transactions on Software Engi-
neering, 2024.

[Conte, 2015] Brad Conte. Basic implementations of stan-
dard cryptography algorithms, like aes and sha-1. https:
//github.com/B-Con/crypto-algorithms/tree/master, 2015.
Accessed: October 20, 2024.

[DBAIWangGroup, 2021] DBATWangGroup. Benchmark of
nearest neighbor search on high dimensional data. https:
/Igithub.com/DBAIWangGroup/nns_benchmark, 2021. Ac-
cessed: October 20, 2024.

[Della Toffola et al., 2015] Luca Della Toffola, Michael
Pradel, and Thomas R Gross. Performance problems you
can fix: A dynamic analysis of memoization opportunities.
ACM SIGPLAN Notices, 50(10):607-622, 2015.

[Du et al., 2024] Xueying Du, Mingwei Liu, Kaixin Wang,
Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large
language models in class-level code generation. In Pro-
ceedings of the IEEE/ACM 46th International Conference
on Software Engineering, pages 1-13, 2024.

[Feng et al., 2020] Zhangyin Feng, Daya Guo, Duyu Tang,
Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A
pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155, 2020.

[Gao er al., 2024] Shuzheng Gao, Cuiyun Gao, Wenchao Gu,
and Michael Lyu. Search-based llms for code optimization.
arXiv preprint arXiv:2408.12159, 2024.

[Garg et al., 2022] Spandan Garg, Roshanak Zilouchian
Moghaddam, Colin B Clement, Neel Sundaresan, and
Chen Wu. Deepperf: A deep learning-based approach
for improving software performance. arXiv preprint
arXiv:2206.13619, 2022.

[Garg et al., 2023] Spandan Garg, Roshanak Zilouchian
Moghaddam, and Neel Sundaresan. Rapgen: An approach
for fixing code inefficiencies in zero-shot. arXiv preprint
arXiv:2306.17077, 2023.

[Gregg, 2016] Brendan Gregg. The flame graph. Communi-
cations of the ACM, 59(6):48-57, 2016.

[Group, 2006] Princeton CASS Group. Audio datasets. https:
/Iwww.cs.princeton.edu/cass/demos.htm, 2006. Accessed:
October 20, 2024.

[Huang et al., 2023] Dong Huang, Qingwen Bu, Jie M Zhang,
Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisa-
tion. arXiv preprint arXiv:2312.13010, 2023.

[Jegou et al., 2010] Herve Jegou, Matthijs Douze, and
Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine
intelligence, 33(1):117-128, 2010.

[Liu et al., 2024a] Jiawei Liu, Chungiu Steven Xia, Yuyao
Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large lan-
guage models for code generation. Advances in Neural
Information Processing Systems, 36, 2024.

[Liu et al., 2024b] Zhijie Liu, Yutian Tang, Xiapu Luo, Yum-
ing Zhou, and Liang Feng Zhang. No need to lift a finger
anymore? assessing the quality of code generation by chat-
gpt. IEEE Transactions on Software Engineering, 2024.

[Luo e al., 2024] Qinyu Luo, Yining Ye, Shihao Liang,
Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, Xiaoyin Che, Zhiyuan Liu, and
Maosong Sun. RepoAgent: An LLM-powered open-source
framework for repository-level code documentation genera-
tion. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: System Demon-
strations, pages 436—464, Miami, Florida, USA, November
2024. Association for Computational Linguistics.

[Nethercote and Seward, 2007] Nicholas Nethercote and Ju-
lian Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. ACM Sigplan notices,
42(6):89-100, 2007.

[Ni et al., 2023] Ansong Ni, Srini Iyer, Dragomir Radev,
Veselin Stoyanov, Wen-tau Yih, Sida Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation
with execution. In International Conference on Machine

Learning, pages 26106-26128. PMLR, 2023.

[Nistor et al., 2013] Adrian Nistor, Tian Jiang, and Lin Tan.
Discovering, reporting, and fixing performance bugs. In

2013 10th working conference on mining software reposito-
ries (MSR), pages 237-246. IEEE, 2013.

[OpenAl, 2024] OpenAl. Hello gpt-4o.
https://openai.com/index/hello-gpt-40/, 2024. Accessed:
October 20, 2024.

[Page et al., 1999] Lawrence Page, Sergey Brin, Rajeev Mot-
wani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford info-
lab, 1999.

https://www.data-compression.info/Corpora/CalgaryCorpus/
https://www.data-compression.info/Corpora/CalgaryCorpus/
https://github.com/B-Con/crypto-algorithms/tree/master
https://github.com/B-Con/crypto-algorithms/tree/master
https://github.com/DBAIWangGroup/nns_benchmark
https://github.com/DBAIWangGroup/nns_benchmark
https://www.cs.princeton.edu/cass/demos.htm
https://www.cs.princeton.edu/cass/demos.htm

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Roziere et al., 2023] Baptiste Roziere, Jonas Gehring,
Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

[Shypula et al., 2023] Alexander Shypula, Aman Madaan, Yi-
meng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi, Gra-
ham Neubig, Parthasarathy Ranganathan, Osbert Bastani,
and Amir Yazdanbakhsh. Learning performance-improving
code edits. arXiv preprint arXiv:2302.07867, 2023.

[Smidt, 2012] Joseph Smidt. quant++: A c++ quantitative
trading framework. https://github.com/jsmidt/quantpp/tree/
master, 2012. Accessed: October 20, 2024.

[Song and Lu, 2017] Linhai Song and Shan Lu. Performance
diagnosis for inefficient loops. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE),
pages 370-380. IEEE, 2017.

[Sturtevant, 2012] N. Sturtevant. Benchmarks for grid-based

pathfinding. Transactions on Computational Intelligence
and Al in Games, 4(2):144 — 148, 2012.

[Team, 2007] The Clang Team.
https://clang.llvm.org/docs/LibTooling.html,
Accessed: October 20, 2024.

[Wang et al., 2024] Yi Wang, Qidong Zhao, Dongkuan Xu,
and Xu Liu. Purpose enhanced reasoning through iterative
prompting: uncover latent robustness of chatgpt on code
comprehension. In Proceedings of the Thirty-Third Inter-
national Joint Conference on Artificial Intelligence, pages
6513-6521, 2024.

[Weidendorfer, 2012] Josef Weidendorfer. Cache perfor-
mance analysis with callgrind and kcachegrind. In § VI-
HPS Tuning Workshop, 2012.

[Xiao et al., 2013] Xusheng Xiao, Shi Han, Dongmei Zhang,
and Tao Xie. Context-sensitive delta inference for iden-
tifying workload-dependent performance bottlenecks. In
Proceedings of the 2013 International Symposium on Soft-
ware Testing and Analysis, pages 90-100, 2013.

[Xu et al., 2010] Guoging Xu, Nick Mitchell, Matthew
Arnold, Atanas Rountev, Edith Schonberg, and Gary Sevit-
sky. Finding low-utility data structures. In Proceedings of
the 31st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 174—186, 2010.

[Yang et al., 2023] Guang Yang, Yu Zhou, Xiang Chen, Xi-
angyu Zhang, Tingting Han, and Taolue Chen. Exploit-
gen: Template-augmented exploit code generation based
on codebert. Journal of Systems and Software, 197:111577,
2023.

[Yu et al., 2024] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang,
Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
Wang, and Tao Xie. Codereval: A benchmark of pragmatic
code generation with generative pre-trained models. In Pro-
ceedings of the 46th IEEE/ACM International Conference
on Software Engineering, pages 1-12, 2024.

Libtooling.
2007.

[Zan et al., 2022] Daoguang Zan, Bei Chen, Dejian Yang,
Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu

Chen, and Jian-Guang Lou. CERT: Continual pre-training
on sketches for library-oriented code generation. In The
2022 International Joint Conference on Artificial Intelli-
gence, 2022,

[Zhang er al., 2023] Fengji Zhang, Bei Chen, Yue Zhang,
Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. RepoCoder: Repository-level code
completion through iterative retrieval and generation. In
Houda Bouamor, Juan Pino, and Kalika Bali, editors, Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 2471-2484, Sin-
gapore, December 2023. Association for Computational
Linguistics.

[Zheng et al., 2023a]l Lin Zheng, Jianbo Yuan, Zhi Zhang,
Hongxia Yang, and Lingpeng Kong. Self-infilling code
generation. In Forty-first International Conference on Ma-
chine Learning, 2023.

[Zheng et al., 2023b] Wenqing Zheng, SP Sharan, Ajay Ku-
mar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, and
Zhangyang Wang. Outline, then details: Syntactically
guided coarse-to-fine code generation. In International
Conference on Machine Learning, pages 42403-42419.
PMLR, 2023.

[Zhu et al., 2024] Yuqi Zhu, Jia Li, Ge Li, YunFei Zhao, Zhi
Jin, and Hong Mei. Hot or cold? adaptive temperature
sampling for code generation with large language mod-
els. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 437-445, 2024.

https://github.com/jsmidt/quantpp/tree/master
https://github.com/jsmidt/quantpp/tree/master

