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Abstract
In this paper, we propose a family of novel
Deep Hierarchical Transitive-Aligned Graph Ker-
nels (DHTAGK) for graph classification. To this
end, we commence by developing a new Hier-
archical Aligned Graph Auto-Encoder (HA-GAE)
to construct transitive-aligned embedding graphs
that encapsulate the structural correspondence in-
formation between graphs. The DHTAGK ker-
nels then measure either the Jensen-Shannon Di-
vergence between the adjacency matrices or the
Gaussian kernel between the node feature matrices
of the embedding graphs. Unlike the classical R-
convolution kernels and node-based alignment ker-
nels, the DHTAGK kernels can capture the transi-
tive structural correspondence information and thus
ensure the positive definiteness. Furthermore, the
HA-GAE enables the DHTAGK kernels to simul-
taneously reflect both local and global graph struc-
tures and identify common structural patterns. Ex-
perimental results show that the DHTAGK kernels
outperform state-of-the-art graph kernels and deep
learning methods on benchmark datasets.

1 Introduction
Graph-based machine learning is a crucial research area in
artificial intelligence, with wide applications in fields such
as social network analysis, bioinformatics, and computer vi-
sion. However, the complexity and irregularity of graph data
present significant challenges for traditional machine learn-
ing algorithms, which are usually designed for vectorial data
rather than graph structures. Thus, there is a need for methods
that can effectively learn numerical features from graphs.

One effective approach to learning numerical features from
graphs is to employ graph kernels, that define a similarity

∗XinyaQin@mail.bnu.edu.cn, bailu@bnu.edu.cn
†Corresponding Author: mingli@zjnu.edu.cn

measure between graphs. Graph kernels can map graphs into
a high-dimensional Hilbert space, capturing their structural
information more effectively. Currently, most existing graph
kernels are developed based on the R-convolution framework
proposed by [Haussler, 1999]. This framework defines graph
kernels by decomposing graphs into substructures and count-
ing the number of isomorphic substructures shared between
pairwise graphs. Under this foundation, numerous graph ker-
nels have been developed (see more details in Section 2.1).
Despite their effectiveness, the R-convolution graph kernels
still suffer from several challenges.

First, the R-convolution graph kernels ignore the posi-
tional correspondence information between isomorphic sub-
structures, which leads to unreliable kernel measures be-
tween graphs. For instance, the Random Walk Graph Ker-
nel (RWGK) [Gartner et al., 2003], which is an early typical
work, only focuses on counting the number of random walks
with same lengths, even many walks are not structurally
aligned to each other in terms of the global graph structures.
This drawback may influence the effectiveness of some ap-
plications, including graph-based bioinformatics, where iso-
morphic molecular motifs located in different regions may
exhibit different trait expressions. In recent years, many stud-
ies have explored correspondence information in graphs, such
as [Bai et al., 2015a; Bai et al., 2019; Bai et al., 2022;
Cui et al., 2024]. Among them, [Bai et al., 2015a] have
proposed an Aligned Subtree Kernel (ASK), that can effec-
tively explore the node-based matching information between
the rooted nodes of subtrees. Unfortunately, the node cor-
respondences identified by this kernel are not transitive (i.e.,
for three nodes a, b and c, if a matches with b, and b matches
with c, it does not guarantee that a matches with c). Thus,
this kernel is not positive definite (pd).

Moreover, the R-convolution graph kernels mainly capture
the local information from the substructures of small sizes,
thereby neglecting the global topological information. For in-
stance, the Graphlet Kernel (GK) [Shervashidze et al., 2009]
only considers graphlets with 3-5 nodes, which may overlook
important global topological features of graphs. To overcome
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this limitation, a family of global graph kernels have been
developed to focus more on the global structural graph char-
acteristics through the adjacency matrices. For instance, [Jo-
hansson et al., 2014] have developed a Global Geometric Em-
bedding Kernel based on the Lovász numbers as well as their
orthonormal representations, that are computed through the
adjacency matrix. [Xu et al., 2018] have proposed a Global
Reproducing Graph Kernel by measuring the similarity be-
tween the approximated von Neumann entropies based on the
adjacency matrix. However, these kernels can only capture
global similarities, lacking detailed structural information re-
siding in the internal topological structure of graphs.

Finally, the R-convolution graph kernels only focus on the
similarity measure between each individual pair of graphs,
and thus cannot capture the common structural pattern infor-
mation shared over all sample graphs. Overall, the above
analysis indicates that developing effective graph kernels is
still a challenging problem.

This work aims to overcome the above theoretical limita-
tions of the existing R-convolution kernels by developing a
family of novel Deep Hierarchical Transitive-Aligned Graph
Kernels (DHTAGK). One key innovation of the new kernels
is the construction of the Hierarchical Aligned Graph Auto-
Encoder (HA-GAE), which not only hierarchically extracts a
series of transitive-aligned embedding graphs to capture both
the global and local structure information, but also captures
the common hierarchical structural pattern information over
all graphs. Overall, our contributions are threefold.

First, we develop a new HA-GAE to hierarchically cap-
ture the transitive node-level matching information between
graphs. Specifically, for each encoding layer, we use the node
assignment to group the input nodes into clusters and then
compress the nodes within a cluster into a coarsened node,
hierarchically transforming the original input graph into an
embedding graph. For each decoding layer, we apply the
node assignment to reconstruct the original graph structure
by expanding each coarsened node into all retrieved nodes
probabilistically. Since the HA-GAE is defined by employing
the same node assignment function for all original graphs, the
adjacency matrices and the node feature matrices of the em-
bedding graphs extracted through the encoding layers are nat-
urally transitive aligned. Furthermore, the HA-GAE can ef-
fectively capture the common structural patterns shared over
all original graphs through the deep learning architecture.

Second, for pairwise graphs, we develop a new family
of DHTAGK kernels based on the transitive-aligned adja-
cency matrices and node feature matrices of their embedding
graphs constructed through the HA-GAE. Due to the theoret-
ical properties of the HA-GAE, the proposed DHTAGK ker-
nels are not only transitive aligned but also capture rich deep
hierarchical structural characteristics of graphs, guaranteeing
the positive definiteness and explaining the effectiveness for
the proposed kernels (see details in Section 3.5).

Third, we evaluate the classification performance of
the proposed kernels on standard graph datasets using the
C-Support Vector Machine(C-SVM). Experimental results
show that the proposed kernels outperform state-of-the-art
graph kernels and graph deep learning methods.

This paper is organized as follows. Section 2 reviews some

related works. Section 3 provides the definition of the pro-
posed kernels. Section 4 presents experiments. Finally, Sec-
tion 5 concludes this work.

2 Related Works
2.1 The Graph Kernels
The Graph kernels can provide an elegant way to map graphs
into a high-dimensional Hilbert space, enabling linear al-
gorithms to solve nonlinear problems in the original low-
dimensional space. Most existing graph kernels are de-
veloped based on the R-convolution framework [Haussler,
1999], that decomposes graphs into substructures and counts
the number of isomorphic substructures shared between pair-
wise graphs. This indicates that any graph decomposition
method and substructure type can define a new graph kernel
function. Under this principle scenario, the R-convolution
graph kernels can be classified into the following three cat-
egories. a) Random walk-based: e.g., the RWGK [Gart-
ner et al., 2003], the marginalized kernel [Kashima et
al., 2003]; b) Path-based: e.g., the Shortest Path Graph
Kernel (SPGK) [Borgwardt and Kriegel, 2005], the back-
trackless kernel [Aziz et al., 2013]; c) Subtree/subgraph-
based: e.g., the Weisfeiler-Lehman Subtree Graph Kernel
(WLSK) [Shervashidze et al., 2011], the Graphlet Kernel
(GK) [Shervashidze et al., 2009]. Other R-convolution ker-
nels also include the Segmentation Graph Kernel [Harchaoui
and Bach, 2007], the Pyramid Quantized Weisfeiler-Lehman
Kernel [Gkirtzou and Blaschko, 2016], the Quantum-inspired
Jensen-Shannon Kernel [Bai et al., 2020], etc.

Remark 1: Despite the performance of the R-convolution
kernels for graph classification, they still suffer form several
limitations. First, these kernels do not take the positional cor-
respondence information between substructures into account.
Second, these kernels tend to capture local information from
small substructures, thereby neglecting the global topological
information and thus overlooking important global topologi-
cal features of graphs. Third, these kernels obtain kernel val-
ues through pairwise comparisons of graphs, lacking the abil-
ity to capture the common pattern information over all graph
samples. In summary, these drawbacks limit the effectiveness
of the existing R-convolution kernels.

2.2 The Graph Auto-encoders
Generally, the Graph Auto-Encoder (GAE) is developed by
generalizing the classical Auto-Encoder into the graph do-
main [Kipf and Welling, 2016], and aims to learn a map-
ping function to convert node features into the deep latent
space. Specifically, the encoder converts graphs into low-
dimensional representations, while the decoder attempts to
reconstruct the original graphs from the latent representa-
tions. Representative methods include a) the Adversarially
Regularized Variational Graph Autoencoder (ARVGA) [Pan
et al., 2020] that employs a trainable scheme based on the
Generative Adversarial Networks (GANs) [Goodfellow et al.,
2014], b) the Network Representations with Adversarially
Regularized Autoencoders (NetRA) [Yu et al., 2018] where
the encoder and decoder are the LSTM networks [Hochre-
iter and Schmidhuber, 1997] associated with random walks
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Figure 1: Our computational framework of the DHTAGK kernels.

rooted at each node as inputs, etc. Although the existing
GAEs have shown their superior performance in link predic-
tion, most of them tend to only reconstruct the structure in-
formation (i.e., the adjacency matrix) of graphs and ignore
the restoration of the node feature matrix. Thus, these GAEs
usually have lower performance for graph classification.

3 The Proposed DHTAGK Kernels
In this section, we provide the detailed definition of the pro-
posed DHTAGK kernel associated with the newly developed
HA-GAE model. Moreover, we highlight the theoretical ad-
vantages of the proposed kernels.

3.1 Preliminaries
We define a graph as G(A,X), where A ∈ {0, 1}n×n is the
adjacency matrix, and X ∈ Rn×f is the node feature matrix.
In this work, node features are represented either by the one-
hot encoding of node labels for attributed graphs or by node
degrees for unattributed graphs.

To effectively process the graph data, Graph Neural Net-
works (GNNs) have been widely adopted. GNNs are deep
learning models that generate node embeddings by integrat-
ing both node features and graph structure. These models
typically aggregate the feature information from neighboring
nodes to learn meaningful node representations. In this work,
we employ the Graph Convolutional Network (GCN) layer
[Kipf and Welling, 2017], which is defined as

GCN(A,X) = σ
(
WÂX

)
, (1)

where Â = IN + D− 1
2AD− 1

2 , Â is the adjacency matrix
with self-loops, W is the trainable weight matrix, and σ is a
non-linear activation function.

3.2 Frameworks of the DHTAGK Kernels
This subsection introduces the computational framework of
the proposed DHTAGK, shown in Figure 1, consisting of
three main computational steps. First, we propose a new HA-
GAE model (see Section 3.3 for details), which is trained on

all sample graphs and achieves the transitive-aligned node-
level alignment. During the encoding, we hierarchically ex-
tract embedding graphs. Second, for pairwise graphs, we ex-
tract the transitive-aligned adjacency and node feature ma-
trices of their embedding graphs through the HA-GAE. The
DHTAGK kernels (kernel based on the adjacency Matrices
(GK-A), kernel based on the node features (GK-X), and
the composite kernel (GK-C)) are defined by measuring the
kernel-based similarity between the embedding graphs (see
Section 3.4 for details). Third, the kernel matrix is input into
the C-SVM for graph classification.

3.3 The HA-GAE Model
The proposed HA-GAE model consists of an encoder and a
decoder, which hierarchically reduces and restores the graph
size. This process enables the capture of both local and global
information across subgraphs of different sizes, addressing
the limitations of the existing R-convolution graph kernels.
Moreover, we train the HA-GAE model on a specific dataset,
ensuring that all graphs in the dataset share the same trained
node assignment function.

For an original sample graph, the encoder maps the node
feature matrix and adjacency matrix to latent representa-
tions. Each encoder layer consists of two steps: Assignment-
E and Compression. The Assignment-E step clusters nodes
with similar latent semantics, while the Compression step
combines nodes within the same cluster into a single coars-
ened node. The decoder mirrors the encoder’s structure
but the focus is on recovering the original node feature
and adjacency matrices. Each decoder layer also involves
two steps: Assignment-D and Reconstruction. This self-
supervised learning approach maps the node feature and ad-
jacency matrices into an embedding space, where effective
structure representations are learned by minimizing recon-
struction errors. Below, we provide a detailed definition of
the encoder and the decoder for the HA-GAE model.

The Encoder of the HA-GAE
The architecture of the encoder is shown in Figure 2. The
encoder maps input graphs into an embedding space, hier-
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Figure 2: The specific framework of the l-th layer of the encoder.

archically generating a series of transitive-aligned embed-
ding graphs. It consists of K layers. The original sam-
ple graph G(A,X) serves as the input at the 0-th layer,
represented as G(0)(A(0), X(0)). At the l-th layer (l ∈
{0, . . . ,K − 1}), the encoder transforms the embedding
graph G(l)(A(l), X(l)) into the (l + 1)-th layer embedding
graph G(l+1)(A(l+1), X(l+1)), where A(l) ∈ Rnl×nl , X(l) ∈
Rnl×dl , A(l+1) ∈ Rnl+1×nl+1 , X(l+1) ∈ Rnl+1×dl+1 . Here,
n(·) represents the number of nodes, and d(·) represents the
dimension of node features at each layer. Each encoder layer
involves two operations: Assignment-E and Compression.

Assignment-E: In this step, nodes are assigned to dif-
ferent clusters. We compute the node assignment matrix
S(l) ∈ Rnl×nl+1 using a GNN model GNNassign with in-
put (A(l), X(l)) followed by a Softmax function. The element
S
(l)
i,j represents the probability that node i at layer l is assigned

to cluster j at layer l + 1. The computation is defined as

S(l) = softmax
(
GNNassign

(
A(l), X(l)

))
. (2)

Compression: In this step, nodes belonging to the same
cluster are compressed into a new coarsened node. First, we
compute the node embedding matrix Z(l) ∈ Rnl×dl+1 by a
GNN layer GNNembed, defined as

Z(l) = GNNembed

(
A(l), X(l)

)
. (3)

Next, using the assignment matrix S(l), we compress the
nodes by performing similar operations to the DiffPool [Ying
et al., 2018], i.e.,

A(l+1) = S(l)⊤A(l)S(l), and X(l+1) = S(l)⊤Z(l). (4)

After K layers, the embedding graph G(K)(A(K), X(K))
from the final layer is passed to the decoder. By gradually
reducing the number of clusters at each layer, the encoder
helps abstract and aggregate node information into fewer
nodes, thereby achieving a hierarchical transition from local
to global information.

The Decoder of the HA-GAE
The architecture of the decoder is shown in Figure 3. The
decoder reconstructs the original graph structure by prob-
abilistically expanding each coarsened node into its cor-
responding nodes. The decoder also consists of K lay-
ers. At the l-th layer, it reconstructs the l-th embedding

Figure 3: The specific framework of the l-th layer of the decoder.

graph Ĝ(l)(Â(l), X̂(l)) from the (l + 1)-th layer’s graph
Ĝ(l+1)(Â(l+1), X̂(l+1)). Here, Â and X̂ represent the recon-
structed adjacency and node feature matrices. To maintain
a consistent layer index, the layer indices in the decoder de-
crease sequentially. Similar to the encoder, each layer con-
sists of two steps: Assignment-D and Reconstruction.

Assignment-D: A GNN layer GNNr assign is used
to compute the reconstructed assignment matrix Ŝ(l) ∈
Rnl×nl+1 as

Ŝ(l) = softmax
(
GNNr assign

(
Â(l+1), X̂(l+1)

))
, (5)

Reconstruction: We compute the reconstructed node em-
bedding matrix Ẑ(l) ∈ Rnl×dl+1 as

Ẑ(l) = GNNr embed

(
Â(l+1), X̂(l+1)

)
. (6)

Based on Ẑ(l), we perform the matrix computations to obtain
the reconstructed embedding graph Ĝ(l)(Â(l), X̂(l)) as

Â(l) = S(l)Â(l+1)⊤S(l), and X̂(l) = S(l)⊤Ẑ(l). (7)

After K decoding layers, we obtain the resulting recon-
structed graph of the original sample graph Ĝ(0)(Â(0), X̂(0))
that is first input to the encoder of the HA-GAE.

The Loss Function of the HA-GAE
We train the HA-GAE model by minimizing its reconstruc-
tion error, and the loss function is defined as

L = MSE(A(0), Â(0)) +MSE(X(0), X̂(0)), (8)

Here, MSE denotes the mean squared error function. Since
we cannot directly generate binary values using graph convo-
lution operations, we use this loss function to ensure that the
reconstructed graph structures closely approximate the struc-
tures of the original graphs.

Remark 2: Each layer of the HA-GAE model uses the
same node assignment information computed by Eq.(2) and
Eq.(5). Therefore, the nodes at the same layer of the em-
bedding graphs are transitive-aligned to each other, meaning
that the j-th node in graph G naturally corresponds to the j-
th node in graph G′. This alignment naturally facilitates the
definition of the transitive-aligned graph kernels by measur-
ing the similarity between graphs.
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3.4 Construction of the DHTAGK Kernels
In this subsection, we define the proposed DHTAGK kernels.
During the HA-GAE training, for each original graph G, we
hierarchically generate a series of transitive-aligned embed-
ding graphs {G(l)(A(l), X(l)), l ∈ {0, ...,K − 1}} in the en-
coder. For a pair of original graphs G and G′ with different
numbers of nodes, their embedding graphs G(l) and G′(l) not
only have the same number of nodes but are also transitive-
aligned in terms of node correspondences. Using the adja-
cency and node feature matrices of these embedding graphs,
we define three DHTAGK kernels.

The DHTAGK based on Adjacency Matrices (GK-A)
Inspired by [Bai et al., 2015b], we define the GK-A kernel by
measuring the similarity between the adjacency matrices of
the embedding graphs using the Jensen-Shannon Divergence
(JSD). Specifically, for each l-th layer embedding graph G(l),
we compute the node probabilities as

P (l) (vi) =
d(l) (vi)∑

vj∈V (l) d(l) (vj)
, (9)

Here, P (l)(vi) represents the probability of node vi at layer
l, and d(l)(vi) represents the degree of node vi at layer l. For
graphs G(l) and G′(l), the GK-A kernel kA is defined as

kA (G,G′) =
∑
l

k
(l)
A

(
G(l), G′(l)

)
, (10)

where each k
(l)
A

(
G(l), G′(l)) is the kernel measure between

their l-layer embedding graphs G(l) and G′(l) defined as

k
(l)
A

(
G(l), G′(l)

)
= e−D

(l)
JS(G

(l),G′(l)). (11)

Here D
(l)
JS

(
G(l), G′(l)) is the JSD measure defined as

D
(l)
JS

(
G(l), G′(l)) = H

(
P (l)+P ′(l)

2

)
− H(P (l))+H(P ′(l))

2

(12)
where H(·) represents Shannon entropy associated with the
node distribution P (l) (vi).

Remark 3: Unlike other similarity measures such as Eu-
clidean distance and cosine similarity, the JSD offers an
information-theoretic perspective by quantifying the proba-
bility of Steady-State Random Walks visiting nodes, thus cap-
turing the structural information content of graphs. Since the
alignment property allows the node indices to naturally cor-
respond to each other, we can directly use JSD to measure
the differences between the probabilities of pairwise graphs,
effectively capturing structural discrepancies between graphs.

The DHTAGK based on Node Feature Matrices (GK-X)
We define the GK-X kernel by measuring the Gaussian
kernel-based similarity between the node feature matrices of
the embedding graphs. For the pair of sample graphs G and
G′, the GK-X kernel kX is defined as

kX (G,G′) =
∑
l

k
(l)
X

(
G(l), G′(l)

)
. (13)

where each k
(l)
X (G(l), G′(l)) is the Gaussian kernel between

the node feature matrices X(l) and X ′(l), which is defined as

k
(l)
X

(
G(l), G′(l)

)
= e−

∥X(l)−X′(l)∥2

2σ2 . (14)

Here, ∥X(l) − X ′(l)∥ is the Euclidean distance between the
node feature matrices X(l) and X ′(l). σ is a parameter to
control the width of the Gaussian graph kernel.

The Composite DHTAGK (GK-C)
We define the GK-C kernel by summing the kernels GK-A
and GK-X. For the pair of sample graphs G and G′, the GK-
C kernel kC is defined as

kC (G,G′) = kA (G,G′) + kX (G,G′) . (15)

Clearly, unlike the proposed GK-A and GK-X kernels, the
GK-C kernel can simultaneously capture the structural infor-
mation through either the adjacency matrix or the node fea-
ture matrix, preserving richer structural characteristics.

Remark 4: As stated in Remark 2, for any pair of sample
graphs, the adjacency matrices and the node feature matrices
of their embedding graphs extracted from the HA-GAE are
transitively aligned. Since the exponentiation of the negative
JSD-based measure for the GK-A kernel as well as the Gaus-
sian kernel-based measure for the GK-X kernel are both pos-
itive definite (pd) measures, the resulting GK-A and GK-X
kernels based on the transitive aligned structure representa-
tions are naturally pd. Thus, the GK-C kernel, as the sum of
pd kernels, is also pd.

3.5 Properties of the DHTAGK Kernels
In this subsection, we discuss the theoretical properties of the
proposed DHTAGK kernels, explaining the effectiveness.

First, unlike the R-convolution kernels, which focus on
small substructures, the proposed DHTAGK kernels are de-
fined based on embedding graphs that progressively shrink
in size, from the larger original global graph to the smaller
coarsened embedding graph. This gradual reduction in the
size of the embedding graphs helps us abstract graph infor-
mation layer by layer, enabling the capture of both global and
local structural information simultaneously. Since the HA-
GAE can use all sample graphs for training, the DHTAGK
kernels can capture the common structural patterns shared
across all graphs. In contrast, the R-convolution kernels only
capture information between individual graph pairs.

Second, unlike the R-convolution graph kernels that
overlook the structural correspondence information between
graphs, the proposed DHTAGK kernels are computed by
measuring the similarity between the aligned adjacency ma-
trices and the aligned node feature matrices of the embedding
graphs that are constructed by the HA-GAE through the node
assignment operation. Thus, the proposed DHTAGK kernels
can naturally encapsulate the structural correspondence infor-
mation through the aligned structure matrices.

Third, most existing matching-based graph kernels suf-
fer from the non-transitive alignment relationships and can-
not guarantee the positive definiteness. By contrast, the as-
sociated HA-GAE utilizes the same node alignment function
to identify the correspondence between nodes of all graphs,
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Datasets MUTAG PTC MR ENZYMES PROTEINS D&D IMDB B IMDB M REDDIT-B REDDIT-M

Avg.Nodes 17.9 25.5 32.63 39.1 284.32 19.77 13 429.6 508.8
Graphs 188 344 600 1113 1178 1000 1500 2000 4999
Classes 2 2 6 2 2 2 3 2 5
Domain Bio Bio Bio Bio Bio SN SN SN SN

Table 1: Information of the graph datasets.

and only the nodes assigned to the same cluster can be con-
sidered aligned. Thus, the DHTAGK kernels defined based
on the transitive-aligned embedding graphs of HA-GAE are
transitive-aligned and naturally pd.

4 Experiments
In this section, we evaluate the proposed DHTAGK kernels
on eight benchmark graph classification datasets from the do-
mains of bioinformatics (Bio) and social networks (SN). De-
tails of these datasets are shown in Table 1.

Experimental Settings1: We set the number of layers for
both the HA-GAE encoder and decoder to 3-5. In each layer,
the number of nodes in the embedding graph decreases layer
by layer according to an assignment ratio 0.5. The feature
dimension of the embedding graph is fixed at 32 dimensions.
After training the HA-GAE, we input the graph data into the
trained HA-GAE to obtain hierarchically aligned embedding
graphs, and then compute the GK-A, GK-X, and GK-C graph
kernel matrices. Finally, we use the C-SVM implemented by
LIBSVM for 10-fold cross-validation and calculate the clas-
sification accuracy. We repeat the experiment 10 times and
report the average classification accuracy and standard error.

To evaluate the capability on graph classification tasks, we
compare our graph kernels with several advanced graph ker-
nels and GNNs. Specifically, the graph kernels include: 1)
the RWGK [Gartner et al., 2003], 2) GK [Shervashidze et al.,
2009], 3) WLSK [Shervashidze et al., 2011], 4) JTQK [Bai
et al., 2014] (with q = 2), 5) ASK [Bai et al., 2015a],
6) CORE WL & CORE SP [Nikolentzos et al., 2018], 7)
EDBMK [Xu et al., 2021], and 8) QBMK [Bai et al., 2024].
The deep learning methods include five baselines: 1) the
DGCNN [Zhang et al., 2018], 2) DiffPool [Ying et al., 2018],
3) ECC [Simonovsky and Komodakis, 2017], 4) GIN [Xu
et al., 2019], and 5) GraphSAGE [Hamilton et al., 2017];
and six advanced GNNs: 1) the DGK [Yanardag and Vish-
wanathan, 2015], 2) p-RWNN [Nikolentzos and Vazirgian-
nis, 2020] (with p = 1, 2, 3), and 3) GKNN WL & GKNN
GL [Cosmo et al., 2024].

The classification accuracy and standard error for each
graph kernel method are reported in Table 2, since the alter-
native kernels are evaluated with the same setup, we directly
use the accuracies from the corresponding literature. The re-
sults for each deep learning method are shown in Table 3. For
the baseline deep learning methods, we adapt the results from
the fair comparison [Errica et al., 2020]. For other GNNs, we
report the best results from original papers. The Rank column
in Table 2 and Table 3 shows the mean rank of each method.

1Code is available at our GitHub repository:
https://github.com/Xiaoqin0421/DHTAGK

Experimental Analysis: The experimental results show
that the DHTAGK kernels outperform most graph kernel
methods and achieve classification performance comparable
to deep learning approaches. While the WLSK and JTQK
kernels, as well as deep learning methods, utilize node-
label information during training, our method adopts a self-
supervised learning strategy for training the HA-GAE. De-
spite using a shallow learning framework via the C-SVM, the
DHTAGK kernels achieve superior performance across most
datasets compared to the end-to-end models. This indicates
that the autoencoding process effectively captures more in-
formative topological features compared to other approaches.
The effectiveness of the DHTAGK kernels is fourfold.

First, unlike the traditional R-convolution kernels, the
DHTAGK kernels leverage a hierarchical approach to simul-
taneously capture both local and global structural informa-
tion, resulting in superior expressive power. Second, unlike
the traditional R-convolution kernels and deep learning ap-
proaches, the DHTAGK kernels ensure precise node corre-
spondences at various levels through their hierarchical align-
ment mechanism. This allows for a more comprehensive
capture of the structural features. In contrast, other models
often struggle to accurately identify substructure correspon-
dences within complex graphs, leading to suboptimal per-
formance. Third, compared to the ASK kernel, the corre-
spondence information identified by the DHTAGK kernels
is transitive. By contrast, the ASK kernel cannot guarantee
the transitivity. Fourth, the DHTAGK kernels excel in ex-
tracting shared structural information across graph samples.
Unlike other classical graph kernel methods, which typically
focus on pairwise similarities, our kernels aggregate informa-
tion from all samples, capturing a broader range of structural
patterns. This comprehensive feature extraction results in a
more detailed representation of the graph structure, making
the DHTAGK particularly effective for complex datasets.

Ablation Study. We compare the performance of the GK-
A, GK-X, and GK-C, and attribute the differences to the dis-
tinct types of graph information they capture. Specifically, the
GK-A emphasizes global structural information through adja-
cency matrices, yielding better results on datasets with promi-
nent structural characteristics, such as the MUTAG. How-
ever, the GK-A does not consistently achieve optimal perfor-
mance, as it fails to incorporate node attribute information.
In contrast, the GK-X focuses on node features and performs
better on datasets rich in attribute information, such as the
PTC MR. Finally, the GK-C integrates both structural and
feature information, enabling it to capture graph characteris-
tics more comprehensively.

Hyperparameter Analysis. We investigate the impact of
the number of auto-encoder layers and the embedding graph
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Model MUTAG PTC MR ENZYMES PROTEINS D&D IMDB B IMDB M REDDIT-B Rank

GK-A 88.72±0.39(1) 58.29±0.71(6) 42.43±0.22(6) 75.18±0.31(2) 78.65±0.27(6) 73.19±0.23(4) 50.20±0.20(5) 89.17±0.17(4) 4.25
GK-X 88.50±0.85(3) 61.24±0.50(1) 55.88±0.45(3) 75.42±0.41(1) 79.16±0.41(5) 74.1±0.37(1) 50.23±0.27(4) 89.80±0.17(3) 2.62
GK-C 87.39±0.69(7) 60.71±0.28(2) 56.68±0.65(1) 74.95±0.31(3) 80.03±0.26(1) 73.37±0.33(3) 50.29±0.22(3) 89.91±0.15(2) 2.87

RWGK 80.77±0.72(12) 55.91±0.37(10) 22.37±0.35(10) 74.20±0.40(4) 71.70±0.47(11) 67.94±0.77(10) 46.72±0.30(9) 72.73±0.39(9) 9.37
GK 81.66±0.11(11) — 24.87±0.22(9) 71.67±0.55(7) 78.45±0.26(7) 65.87±0.98(9) 45.42±0.87(10) 77.34±0.18(7) 8.57
WLSK 82.88±0.57(10) 56.05±0.51(9) 52.75±0.44(4) 73.52±0.43(5) 79.78±0.36(2) 71.88±0.77(7) 49.50±0.49(7) 76.56±0.30(8) 6.50
JTQK 85.50±0.55(9) 57.39±0.46(7) 56.41±0.42(2) 72.86±0.41(6) 79.49±0.32(3) 72.45±0.81(6) 50.33±0.49(2) 77.60±0.35(6) 5.12
ASK 87.50±0.65(5) — — — — 70.38±0.72(8) 50.12±0.51(6) — 6.33
CORE WL 87.47±1.08(6) 59.43±1.20(3) 47.82±4.62(5) — 79.24±0.34(4) 74.02±0.42(2) 51.35±0.48(1) 78.02±0.23(5) 4.00
CORE SP 88.29±1.08(4) 59.06±0.93(5) 41.20±1.21(7) — 77.30±0.80(10) 72.62±0.59(5) 49.43±0.42(8) 90.84±0.14(1) 3.71
EDBMK 86.35(8) 56.75(8) 36.85(8) — 78.19(8) — — — 8.00
QBMK 88.55±0.43(2) 59.38±0.36(4) — — 77.60±0.47(9) — — — 5.00

Table 2: Classification accuracy (in % ± standard error) for comparisons with graph kernels.

MUTAG PTC MR ENZYMES PROTEINS D&D IMDB B IMDB M REDDIT-B REDDIT-M Rank

GK-A 88.72±0.39(2) 58.29±0.71(5) 42.43±0.22(10) 75.18±0.31(4) 78.65±0.27(3) 73.19±0.23(3) 50.20±0.20(3) 89.17±0.17(7) 53.16±0.11(4) 4.55
GK-X 88.50±0.85(4) 61.24±0.50(1) 55.88±0.45(8) 75.42±0.41(2) 79.16±0.41(2) 74.1±0.37(1) 50.23±0.27(2) 89.80±0.17(5) 50.76±0.17(7) 3.55
GK-C 87.39±0.69(6) 60.71±0.28(2) 56.68±0.65(7) 74.95±0.31(5) 80.03±0.26(1) 73.37±0.33(2) 50.29±0.22(1) 89.91±0.15(3) 50.19±0.17(8) 3.88

DGCNN — — 38.9±5.7(11) 72.9±3.5(12) 76.6±4.3(8) 69.2±3.0(10) 45.6±3.4(10) 87.8±2.5(9) 49.2±1.2(10) 10.00
DiffPool — — 59.5±5.6(2) 73.7±3.5(9) 75.0±3.5(10) 68.4±3.3(12) 45.6±3.4(10) 89.1±1.6(8) 53.8±1.4(2) 7.57
ECC — — 29.5±8.2(12) 72.3±3.4(13) 72.6±4.1(12) 67.7±2.8(13) 43.5±3.1(12) — — 12.40
GIN — — 59.6±4.5(1) 73.3±4.0(10) 75.3±2.9(9) 71.2±3.9(4) 48.5±3.3(5) 89.9±1.9(4) 56.1±1.7(1) 4.85
GraphSAGE — — 58.2±6.0(3) 73.0±4.5(11) 72.9±2.0(11) 68.8±4.5(11) 47.6±3.5(8) 84.3±1.9(10) 50.0±1.3(9) 9.00
DGK 82.66±1.45(9) 57.32±1.13(6) 53.4±0.9(9) 71.68±0.50(14) 78.50±0.22(4) 66.96±0.56(14) 44.55±0.52(11) 77.34±0.18(11) 41.27±0.18(13) 10.11
1-RWNN 89.2±4.3(1) — 56.7±5.2(6) 75.7±3.3(1) 77.6±4.7(5) 70.8±4.8(6) 47.8±3.8(7) 90.4±1.9(1) 51.7±1.5(5) 4.00
2-RWNN 88.1±4.8(5) — 57.4±4.9(5) 74.1±3.3(8) 76.9±4.6(7) 70.6±4.4(7) 48.8±2.9(4) 90.3±1.8(2) 51.7±1.4(6) 5.50
3-RWNN 88.6±4.1(3) — 57.6±6.3(4) 74.3±3.3(7) 77.4±4.9(6) 70.7±3.9(5) 47.8±3.5(7) 89.7±1.2(6) 53.4±1.6(3) 5.12
GKNN WL 85.73±2.70(7) 59.29±2.54(4) — 74.94±1.10(6) — 69.70±2.20(9) 47.87±1.78(6) — 47.87±1.78(11) 7.12
GKNN GL 85.24±2.28(8) 60.13±1.94(3) — 75.36±1.12(3) — 69.90±1.44(8) 45.67±1.22(9) — 45.67±1.22(12) 7.17

Table 3: Classification accuracy (in % ± standard error) for comparisons with deep learning methods.

assignment ratio using the PROTEINS dataset. Figure 4 and
Figure 5 show the classification accuracy of the GK-A, GK-
X, and GK-C at different layers and assignment ratios.

Figure 4: Performance vs. Layers Figure 5: Performance vs. Ratio.

Impact of the Layers. As the number of layers increases,
the classification accuracy of the GK-A, GK-X, and GK-C
improves. The GK-A performs better with fewer layers, due
to its ability to capture local node and neighborhood informa-
tion at shallow levels. When the model reaches three layers,
the GK-C outperforms the GK-A, as it offers a more compre-
hensive representation in both structure and features.

Impact of the Ratio. It can be seen in Figure 5 that an
assignment ratio of 0.5 ensures that the size of the embed-
ding graph is moderate, balancing local and global informa-
tion. Specifically, a smaller assignment ratio leads to small
embedding graphs, causing over-squashing and information
loss. A larger assignment ratio may cause the graph kernel
to focus more on large-scale structures, potentially neglect-
ing fine-grained local information, and the slower reduction
in the size of the embedding graph decreases computational
efficiency. Therefore, choosing a moderate assignment ratio
of 0.5 achieves a good balance between local and global in-
formation, and enhances computational efficiency.

Visualization. Figure 6 shows several molecular graphs
from the MUTAG dataset, where nodes with the same color
are aligned to the same cluster. The experimental results
demonstrate that the HA-GAE effectively captures meaning-
ful node correspondence information, such as ring structures
and functional groups commonly found in molecular graphs.

Figure 6: A few visualizations showcasing node alignment results.

5 Conclusion
In this paper, we have proposed a novel family of DHTAGK
kernels for graph classification. The DHTAGK kernels are
defined based on the transitive-aligned adjacency and node
feature matrices of the hierarchical embedding graphs ex-
tracted from the newly developed HA-GAE model. These
kernels not only overcome the issue of ignoring structural
correspondences between substructures in the existing R-
convolution kernels, but also address the non-positive defi-
niteness problem in node-based alignment kernels. Further-
more, we reflect both local and global graph characteristics,
and capture the structural patterns across all graphs, through
the HA-GAE. Experiments demonstrate the effectiveness of
the proposed kernels. In future work, we plan to explore addi-
tional forms of transitive alignment information produced by
the HA-GAE to design new graph kernels. We also intend to
develop a mechanism for adaptively computing the weights
of the GK-A and GK-X kernels.
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