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Abstract

Zero-shot learning has shown significant potential
for creating cost-effective and flexible systems to
expand classifiers to new categories. However, ex-
isting methods still rely on manually created at-
tributes designed by domain experts. Motivated
by the widespread success of large language mod-
els (LLMs), we introduce an LLM-driven frame-
work for class-incremental learning that removes
the need for human intervention, termed Classi-
fier Expansion with Multi-vIew LLM knowledge
(CEMIL). In CEMIL, an LLM agent autonomously
generates detailed textual multi-view descriptions
for unseen classes, offering richer and more flex-
ible class representations than traditional expert-
constructed vectorized attributes. These LLM-
derived textual descriptions are integrated through
a contextual filtering attention mechanism to pro-
duce discriminative class embeddings. Subse-
quently, a weight injection module maps the class
embeddings to classifier weights, enabling seam-
less expansion to new classes. Experimental results
show that CEMIL outperforms existing methods
using expert-constructed attributes, demonstrating
its effectiveness for fully automated classifier ex-
pansion without human participation.

1 Introduction
As the field evolves and data grows, new categories are often
discovered or redefined, creating shifting demands for exist-
ing classifiers. Consequently, classifiers need to expand to ac-
commodate emerging unseen categories, termed the classifier
expansion task. Re-training with an expanded class set serves
as a traditional solution, but requires significant image data
collection and repetitive training, costly in many contexts.

The advent of zero-shot learning (ZSL) has inspired a zero-
shot classifier expansion paradigm, which relies solely on
images of seen classes [Xian et al., 2017; Wei et al., 2021;
Xu et al., 2020]. Recent studies have further explored classi-
fier expansion in completely image-free settings [Christensen

∗Corresponding authors.
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Figure 1: Overview of category expansion approaches. Expanding a
classifier to new categories can be done via: A. Retraining: Requires
labeled images for all classes. B. Zero-shot Expansion: Needs seen-
class images and expert-constructed attributes. C. CEMIL: Uses a
pre-trained LLM, removing the need for images or attributes.

et al., 2023; Yun et al., 2023]. These methods expand exist-
ing classifiers to recognize unseen classes by aligning expert-
constructed attribute features with the classifier, thus integrat-
ing new classes into the visual embedding space without the
need for any images. However, while these approaches re-
duce the image data requirements compared to re-training
methods, they still depend on expert input, as attributes must
be carefully designed and annotated, which keeps human
costs involved [Xian et al., 2017]. We summarize the cate-
gory expansion approaches, as illustrated in Figure 1.

Inspired by the success of LLMs in reducing manual effort
across various domains, we explore their potential to elimi-
nate human dependency in classifier expansion. For this task,
LLMs excel at generating detailed textual descriptions for a
given class, offering valuable insights for “teaching” classi-
fiers to recognize new labels. However, three key challenges
remain. First, the descriptions generated by LLMs may not
consistently maintain high quality for different classes, and
often fail to offer the depth of information required to fully
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Figure 2: Framework of the proposed CEMIL approach. CEMIL begins with a set of class names and generates robust multi-view features
through the LLM (DTG module). These features are then refined using a contextual filtering attention mechanism (CFA module), and used
to supervise the classifier’s weights via a cross-modal co-learning process, facilitated by a dual-autoencoder (CICC module). The predicted
weights for unseen classes can be directly injected into the output layer of the classifier, enabling its seamless expansion. Since the embedding
model can be implemented with an open-source LLM, the entire workflow is fully automated, requiring no human involvement.

capture the characteristics of new classes. Second, the nat-
ural language output from LLMs frequently includes redun-
dant or irrelevant details, requiring a refinement process to
distill only the most essential features. Finally, the class fea-
tures embedded in LLM-generated textual descriptions and
those in the classifier are represented in different modalities,
with significant differences in how these class representations
are captured, making it complex to align them effectively.

To address these issues, this paper presents an LLM-driven
classifier expansion framework that removes the need for
manually designed attributes, termed Classifier Expansion
with Multi-vIew LLM Knowledge (CEMIL). CEMIL con-
sists of three sequential modules: LLM-based Descriptive
Text Generation (DTG), Description Refinement with Con-
textual Filtering Attention (CFA), and Class Injection with
Cross-modal Co-learning (CICC). The DTG module intro-
duces an LLM reasoning flow to automatically derive com-
prehensive, hierarchical descriptions for classes. These multi-
level descriptions are then embedded into refined representa-
tions by the CFA module, which employs high-level descrip-
tions as contextual attention to filter out less relevant informa-
tion. Finally, the CICC module aligns the refined embeddings
with the classifier weights, enabling seamless cross-modal
expansion of the classifier to new classes. Extensive exper-
iments demonstrate that CEMIL, which operates solely with
an LLM, consistently outperforms state-of-the-art ZSL meth-
ods that rely on expert-constructed attributes, across a variety
of ZSL datasets. Figure 2 illustrates the framework of the
CEMIL method. We summarize our contributions as follows:

• We propose a novel LLM-driven paradigm that enables
the category expansion of existing classifiers without re-
quiring any images or additional data. To the best of our
knowledge, we are the first to use LLMs as a source of

supervision for human-free classifier expansion.

• We introduce CEMIL, a novel approach that: i) directs
LLMs to deliver comprehensive and robust multi-view
information, ii) extracts discriminative features from
weak and noisy texts, and iii) effectively guides classi-
fier expansion. This design stimulates and fully exploits
the power of LLMs for cross-modal supervision.

• CEMIL achieves state-of-the-art performance on mul-
tiple image-free ZSL benchmarks, consistently demon-
strating superior stability across various configurations.
It holds the potential to reshape traditional ZSL tasks by
introducing a new paradigm of LLM-based supervision.

2 Related Work
2.1 Category Expansion for Existing Classifiers
The task of classifier expansion involves extending an exist-
ing classifier to recognize new, unseen classes that were not
defined during its training. As the application scenarios for
classifiers evolve, this task has become increasingly critical
and commonplace. However, the challenge lies in achiev-
ing effective expansion with minimal or cost-effective super-
vision, a key area of ongoing research primarily explored
within the field of class-incremental learning (CIL) [Mittal
et al., 2021; Wang et al., 2024]. Previous studies have exten-
sively explored CIL in few-shot settings [Hersche et al., 2022;
Zhou et al., 2024]. Unlike traditional re-training methods,
few-shot CIL aims to expand classifiers using a smaller num-
ber of images from new classes, achieving notable success.
As the available data continues to diminish in zero-shot set-
tings, no image data from the new classes is available, and
the ZSL models rely on additional side information to dis-
tinguish between classes. This information typically comes
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from expert-constructed class attributes [Li et al., 2023] or
external textual sources, such as Wikipedia [Zhu et al., 2018].

The methods mentioned above typically rely on image data
from seen classes, which is often unavailable in real-world
scenarios. Consequently, some approaches explore classifier
expansion in image-free settings by predicting and directly in-
jecting the output layer parameters of new classes into the ex-
isting classifier, using expert-defined attributes to bridge the
gap between seen and unseen classes. A straightforward ap-
proach involves using a multi-layer perceptron (MLP) to map
visual classifier weights to attributes, which performs well
in ZSL but tends to degrade in generalized settings. To ad-
dress this limitation, Christensen et al. [Christensen et al.,
2023] propose specific autoencoders for both attribute and
weight spaces, regularizing the attribute-to-weight mapping
and achieving strong performance on the image-free general-
ized ZSL task. Additionally, building on this image-free idea,
other methods [Norouzi et al., 2014; Mensink et al., 2014;
Akyürek et al., 2022; Xu et al., 2022] can also be adapted to
expand classifiers in the image-free zero-shot setting.

2.2 LLM-driven Cross-modal Supervision
Zero-shot learning tasks require the use of auxiliary infor-
mation to predict unseen categories. Most traditional ap-
proaches rely on expert-crafted attributes, such as manually
designed numerical features [Lampert et al., 2013; Xian et
al., 2017]. While these features are accurate and discrimina-
tive, they require manually defining attribute names and ex-
pert annotations for attribute values. This process is resource-
intensive, particularly in fine-grained datasets [Wah et al.,
2011]. Some methods use text descriptions from external
sources like Wikipedia [Qiao et al., 2016; Zhu et al., 2018]
or summary documents [Naeem et al., 2024] to reduce expert
dependence, but this supervision is still manually constructed
and limited in flexibility and information due to its discon-
nection from the ZSL task.

Recently, the rise of LLMs has shown great potential for
enhancing few-shot or zero-shot learning tasks [Guo et al.,
2023; Ban et al., 2025]. As a flexible knowledge source with
advantages in both the quality and quantity of supervision,
previous works have explored using LLMs for cost-effective
knowledge expansion [Li et al., 2024; Wu et al., 2024]. An
early work is I2MVFormer [Naeem et al., 2023], which uses
multi-view prompting to encode LLM-supervised semantic
embeddings for zero-shot image classification, while Adapt-
CLIPZS [Saha et al., 2024] extends this to pre-trained vision-
language models (VLMs), achieving improved results. How-
ever, these methods still rely on image samples for training
and fine-tuning. As an improvement, Liu et al. [Liu et al.,
2024] explore training models solely on textual data by de-
veloping a cross-modal classifier with LLMs and mapping it
to the visual modality, achieving zero-shot multi-label recog-
nition with pre-trained VLMs. Despite these advances, these
methods still heavily depend on pre-trained large-scale image
encoders, such as CLIP, making them less suitable for scenar-
ios involving existing image classifiers [Zhao et al., 2024].

In contrast, this paper uses only the cheapest LLM-based
semantic knowledge to extend existing classifiers, without
any image data or VLMs trained on large amounts of images.

This approach allows for classifier expansion with minimal
annotation costs, data dependency, and domain bias.

3 Methodology
The entire CEMIL process consists of the following three
stages: 1) Text Generation: Generate descriptive texts us-
ing a pre-trained LLM as the agent (DTG module). 2) De-
scription Refinement: Distill and integrate global and multi-
view local descriptions using contextual filtering attention
(CFA module). 3) Class Injection: Learn and inject clas-
sifier weights into the existing model through a cross-modal
co-learning framework (CICC module). In this section, we
first define the task and then introduce each stage in detail.

3.1 Task Formulation
We address the challenge of expanding a pre-trained classi-
fier for unseen classes, without any image or attribute. Given
a pre-trained classifier Φ: X → Cs, where X represents the
image space and Cs denotes the set of seen classes, the ob-
jective of the Classifier Expansion is to expand the classi-
fier’s capability to classify a new class set C and get an ex-
panded classifier Φ̂: X → C. In the standard ZSL setting,
the target set C is entirely disjoint from the seen classes, i.e.
C ∩ Cs = ∅. In the generalized ZSL setting, the target set C
includes both the seen and unseen classes, i.e. C = Cs ∪Cu.
Previous ZSL works typically use an expert-based class at-
tribute matrix A ∈ Rm×da , while this paper addresses the
task using only an LLM M, and treat A as optional.

Without loss of generality, the classifier Φ can be divided
into a feature extractor ω and a classification layerψ, i.e., Φ =
ψ(ω(·)). For a neural network classifier, the classification
layer ψ is parameterized by a matrix, i.e., ψ ∈ Rdv×|Cs|,
where dv is the embedding dimension of the classifier and
the output dimension of ω. Since the task operates under the
image-free setting, the goal is indeed to obtain an expanded
classification layer parameter ψ̂ ∈ Rdv×m.

3.2 LLM-based Descriptive Text Generation
We design a workflow for automatically generating descrip-
tive texts from scratch, using an LLM as the agent. Without
prior knowledge of the classifier, we first reason a compre-
hensive and effective set of views. Based on this, we employ
a view-based batch querying strategy to generate descriptive
and comparable multi-view texts for each class.

Structured Hierarchical View Reasoning
View generation can be complex for LLMs, as class iden-
tification often requires fine-grained views, which can lead
to omissions or overlap, especially when the view number
is large. Considering the limited capacity of LLMs, we
aim to decompose the view generation task into smaller sub-
tasks, enabling the LLM to tackle them in a systematic man-
ner. Specifically, we guide the LLM to first generate coarse-
grained perspectives (e.g., physical traits, behavioral traits)
and then refine them into fine-grained details (e.g., fur color,
feeding habits). This hierarchical divide-and-conquer ap-
proach reduces the LLM’s capacity demand in a single pass.

To further enhance the quality, we prompt the LLM to act
as a domain expert, leveraging its specialized knowledge, and
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provide structured examples to harness its in-context learning
ability for better task understanding. These techniques are
also employed in other LLM reasoning scenarios. Integrating
these components, we design a meta prompt Pmeta to query
the LLM for n0 rich views, forming an initial set of candidate
views V(0) = {v(0)1 , v

(0)
2 , . . . , v

(0)
n0 }, expressed as:

V(0) = M(Pmeta), V(0) ∈ Tn0 (1)
where T denotes the set of textual segments.

To distill an effective view set, we select views through an
iterative self-verification process. In this process, the LLM
reassesses the initial view set V(0) from an evaluator’s per-
spective, verifying its relevance and filtering views that are
genuinely beneficial for visual class identification. The veri-
fication process iteratively refines the view set V(t) using the
verification prompt Pverify. At each iteration t, an updated set
V(t+1) is produced, and the process stops when the set size
stabilizes, indicating no further reduction:

V(s+1) = M(Pverify(V(s))), |V(S)| = |V(S−1)| (2)
where s = 0, 1, . . . , S−1, and S denotes the final iteration s.
The converged view set is denoted as V = V(S), containing
n views. This iterative self-verification ensures a robust view
set, forming a reliable foundation for downstream tasks.

View-based Batch Querying Strategy
Based on the class set C and the view set V , we can con-
struct the class-view description matrix S ∈ Tm×n, where
m is the size of C, and each element in S corresponds to a
textual description. In terms of querying the LLM, a simple
point-to-point query involves querying each class-view pair
individually to populate the matrix S, and class-based query-
ing focuses on querying one class across all views in a single
round. However, due to the inherent randomness and quasi-
independence of LLM outputs, both strategies can introduce
biases across different classes under the same view, under-
mining inter-class comparability. Since our downstream tasks
prioritize class-level comparability, we adopt the View-based
Batch Querying Strategy. This approach retrieves descrip-
tions for all classes under a single view in each round, pre-
serving inter-class comparability across views.

We design a prompt Pmain specifically tailored for view-
based querying. The process can be expressed as follows:

Sj = M(Pmain(C, vi)), ∀j ∈ [1, n] (3)
Finally, S is encoded by a pre-trained embedding model:

H = P(S), H ∈ Rm×n×dt (4)
where dt is the embedding dimension of the encoder. Open-
source LLMs can also serve as embedding models, and we
will validate their effectiveness in the experiments.

Inspired by [Liu et al., 2024], we construct a global sum-
mary for each class using a global prompt Pglobal to extract
comprehensive feature information. These features are em-
bedded similarly to the multi-view descriptions, expressed as:

G = P(M(Pglobal(C))) G ∈ Rm×dt (5)
where G represents the global representation of the classes.
All parameters in both the LLM and embedding model re-
main frozen throughout the training process.

3.3 Description Refinement with Contextual
Filtering Attention

We seek to extract task-relevant, effective class representa-
tions from the diverse and noisy descriptions derived from
global and multiple local views. This is achieved through a
contextual filtering attention module.

For each class c in C, we begin by projecting its global
description Gc and multi-view local description Hc into the
standard representations of the attention mechanism using
linear transformations. Since Gc contains only global view,
we expand its dimension into Rn×dt by copying the second
dimension for n times in advance. Let WQ,WK ,WV be
three MLPs that map the inputs to the query, key, and value
representations, respectively. Specifically, the query, key, and
value are defined as Q = WQ(Gc), K = WK(Hc), and
V = WV (Hc), respectively. Here, Q,K, V ∈ Rn×de , where
de is the embedding dimension. In this design, the global de-
scription, containing high-level class information (e.g., key
features), serves as the query, guiding the alignment of multi-
view local descriptions.

The energy score e ∈ Rn×n is computed based on a combi-
nation function f(·), which incorporates both the cosine sim-
ilarity and the Euclidean distance between the query and key
representations, formulated as follows:

e = f(Q,K) = CosSim(Q,K) · ||Q−K||2 (6)

=

∑dt

i=1(Q
i ·Ki)

|Q| · |K|
·

√√√√ dt∑
i=1

(Qi −Ki)2 (7)

where CosSim(·) denotes cosine similarity and ||Q − K||2
represents the Euclidean distance between the Q and K. The
cosine similarity and Euclidean distance complement each
other, and their product simultaneously captures the global
direction of the vectors and their local spatial differences, en-
abling better handling of complex relationships. The energy
score reflects both the similarity and the spatial discrepancy
between the query and key representations, leading to im-
proved alignment of multi-view descriptions.

To transform the energy score e into a probability distri-
bution, it is normalized into attention weights γ using a dis-
tribution function. In this case, we use the Softmax function
to ensure that the weights sum to 1 and reflect the relative
importance of each element in the sequence.

γ = g(e) = Softmax(e) =
exp(e)∑n

j=1 exp(ej)
(8)

Finally, we aggregate the value matrix V by performing
matrix multiplication with the attention weights γ to obtain
the weighted features:

T =
1

n

n∑
i=1

(γ · V )i (9)

The weighted feature T is a merged text-based embedding
that captures the most discriminative features from the multi-
view descriptions. Additionally, if an optional attribute A is
available, it can be incorporated into the embedding repre-
sentation T by concatenating it along the last dimension after
dense embedding, thereby enhancing overall performance.
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3.4 Class Injection with Cross-modal Co-learning
The fused text-based LLM-generated embedding, together
with the vision-based classifier weight vector, is fed into a
dual-autoencoder co-learning network. The network maps
the text-based and vision-based information into a shared la-
tent space Z , enabling mutual supervision and integration of
information from both sources. Specifically, the encoder for
the vision-based embeddings is defined as Ev : ψ → Z , with
its corresponding decoder Dv : Z → ψ. Similarly, the en-
coder for the text-based embeddings is Et : T → Z , with the
decoder Dt : Z → T . To enable the network to focus on the
angular alignment of the injected weights, we adopt cosine
distance as the distance metric d(·).

During the training stage, for each class, we strive to map
both modalities of data into the same latent space by optimiz-
ing two types of loss: reconstruction loss within each embed-
ding and cross-modal loss between both embeddings.

The reconstruction loss of the vision-based embedding
aims to ensure the stability of the classifier weight embed-
ding of seen classes, formulated as:

Ls
V→V =

∑
c∈Cs

d(Dv(Ev(ψc)), ψc) (10)

Similarly, the reconstruction loss for the text-based embed-
ding, applied to both seen and unseen classes, is defined as:

LT→T =
∑
c∈C

∑
v∈V

d(Dv
t (Et(T c)), Lv)

+
∑
c∈C

d(DG
t (Et(T c)), G) (11)

where an additional term
∑

c∈C d(DA
t (Ev(T c)), A) can be

added to LT→T if the class attribute is available.
The design of reconstruction losses ensures proper encod-

ing in both text-based and vision-based latent spaces. How-
ever, enabling interactive learning between these two modali-
ties requires alignment of their latent spaces. We achieve this
goal through two cross-modal loss functions:

Ls
T→V =

∑
c∈Cs

d(Dv(Et(T c)), ψc) (12)

Ls
V→T =

∑
c∈Cs

∑
v∈V

d(Dv
t (Ev(ψc)), Lc

v)

+
∑
c∈Cs

d(DG
t (Ev(ψc)), Gc) (13)

where an additional term
∑

c∈Cs
d(DA

t (Ev(ψc)), Ac) can be
added to Ls

V→T if the class attribute is available. The de-
sign of cross-modal loss facilitates latent space alignment in
a bidirectional learning manner.

Finally, we add all reconstruction and cross-modal losses
to obtain the total loss function L:

L = Ls
V→V + LT→T + Ls

T→V + Ls
V→T (14)

During the inference stage, we use the text-based embed-
dings to infer the expanded classifier weights ψ̂, as follows:

ψ̂ = D̂v(Êt(T )) (15)
where D̂v is the trained vision-based decoder, and Êt is the
trained text-based encoder. The classifier expansion is com-
pleted once its weights are updated.

4 Experimental Study
Experiments on three common datasets are conducted. The
results demonstrate the effectiveness and strong stability of
CEMIL in both complementary and substitutive scenarios.

4.1 Benchmark Protocol
Datasets. Methods are evaluated on three widely used
datasets: 1) AWA2 [Xian et al., 2018], an animal classification
dataset featuring 50 mammal species; 2) CUB [Wah et al.,
2011], a dataset containing 200 bird species; and 3) SUN [Pat-
terson et al., 2014], a scene recognition dataset with 717 cat-
egories. Each dataset is accompanied by expert-constructed
class attributes and is divided into seen and unseen classes
based on the splitting scheme in [Xian et al., 2017]. Fol-
lowing the image-free setting, we use only the part of class
attributes here, without any images from these datasets.
Implementation Details. For each dataset, we pre-train a
ResNet-101 [He et al., 2016] using images and labels from
only the seen classes, following [Xian et al., 2019], as the
base classifier for expansion. We utilize GPT-4o [OpenAI,
2023] as the LLM and the text encoder of CLIP [Radford et
al., 2021] as the embedding model, while subsequent analysis
will demonstrate that this configuration has minimal impact
on overall performance. The initial expected view number is
set to 50. Each encoder is a single-layer MLP, while each de-
coder is a two-layer MLP with a hidden dimension 4096. The
dimensions of the attention vectors are 2048. Neural network
parameters are initialized randomly from a standard normal
distribution. The Adam optimizer is used for training, with
up to 500 epochs and an early stopping strategy. The learning
rate is set to 1e-5, with batch sizes configured as 10, 16, and
32 for AWA2, CUB, and SUN, respectively. Experiments are
conducted on an Nvidia GeForce RTX 4090 24GB GPU.
Evaluation Metrics. We perform evaluations of the meth-
ods under both standard and generalized ZSL settings. For
standard ZSL, Top-1 accuracy is used as the metric, denoted
as T. In generalized ZSL (GZSL), we calculate the accuracy
for both unseen and seen classes, denoted as u and s, and
compute their harmonic mean H by 2× (s × u)/(s + u).

4.2 Comparison with State-of-the-Arts
The proposed CEMIL is compared with six image-free ZSL
baselines: 1) MLP utilizes a two-layer neural network to
map the class attributes to their corresponding weight vec-
tors. 2) ConSE [Norouzi et al., 2014] generates representa-
tion for unseen samples by computing a weighted sum of seen
class embeddings, with the unseen sample’s predicted prob-
abilities as weights. 3) COSTA [Mensink et al., 2014] also
employs a weighted sum approach but uses co-occurrence
statistics between classes as weights. 4) SubReg [Akyürek
et al., 2022] applies subspace regularization to keep unseen
class weight vectors close to the subspace of seen classes, re-
ducing catastrophic forgetting in CIL. 5) VGSE [Xu et al.,
2022] clusters local regions of seen classes by visual similar-
ity and links these clusters to unseen classes via optimizing a
class attributes similarity matrix. 6) ICIS [Christensen et al.,
2023] uses two separate encoder-decoders to predict unseen
weights: one for class attributes and one for weight vectors.
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Scenario Method AWA2 CUB SUN
T u s H T u s H T u s H

Expert-constructed
Attribute only

MLP 46.8 2.0 95.9 4.0 41.4 0.0 87.6 0.0 49.7 0.0 50.1 0.0
ConSE 44.0 3.0 96.1 5.7 41.9 0.5 88.0 0.9 44.4 0.1 47.9 0.1
COSTA 40.9 0.0 96.1 0.0 31.9 0.0 87.6 0.0 19.9 0.0 50.1 0.0
SubReg 37.5 0.0 96.1 0.0 37.6 0.0 87.6 0.0 48.3 0.0 50.1 0.0
VGSE 55.4 31.8 92.4 47.3 45.1 39.2 52.3 44.8 42.7 42.5 1.6 3.1
ICIS 64.6 35.6 93.3 51.6 60.6 45.8 73.7 56.5 51.8 45.2 25.6 32.7

LLM-based
Supervision only

MLP 42.9 0.0 96.3 0.0 32.7 0.0 87.7 0.0 42.2 0.0 52.3 0.0
ConSE 51.9 1.4 96.1 2.7 35.6 0.4 87.7 0.8 32.2 0.1 47.9 0.3
COSTA 45.4 0.0 96.3 0.0 26.9 0.0 87.7 0.0 27.4 0.0 52.3 0.0
SubReg 38.9 0.0 96.3 0.0 11.2 0.0 87.7 0.0 6.7 0.0 52.3 0.0
VGSE 59.9 30.8 91.4 46.0 33.0 28.1 59.4 38.2 32.6 30.1 12.3 17.4
ICIS 62.8 37.8 92.3 53.6 43.9 34.3 70.5 46.1 47.3 39.9 26.6 31.9

CEMIL (Ours) 69.1 41.4 92.7 57.3 61.8 44.6 74.2 55.7 55.1 46.5 27.1 34.2
Improvement +10.0% - - +6.9% +41.7% - - +20.8% +16.4% - - +7.2%

Expert-constructed
Attribute + LLM

MLP 57.6 0.0 96.3 0.0 62.5 0.9 87.7 1.8 55.8 0.0 52.3 0.0
ConSE 50.3 1.7 96.1 3.4 47.1 0.5 87.7 0.9 40.1 0.2 49.8 0.4
COSTA 55.1 0.0 96.3 0.0 39.9 0.0 87.7 0.0 31.3 0.0 52.3 0.0
SubReg 52.1 0.0 96.3 0.0 58.3 0.6 87.7 1.2 6.6 0.0 52.3 0.0
VGSE 55.8 29.9 91.5 45.1 48.8 42.0 57.2 48.4 44.2 41.0 11.6 18.1
ICIS 63.3 37.2 92.8 53.1 54.6 39.2 74.0 51.3 59.2 25.3 48.0 33.2

CEMIL (Ours) 73.2 48.6 87.0 62.4 68.3 53.2 72.3 61.3 60.7 40.7 39.7 40.2
Improvement +15.6% - - +17.5% +25.1% - - +19.5% +2.5% - - +21.1%

Table 1: Comparison of the proposed CEMIL with baseline methods. “T” indicates top-1 accuracy (%) in standard ZSL setting. In the
generalized ZSL setting, “u” and “s” denote per-class accuracy (%) for unseen and seen test sets, respectively, and “H” is their harmonic
mean. The best results are highlighted in bold. The “Improvement” row shows the percentage by which CEMIL surpasses SOTA methods.

The performance of these methods is evaluated across three
scenarios: 1) Expert-constructed Attribute only: Utilizes at-
tributes defined and annotated by domain experts, as provided
in the ZSL datasets. 2) LLM-based Supervision only: Re-
places expert-constructed attributes with multi-view descrip-
tions generated using the proposed LLM-driven Robust Fea-
ture Enhancement method. For baseline methods, we en-
sure fairness by using the same multi-view embeddings as in
CEMIL and applying mean pooling along the view to match
the input shape of the attributes. 3) Expert-constructed At-
tribute + LLM: Combines both expert-constructed attributes
and LLM-based supervision through concatenation.

Table 1 provides a comprehensive comparison of standard
and generalized ZSL metrics across various methods. As
demonstrated, CEMIL consistently outperforms state-of-the-
art baselines across both scenarios and all three benchmarks,
achieving significant improvements (mostly over 10%) in
both standard and generalized ZSL settings. The perfor-
mance of CEMIL, using both attribute and LLM supervision,
reaches optimal levels, showcasing its effectiveness to com-
plement existing expert-constructed attribute-based methods.

Notably, the proposed CEMIL, when using a more flex-
ible LLM-based supervision, can achieve and even surpass
SOTA methods that rely on expert-constructed attributes (i.e.,
for ZSL: +6.9% on AWA2, +1.9% on CUB, +6.4% on SUN;
for GZSL: +11.0% on AWA2, +4.6% on SUN). This high-
lights its ability to achieve superior performance with cost-
effective LLMs, replacing traditional attribute-based meth-
ods, and underscores its potential to shift ZSL tasks from
expert-dependent to LLM-driven approaches.

4.3 Ablation Study
To evaluate the contribution of key components in the pro-
posed CEMIL framework, we perform a series of ablation ex-
periments. The experiments are conducted by progressively
modifying the full framework through the following steps:
1) Replacing hierarchical view reasoning in the DTG mod-
ule with a plain prompt, and removing the process of iterative
view selection. 2) Substituting the view-based text querying
in the DTG module with a class-based querying approach. 3)
Replacing the CFA module with a simplified version that in-
tegrates multi-view descriptions via mean pooling, concate-
nated with class attributes. 4) Replacing the CICC module
with a single encoder-decoder architecture. 5) Removing the
LLM supervision and relying solely on class attributes. As
shown in Table 2, removing any module results in a perfor-
mance decline, highlighting the importance and effectiveness
of each proposed component throughout the workflow.

4.4 Empirical Analysis
Effect of the Number of Views and Seen Classes
In this experiment, we investigate the impact of the number of
views and seen classes on model performance, as illustrated
in Figure 3. The maximum number of views generated by
the LLM is set to 50, with the number of views gradually in-
creasing from 0. Additionally, we experiment with varying
proportions of seen classes used for training, ranging from
20% to 100%. As the number of views increases, all perfor-
mance metrics improve, and the rate of improvement slows
beyond 20 views. Similarly, a larger number of seen classes
has a positive impact on the final performance.
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Setting AWA2 CUB SUN
T u s H T u s H T u s H

CEMIL (Ours) 73.2 48.6 87.0 62.4 68.3 53.2 72.3 61.3 60.7 40.7 39.7 40.2
w/o DTG-hierarchical view reasoning 69.1 41.4 92.7 57.3 66.2 50.6 72.2 59.5 56.7 39.3 38.0 38.6
w/o DTG-view-based text querying 62.0 36.8 92.4 52.7 53.2 41.3 69.9 51.9 55.4 44.5 29.6 35.5
w/o CFA module 59.7 34.2 92.1 49.8 49.8 37.6 69.6 48.9 49.2 40.2 27.3 32.5
w/o CICC module 60.1 28.1 93.9 43.2 47.5 34.8 72.2 47.0 49.3 19.7 44.7 27.4
w/o LLM supervision 51.5 24.2 94.6 38.6 41.2 30.6 70.2 42.7 28.9 17.7 30.7 22.5

Table 2: Ablation study of the individual modules in CEMIL. We systematically remove each module—DTG (including hierarchical reasoning
and view-based querying), CFA, CICC, and LLM supervision—and evaluate the performance under each configuration.
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Figure 3: Inference by the number of views and seen class rates
in the SUN dataset. Experiments are conducted using LLM-based
supervision only, without applying view selection.
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Figure 4: This figure illustrates the improvement in H achieved by
combining LLMs with the proposed framework, highlighting the en-
hancements of CEMIL across various base knowledge sources.

Ability to Enhance Existing Knowledge Sources
To demonstrate the effectiveness of CEMIL in improving
the efficiency of expert- or semi-expert-based sources, we
conduct comparative experiments on different sources and
datasets. We evaluate three knowledge sources: expert-
constructed class attributes (Att), ConceptNet features [Speer
and Lowry-Duda, 2017] (CN), and Wikipedia features [Ya-
mada et al., 2020] (W2V). Each experiment is conducted both
with and without the assistance of the LLM, and the results
are presented in Figure 4. Across all datasets and knowledge
sources, CEMIL significantly improves the harmonic mean
of zero-shot classifier expansion, highlighting its stable abil-
ity to enhance existing supervision sources.

Applicability of Different LLMs and Embedding Models
To validate the applicability of CEMIL across different
LLMs, we replaced both the LLM and embedding compo-

Embed Model CLIP SBERT LLaMA Qwen
LLM T H T H T H T H

GPT-4o 60.7 40.2 58.6 39.4 58.5 38.1 54.5 37.5
GPT-4o mini 57.0 39.1 58.5 38.7 58.1 38.8 51.7 36.4
LLaMA-3.1 56.2 38.6 58.6 37.6 59.7 39.7 55.7 37.9
Qwen-plus 56.8 38.4 55.8 37.8 58.9 38.3 54.7 37.8

Table 3: Performance of the CEMIL method on the SUN dataset
across different LLM and embedding model configurations. The
CEMIL consistently achieves reliable results across all settings.

nents with different models. For the LLM, we evaluated
four models, encompassing both open-source and proprietary
options: GPT-4o [OpenAI, 2023], GPT-4o mini, LLaMA-
3.1 [Touvron et al., 2023], and Qwen-plus [Team, 2023]. For
the embedding component, we explore the text encoder of
CLIP [Radford et al., 2021], SBERT [Reimers and Gurevych,
2019], and two open-source LLM-based embedding methods:
LLaMA-3.1-8b and Qwen-2.5-7b. The LLM-based embed-
ding is implemented by applying mean pooling to the vector
from the last layer of the LLM, given the input text.

As shown in Table 3, all tested configurations of CEMIL
perform well and consistently outperform previous attribute-
based approaches. This demonstrates the robustness and
broad applicability of CEMIL across various embedding
models and LLM architectures. The configuration using
LLaMA for both the LLM and the embedding model repre-
sents a scenario where classifier expansion is achieved solely
through an offline open-source LLM, offering a highly flexi-
ble and practical choice for real-world applications.

5 Conclusion
This paper proposes CEMIL, a novel framework for expand-
ing existing classifiers without the need for any images or
human effort. CEMIL uses a structural two-stage strategy
to deliver robust LLM supervision, integrates multi-view de-
scriptions with contextual filtering attention, and employs a
cross-modal co-learning framework to expand the classifier.
Experiments show that CEMIL achieves state-of-the-art per-
formance across multiple ZSL benchmarks in both standard
and generalized image-free ZSL settings. The entire frame-
work can be completed with only a pre-trained LLM, which
can reshape the existing attribute-based ZSL paradigm in both
complementary and substitutive scenarios. This work paves
the way for flexible, cost-effective model adaptation to newly
emerging classes in a fully automated manner.
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