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Abstract

With the rapid development and deep integration
of artificial intelligence and automation technolo-
gies, autonomous unmanned swarms dynamically
organize into multiplex network structures based
on diverse task requirements in adversarial environ-
ments. Frequent task variations lead to load imbal-
ances among agents and between network layers,
significantly increasing the risk of enemy detec-
tion and destruction. Existing approaches typically
simplify multiplex networks into single-layer struc-
tures for task scheduling, failing to address these
load imbalance issues. Moreover, the coupling
between task dynamics and network multiplexity
dramatically increases the complexity of design-
ing task migration strategies, and it is proven NP-
hard to achieve such load balancing. To address
these challenges, this paper proposes a risk-aware
task migration method that achieves dynamic load
balancing by matching task requirements with both
intra-layer agent capabilities and inter-layer swarm
capabilities. Simulation results demonstrate that
our approach significantly outperforms benchmark
algorithms in task completion cost, task completion
proportion, and system robustness. In particular,
the algorithm achieves solutions statistically indis-
tinguishable from the optimal solutions computed
by the CPLEX solver, while exhibiting significantly
reduced computational overhead.

1 Introduction
With the rapid advancement of artificial intelligence and au-
tomation technologies, autonomous unmanned swarms face
complex challenges in adversarial missions [Di et al., 2022a].
These systems may simultaneously perform diverse tasks
such as reconnaissance, strike operations, and communica-
tions, each requiring distinct coordination patterns among
agents [Yan and Di, 2022].

∗The appendices to this paper can be accessed online at:
https://github.com/Kay941016/IJCAI2025

†Corresponding author.

To efficiently accomplish these adversarial missions,
agents naturally emerge multiplex networks through
self-organization, manifesting as distinct network layers:
information-sharing networks for reconnaissance tasks
[Zhang et al., 2024], collaborative combat networks for
strike operations [Di et al., 2022b], and relay transmission
networks for communication tasks [Mandi et al., 2024].

To systematically illustrate the characteristics of multiplex
network structures, Appendix A1 presents the emergent mul-
tiplex network architecture where agents dynamically par-
ticipate across multiple coordination layers. Through this
complex structure, agents establish heterogeneous coordina-
tion patterns: concurrent operation in the information-sharing
layer enables intelligence exchange, while participation in the
collaborative strike layer facilitates combat task execution.
This flexibility in cross-layer coordination represents a signif-
icant advancement over traditional single-layer architectures,
substantially enhancing system adaptability and operational
efficiency.

The emergence of these multiplex network structures,
while enhancing system adaptability, introduces fundamental
challenges in task scheduling and resource allocation mecha-
nisms. In adversarial environments characterized by high dy-
namicity, temporal variations in task requirements inevitably
generate load imbalances across network layers, leading to
both diminished system performance and elevated vulnera-
bility to adversarial detection. Existing approaches primarily
rely on single-layer network abstractions [Yan and Di, 2022;
Di et al., 2022a], fundamentally failing to address the in-
tricate inter-layer dependencies inherent in multiplex net-
works. This limitation becomes critical when coupled with
task dynamics, as the resulting exponential expansion of
the solution space renders traditional scheduling methodolo-
gies ineffective for practical deployment [He and Lv, 2024;
Shi et al., 2023].

To address these challenges, we propose a novel risk-aware
task migration method that uniquely integrates centralized
and distributed strategies. Our approach introduces an inno-
vative two-scale architecture: an inter-layer migration mech-
anism coupled with intra-layer optimization. The inter-layer
phase employs a sophisticated agent selection mechanism
based on comprehensive adaptability scoring, enabling intel-
ligent cross-layer task redistribution. This is complemented
by an efficient intra-layer phase that implements distributed
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progressive migration strategies, achieving fine-grained load
balancing through local optimizations. The synergistic com-
bination of these mechanisms enables our method to simulta-
neously maintain global load equilibrium while maximizing
local migration efficiency.

To rigorously evaluate the effectiveness of our proposed
method, we conducted extensive experimental validations
across multiple critical dimensions, including task quantity
variations, agent population scaling, and network layer con-
figurations. The empirical results demonstrate the significant
superiority of the method over benchmark algorithms in var-
ious operational scenarios [Long et al., 2021; Jiang et al.,
2020]. Notably, the algorithm maintains computational ef-
ficiency with execution times consistently below 80ms, even
under highly dynamic conditions. Furthermore, while achiev-
ing solution quality comparable to that of the CPLEX op-
timization solver [Pierre et al., 2020], our method exhibits
significantly reduced computational complexity, thereby es-
tablishing its practical viability for real-world deployments.

2 Related Works
Research on Adversarial Environments. Recent studies
in adversarial game theory and agent control systems have
focused primarily on addressing dynamic risks through in-
dividual agent strategies [Chung et al., 2019]. In adversar-
ial environments, autonomous unmanned swarms inherently
form multiplex network structures due to diverse task require-
ments. This structural complexity, coupled with dynamic
risks from opponent interference, creates unprecedented chal-
lenges in system stability. Traditional approaches fail to con-
sider how dynamic risks propagate through different network
layers simultaneously, leaving a critical gap in addressing the
challenges of multiplex networked swarms [Cavorsi et al.,
2024; Wang et al., 2024].

Research on Task Migration. Task migration studies have
explored various dynamic factors including task variations,
capability changes, and benefit fluctuations through single-
layer optimization approaches. While such methods prove
effective in conventional scenarios, they become inadequate
when dealing with multiplex network structures where task
requirements and agent capabilities are coupled across multi-
ple layers [Mukhopadhyay et al., 2022]. Existing studies typ-
ically assume homogeneous agents or one-to-one task-agent
relationships, failing to address scenarios where tasks require
coordinated execution across different network layers, partic-
ularly where dynamic factors can cascade through multiple
network layers [Lin et al., 2024; Shi et al., 2024].

Research on Multiplex Networks. While multiplex net-
work studies have revealed insights into risk propagation and
dynamic factor interactions, current approaches often over-
look the challenges posed by adversarial environments where
network layers must adapt to both task variations and oppo-
nent actions [Li et al., 2021; Lyu et al., 2023]. Existing stud-
ies acknowledge risk propagation across layers but lack sys-
tematic approaches to handle load imbalances that can lead
to cascading failures across the network structure [Zhou and
Kumar, 2023; Santilli et al., 2022]. This gap highlights the

need for a comprehensive approach that can effectively man-
age task migration while considering both the multiplex na-
ture of networks and the dynamic characteristics of adversar-
ial environments.

3 Problem Statement
3.1 Preliminaries
Multiplex Unmanned Swarm Networks. We propose a
multiplex network model to capture the diverse coordina-
tion relationships in autonomous unmanned swarms con-
sisting of a set of agents A. The network structure is
formalized as a three-dimensional adjacency matrix M =
[M [1],M [2], ...,M [|M|]], where each layer M [l] represents
a distinct physical or information link type. Within the lth

layer, participating agents A[l] = {a[l]1 , a
[l]
2 , ..., a

[l]
N} establish

different coordination patterns simultaneously.

Adversarial Environments. In adversarial environments,
agents face two major risks when executing tasks:

• Agent-Level Risk: The higher the task load on an in-
dividual agent, the more likely it is to be detected and
destroyed by the enemy [Di et al., 2022b].

• Layer-Level Risk: The higher the overall load on a net-
work layer, the more susceptible all agents within that
layer become to being implicated and rendered unable
to function normally [Di et al., 2022a].

Considering these two types of risks, this paper defines the
probability of an agent ai working normally as pi:

pi =

Agent−Level Risk︷ ︸︸ ︷1− ψA

 ∑
tk∈T (ai)

qk


×

∏
A[l]∈Ai

1− ψB

 ∑
ai∈A[l]

Q̌i∣∣A[l]
∣∣


︸ ︷︷ ︸
Layer−Level Risk

(1)

where ψA(·) and ψB(·) are monotonically increasing con-
vex functions bounded between 0 and 1, describing the im-
pact of an agent task load and the network layer load on
the agent probability of working normally, respectively. As
the agent load increases, the probability of the agent being
destroyed also increases, as described by ψA(·) [Che et al.,
2018]. Similarly, ψB(·) captures the increasing probability
of agents within a layer being implicated and destroyed as
the layer load increases [Jiang and Jiang, 2008]. T (ai) rep-
resents the set of tasks currently being executed by agent ai,
while Ai denotes the set of network layers to which agent
ai belongs. Finally, Q̌i represents the total load of all tasks
undertaken by agent ai, and qk represents the load of task tk.

3.2 Optimization Objective
The primary objectives of this paper are to optimize task mi-
gration through the multiplex network structure among agents
in adversarial scenarios, thereby reducing task completion
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cost and increasing task completion probability. To achieve
these objectives, we introduce two decision variables:

• xki : A binary variable indicating the execution status of
task tk by agent ai. If xki = 1, agent ai is currently
responsible for executing task tk; otherwise, xki = 0.

• ykij : A binary variable indicating the migration status of
task tk from agent ai to agent aj . If ykij = 1, agent ai
migrates task tk to agent aj ; otherwise, ykij = 0.

Using these decision variables, we define these two opti-
mization objectives as follows:

Definition 1. Task Completion Cost: The task completion
cost comprises the task execution cost and the task migra-
tion cost. The task execution cost represents the cost incurred
by agents to complete all the loads associated with a task,
while the migration cost represents the cost required to trans-
fer tasks between different agents. In this paper, we denote
the task completion cost under migration strategy π as C(π),
which is defined as follows:

C(π) =

task execution cost︷ ︸︸ ︷∑
tk∈T

∑
ai∈A

qk · xki
vi

+
∑
tk∈T

∑
ai,aj∈A

wi,j · ykij · qk︸ ︷︷ ︸
task migration cost

(2)

where vi represents the execution capability of agent ai,
which determines the rate at which the agent executes tasks;
wi,j represents the link condition between agents ai and aj ,
which affects the cost of task migration between agents.

Definition 2. Task Completion Probability: In an adversar-
ial environment, the overall task completion probability is in-
fluenced by various factors, including the agent skills, the task
requirements and the probability of agent working normally.
The completion probability can then be given by:

P(π) =
∑
tk∈T

∑
ai∈A

ψp

(
pi · xki · |Si ∩Rk|

|Rk|

)
/|T | (3)

where pi ∈ [0, 1] is the probability of agent ai working nor-
mally (Eq. (1)), Si andRk denote the skill sets of agent ai and
task tk, respectively, and ψp : [0, 1] → [0, 1] is a monoton-
ically increasing convex function mapping the ratio of pos-
sessed to required skills to a probability value, capturing the
impact of various factors on task completion. T represents
the set of all tasks.

3.3 Mathematical Model
Based on the above definitions, we can formulate the mathe-
matical model of the Risk-Aware Multiplex Networked Task
Migration (RA-MNTM) problem. In an adversarial setting,
considering a given set of agents A and a multiplex network
structureM, our objective is to determine an optimal task mi-
gration strategy π∗ that maximizes the utility function, which
comprehensively considers the task completion cost C(π) and

the task completion probability P(π). Mathematically, the
RA-MNTM problem can be formulated as the following op-
timization problem:

max − α1 · C(π) + α2 · P(π) (RA-MNTM)
s.t. Eq.(1) ∼ Eq.(3) (4)∑

i∈A
xki = 1, ∀k ∈ T (5)

xki = Zki ·

1−
∑
j∈A

ykij


+
(
1− Zki

)
·
∑
j∈A

ykji, ∀i ∈ A, ∀k ∈ T (6)

∑
j∈A

ykij ≤ Zki , ∀i ∈ A, ∀k ∈ T (7)

The constraints can be classified into two categories:
• Optimization Objective Constraint: Constraint (4)

represents the optimization objective, where α1 and α2

are non-negative weights that regulate the relative im-
portance of the task completion probability and the task
completion cost in the overall utility function, satisfying
the condition α1 + α2 = 1.

• Task Migration Constraints: Constraints (5)-(7) cap-
ture the task migration relationships, where the binary
variable Zki indicates whether task tk is initially as-
signed to agent ai before the migration process. These
constraints guarantee that if agent ai is executing task
tk after migration, then either the task was already as-
signed to the agent before migration (i.e., not migrated)
or it was transferred from another agent during the mi-
gration phase.

3.4 Complexity Analysis
In this subsection, we discuss the complexity of the RA-
MNTM problem proposed above. For this problem, finding
a task migration strategy with the maximum utility is NP-
hard, which can be reduced to a well-known NP-complete
problem, i.e., the Subset Sum Problem [Caprara et al., 2000].
Due to space limitations, the detailed proof can be found in
Appendix A2.

4 Two-Scale Adversarial Task Migration
The proposed Two-Scale Adversarial Task Migration
(TSATM) algorithm addresses task migration in multiplex
networks through a hierarchical approach that operates at two
distinct scales: inter-layer and intra-layer. The key innova-
tion of TSATM lies in leveraging this two-scale structure to
achieve both global load balancing and local optimization.

4.1 Inter-layer Task Migration
Preliminaries. This algorithm identifies key agents across
layers in a multiplex network system to optimize informa-
tion exchange and task migration between layers. The selec-
tion process evaluates three main criteria: operational relia-
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bility (probability of normal functioning), intra-layer close-
ness centrality, and agent connectivity across multiple layers.
A fitness score metric is proposed to quantify these character-
istics:

fsi =
α1 · (Di + |Ai|)
α2 · (1− pi)

(8)

where Di represents the closeness centrality of agent ai, cal-
culated as the reciprocal of the sum of distances from agent
ai to all other nodes in that network layer; |Ai| denotes the
number of agents connected to ai; and α1, α2 are weight pa-
rameters for the optimization objectives.

After selecting key agents, these agents gather network
layer information and identify tasks that should be migrated
to other layers to balance the workload across different net-
work layers. During inter-layer task migration, only layers
with low workloads and strong task reception capabilities
are suitable for task immigration. Therefore, the target net-
work layer must satisfy these conditions: low migration cost,
high task requirement satisfaction, and low current workload.
Considering these three factors, we propose a fitness compar-
ison function ξN

(
tk, A

[m], A[n]
)

to evaluate the capability of
a network layer to receive task tk, defined as:

ξN
(
tk, A

[m], A[n]
)
= θ (wo,n − wo,m)×

θ

(
1− ψB

((
Q[n] + qk

)
/
∣∣A[n]

∣∣)
1− ψB

(
Q[n]/

∣∣A[n]
∣∣) ·N

(
Rk, A

[n]
)

−
1− ψB

((
Q[m] + qk

)
/
∣∣A[m]

∣∣)
1− ψB

(
Q[m]/

∣∣A[m]
∣∣) ·N

(
Rk, A

[m]
))

(9)
where wo,n represents the migration cost from the key agent
ao in the source layer to the key agent an in the target layer
M [n]; ψB(·) denotes the destruction risk influenced by net-
work layer workload; N(Rk, A

[n]) =
∑
ai∈A[n]

θ(|Si∩Rk|)
|A[n]|

indicates the degree to whichA[n] satisfies task requirements;
θ(·) is an indicator function that equals 1 when its argument
is greater than or equal to 0, and 0 otherwise.

Algorithm Overview. Algorithm 1 presents the pseu-
docode for the Inter-layer Task Migration Algorithm. It takes
key agents from each layer as input and identifies overloaded
layers for migration, whereQ[i] denotes the task load of layer
M [i]. Tasks are prioritized by size in a max-heap (lines 4-
7) and processed greedily from the heap root. For each task,
the algorithm selects the most suitable target layer based on
the fitness comparison function ξN

(
tk, A

[m], A[n]
)

to bal-
ance workload across layers (lines 8-14). The migration pro-
cess routes tasks through key agents: first to the key agent of
the source layer, then to the key agent of the target layer, with
migration costs calculated accordingly (lines 11-14). The al-
gorithm terminates when workload balance is achieved across
network layers.

Theoretical Analysis. We prove the rationality of the algo-
rithm design, with the optimality of the network layer fitness
comparison function shown in Theorem 1. We then analyze

Algorithm 1: Inter-layer Task Migration Algorithm

Input: Set of key agents A⋆, network layer M̂ with
dynamic tasks

Output: Inter-layer migration cost Cinter, updated
task execution status X⃗ after migration

1 Initialize: Cinter = 0, Q̄ =
∑
i∈MQ[i]/|M|;

2 for M [i] ∈ M̂ do
3 MaxHeapH.clear();
4 if Q[i] > Q̄+ σN then
5 for aj ∈ A[i] do
6 for tk ∈ T (ai) do
7 MaxHeapH.push (⟨⟨aj , tk⟩ , qk⟩);

8 while Q[i] > Q̄+ σN do
9 aout, tout ← H.top();

10 Select A[m] for all ξN (tout, A
[m], A[n]) > 0;

11 Migrate tout to key agent am from A[m];
12 Cinter ← Cinter + wout,m;
13 Q[i] ← Q[i] − qout, Q[m] ← Q[m] + qout;

14 return Cintra, X⃗

the time complexity of the algorithm, with the proof in Ap-
pendix A3.

Theorem 1. In an adversarial scenario, for network layers
A[m] and A[n], if ξN

(
tk, A

[m], A[n]
)
> 0, then transferring

the task to the key agent within A[m] results in a better objec-
tive function value.

Proof. To describe the impact of task transfer on the objec-
tive function, we divide it into the impact on task cost C(π),
denoted as C(tk, A[m]), and the impact on task completion
probability P(π), denoted as P(tk, A[m]).

Impact on task completion cost C(π): During inter-layer
task transfer, the task is ultimately transferred to the key agent
in another layer. The key agent may further transfer the task
to other agents without considering the subsequent execution
cost. The inter-layer transfer phase mainly considers the task
transfer cost between key agents, which iswo,m·qk. When the
cost of transferring the task to the key agent in the destination
layer is smaller, the impact on task completion cost is smaller.
This holds if and only if wo,m ≤ wo,n, which is satisfied
when ξN

(
tk, A

[m], A[n]
)
> 0, resulting in C(tk, A[m]) ≤

C(tk, A[n]).
Impact on task completion probability P(π): Inter-layer

task transfer affects the expected task completion probabil-
ity in two aspects: 1) The probability of agents working nor-
mally, which is related to the layer load after task transfer and
is given by 1 − ψB

((
Q[m] + qk

)
/
∣∣A[m]

∣∣). The impact rate

on this probability is
1−ψB((Q[m]+qk)/|A[m]|)

1−ψB(Q[m]/|A[m]|) ; 2) The capa-

bility provided by the network layer, described by the capa-
bility ratio N(Rk, A

[m]). When the destination layer better
meets the task requirements and has a lower current load, it
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Algorithm 2: Intra-layer Task Migration Algorithm

Input: Network layer M [l], set of agents Â ∈ A[l] in
the network layer experiencing task dynamic
factors

Output: Intra-layer task migration cost Cintra, task
execution status X⃗ of network layer A[l]

1 Initialize: Cintra = 0, Q̄ =
∑
ai∈A[l] Q̌i;

2 for ai ∈ Â do
3 for tk ∈ T (ai) do
4 MaxHeapH.push (⟨⟨ai, tk⟩ , qk⟩);

5 while !H.empty() do
6 aout, tout ← H.pop();
7 while ∃ξA(tout, ain, aout) > 0 do
8 if Qout > Q̄+ δ then
9 Select ain for all ξA(tout, ain, am) > 0;

10 Migrate tout from aout to ain;
11 Cintra ← Cintra + wout,in;
12 aout ← ain;

13 return Cintra, X⃗

is more likely to accept the task, balancing the load between
layers. After the inter-layer task transfer, the task completion
probability loss in the network layer is:

ψp

(
1− ψB

((
Q[m] + qk

)
/
∣∣A[m]

∣∣)
1− ψB

(
Q[m]/

∣∣A[m]
∣∣) ·N

(
Rk, A

[n]
))

(10)
Combining C(tk, A[m]) and P(tk, A[m]) in the form of an

optimization objective function, we can conclude that when
ξN
(
tk, A

[m], A[n]
)
> 0, transferring task tk to A[m] results

in a better optimized objective value.

4.2 Intra-layer Task Migration
Preliminaries. The Intra-layer Task Migration Algorithm
considers three factors influencing the ability of an agent to
receive tasks: agent load, task execution capability, and mi-
gration cost. This paper proposes the agent task acceptance
capability comparison function:

ξA (tk, am, an) =θ (1/vn + wo,n − 1/vm − wo,m)×

θ

(
1− ψA

(
Q̌m + qk

)
1− ψA

(
Q̌m
) · |Sm ∩Rk|

−
1− ψA

(
Q̌n + qk

)
1− ψA

(
Q̌n
) · |Sn ∩Rk|

)
(11)

where vn is the capability of agent an to execute task tk,
wo,n is the migration cost, ψA(·) is the destruction proba-
bility based on load, and Sn is the set of capabilities of an.
Algorithm Overview. Algorithm 2 presents the pseu-
docode for the Intra-layer Task Migration Algorithm. The
algorithm begins by adding tasks from agents experiencing

task dynamics to a max heap (lines 2-4). It then greedily se-
lects the highest-load task to migrate, choosing the agent with
the strongest receiving capability near the source agent as the
migration target (line 8). The task is migrated to this target
agent, and the algorithm checks if the receiving agent needs
to further migrate tasks. If so, the migration process repeats,
cascading tasks to suitable agents (lines 7-12). By iteratively
selecting tasks from the max heap for intra-layer migration,
load balancing is achieved among the agents.

Theoretical Analysis. We prove the rationality of the algo-
rithm design, with the optimality of the agent task acceptance
capability comparison function shown in Theorem 2, and an-
alyze its time complexity, with the proof in Appendix A4.

Theorem 2. In an adversarial scenario, for agents am and
an, if ξA (tk, am, an) > 0, then migrating task tk to agent am
will not result in a worse optimized objective function value
compared to migrating it to agent an.

Proof. Let C(tk, am) denote the impact on task completion
cost when migrating task tk to agent am, and let P(tk, am)
represent the impact on task completion probability when mi-
grating task tk to agent am. The specific calculation process
is as follows:

Impact on task completion cost C(π): In the intra-layer task
migration phase, the task completion cost consists of the task
execution cost and the task migration cost. The impact on
task completion cost can be divided into the sum of the im-
pacts on task execution cost and task migration cost, which is
qk/vm+wo,m · qk. In this case, C(tk, am) ≤ C(tk, an) holds
if and only if qk/vm +wo,m · qk ≤ qk/vn +wo,n · qk. When
ξA (tk, am, an) ≥ 0, we have 1/vm + wo,m ≤ 1/vn + wo,n,
and thus C(tk, am) ≤ C(tk, an).

Impact on task completion probability P(π): In the intra-
layer task migration phase, two factors affect the task com-
pletion probability: 1) The probability of agent am work-
ing normally: The probability of agent am working normally
is determined by both the network layer load and the agent
load. During intra-layer task migration, tasks are only mi-
grated within a single network layer; therefore, only the im-
pact of the agent load on the normal working probability is
considered. After task tk is migrated to agent am, the prob-
ability of the agent working normally is 1 − ψA

(
Q̌m + qk

)
,

and the impact ratio of task migration on the probability of

the agent being destroyed is
1−ψA(Q̌m+qk)

1−ψA(Q̌m)
; 2) The capability

provided by agent am: The capability set of agent am is Sm.
Therefore, after intra-layer task migration, the expected task
completion rate loss on agent am is as follows:

ψp

(
1− ψA

(
Q̌m + qk

)
1− ψA

(
Q̌m
) · |Sm ∩Rk|

|Rk|

)
(12)

Combining C(tk, am) and P(tk, am), and composing them
in the form of an optimization objective, we can conclude
that when ξA (tk, am, an) > 0, migrating task tk to agent am
yields a better objective function value.
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Figure 1: Performance analysis under varying parameters: Performance analysis under varying task numbers: (a)-(d); Performance analysis
under varying agent numbers: (e)-(h); Performance analysis under varying task load change rates: (i)-(l).
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5 Experiments
In this section, we compare our TSATM algorithm against
Cost-Oriented Task Migration (COTM) algorithm proposed
in [Long et al., 2021], Context-Aware Robot Capability Mi-
gration (CARC) algorithm [Jiang et al., 2020], and the opti-
mal solution (CPL) obtained using the CPLEX solver [Pierre
et al., 2020].

5.1 Performance Analysis Under Varying Task
Numbers

The experimental framework consists of 6 network layers,
with 32 agents randomly distributed across these layers. The
number of tasks ranges from 8 to 40, with an initial-to-
dynamic task ratio of 1:1 and task arrival intervals within the
range of [0,3]. The dynamic load variation rate is set at 15%
per time interval.

Fig. 1(a)&1(b) illustrate that the proposed TSATM algo-
rithm exhibits superior performance in terms of both objec-
tive function value and task completion cost, particularly in
scenarios with high task loads, when compared to the COTM
and CARC algorithms. This superior performance can be at-
tributed to the two-scale migration strategy of the TSATM,
which uses key agents for the global exchange of informa-
tion, thus facilitating an efficient load balancing across the
network layers.

Moreover, as depicted in Fig. 1(c), TSATM sustains higher
expected task completion proportions under increasing task
loads, closely approximating the optimal solution obtained
by CPLEX. While COTM and CARC algorithms treat mul-
tiplex networks as single-layer structures, which often leads
to sub-optimal local optima, the inter-layer migration mecha-
nism of TSATM achieves a more balanced load distribution.
It is noteworthy that, as illustrated in Fig. 1(d), all algorithms,
with the exception of CPLEX, maintain execution times be-
low 100ms.

5.2 Performance Analysis Under Varying Agent
Numbers

We evaluate system performance by varying the agent popu-
lation from 8 to 40, with agents randomly distributed across
multiple network layers. Each agent can participate in dif-
ferent network layers simultaneously, maintaining consistent
parameters with previous experimental settings.

As illustrated in Fig. 1(e)&1(f), the objective function
value demonstrates positive correlation with agent numbers
before reaching a plateau, with TSATM consistently outper-
forming benchmark algorithms while approaching the opti-
mal solution provided by CPLEX. This enhancement is at-
tributed to increased agent availability for task migration and
reduced average agent load. The task completion costs ex-
hibit a declining trend as the agent population grows, with
TSATM achieving superior cost efficiency through its hierar-
chical migration strategy utilizing key agents.

Analysis of task completion proportions (Fig. 1(g)) re-
veals improved performance with increasing agent numbers,
though marginal benefits diminish beyond certain thresholds.
Significantly, while CPLEX exhibits exponential growth
in computational complexity, TSATM maintains execution

times below 80ms (Fig. 1(h)), demonstrating robust scala-
bility through its heuristic approach. This balance between
efficiency and performance validates the practical applicabil-
ity of TSATM in large-scale deployments.

5.3 Performance Analysis Under Varying Task
Load Change Rates

This empirical investigation examines the impact of dynamic
task load variation rates (5%-25%) on system performance
metrics through comparative analysis of four algorithms:
TSATM, COTM, CARC, and CPL.

The experimental results in Fig. 1(i) demonstrate that
while the objective function values exhibit a downward trend
with increasing variation rates, TSATM maintains superior
stability and achieves optimal performance approximating
that of the optimal solution (CPL). Fig. 1(j) reveals that de-
spite universal increases in task completion costs, TSATM
demonstrates minimal cost escalation among all evaluated al-
gorithms.

Further analysis in Fig. 1(k) indicates that expected task
completion proportions decrease proportionally with higher
variation rates, where TSATM exhibits enhanced resilience
and significantly lower degradation compared to COTM and
CARC. The agent operational reliability assessment in Fig.
1(l) shows consistent performance degradation across all
algorithms, while TSATM maintains operational efficiency
above 75%.

5.4 Performance Analysis Under Varying
Objective Function Weight Parameters

The experimental results demonstrate that the proposed
TSATM algorithm outperforms the COTM and CARC algo-
rithms in terms of task completion cost and expected task
completion proportion, as detailed in Appendix A5.

6 Conclusions
This paper presents a novel risk-aware task migration
method for multiplex network systems in adversarial envi-
ronments. Our approach introduces a two-scale architecture
that uniquely combines centralized inter-layer migration with
distributed intra-layer optimization. Through an innovative
agent selection mechanism and distributed progressive migra-
tion strategy, our method effectively addresses the complex
challenges across multiple network layers. Extensive experi-
mental validation demonstrates the superiority of the method
in terms of task completion cost, task completion proportion
and system robustness.
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