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Abstract
Diffusion models have shown significant potential
for image style transfer tasks. However, achieving
effective stylization while preserving content in a
training-free setting remains a challenging issue
due to the tightly coupled representation space and
inherent randomness of the models. In this paper,
we propose a Fourier phase diffusion model that
addresses this challenge. Given that the Fourier
phase spectrum encodes an image’s edge structures,
we propose modulating the intermediate diffusion
samples with the Fourier phase of a content image
to conditionally guide the diffusion process. This
ensures content retention while fully utilizing the
diffusion model’s style generation capabilities.
To implement this, we introduce a content phase
spectrum incorporation method that aligns with
the characteristics of the diffusion process, pre-
venting interference with generative stylization. To
further enhance content preservation, we integrate
homomorphic semantic features extracted from the
content image at each diffusion stage. Extensive
experimental results demonstrate that our method
outperforms state-of-the-art models in both content
preservation and stylization. Code is available
at https://github.com/zhang2002forwin/Fourier-
Phase-Diffusion-for-Style-Transfer.

1 Introduction
Image style transfer, which aims to incorporate a specific
style into an input image while preserving its core con-
tent, finds wide applications in fields such as digital art cre-
ation and augmented reality filters. Early deep learning-
based style transfer methods, such as AdaIN [Huang and Be-
longie, 2017], Gram-based approaches [Gatys et al., 2016],
and WCT [Li et al., 2017], achieved this by aligning the sta-
tistical properties of content and style features extracted from
pre-trained VGG networks [Simonyan and Zisserman, 2014].
Subsequently, GAN-based methods [Zhu et al., 2017] were
introduced, employing adversarial training to transform con-
tent into a styled domain via CNNs. However, these CNN-

∗ Corresponding author.

Figure 1: Qualitative comparison with state-of-the-art diffusion-
based style transfer methods, including FreeStyle [He et al., 2024]
and StyleID [Chung et al., 2024]. All three methods are training-
free, with FreeStyle and ours taking a textual style prompt as input,
while StyleID uses an example image of the style as input (more
details are given in Section 5.2). The results show that FreeStyle
struggles with content preservation, while StyleID produces unsatis-
factory stylization effects. In contrast, our model effectively stylizes
the images while preserving their content.

based methods simply optimize the features extracted by a
basic network to obtain stylized results, often struggling to
achieve a harmonious integration of style and content.

Recently, diffusion models have achieved significant
breakthroughs in tasks such as text-to-image generation, im-
age editing, and super-resolution. Many studies [Zhang et al.,
2023c] [Wang et al., 2023] [Li et al., 2025] [Hamazaspyan
and Navasardyan, 2023] have explored the generative capa-
bilities of these models in style transfer, particularly focusing
on decoupling and re-fusing style and content. Some meth-
ods [Chen et al., 2024] [Qi et al., 2024] require both a con-
tent prompt and a style image as input. These methods train
additional adapters to extract style information from the style
image and then integrate the extracted style into the generated
content using the cross-attention mechanism or LoRA layers
[Hu et al., 2021]. However, these techniques demand sub-
stantial computational resources during training, and many
rely on content descriptions, which, even when complex, of-
ten lead to results that deviate from the user’s expectations,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: Visualizing what Fourier phase reveals. By combining the
amplitude spectrum from one image with the phase spectrum from
another image, followed by inverse Fourier transform, we obtain a
new image that inherits structural information from the phase spec-
trum while preserving color characteristics from the amplitude spec-
trum. However, direct combination introduces noticeable artifacts.

making them unsuitable for style transfer on photographs.
Training-free methods leverage the inherent capabilities of

pre-trained large diffusion models for style transfer, requir-
ing much fewer computational resources and offering easy
extensibility to various versions of diffusion models. How-
ever, such methods face challenges due to the tightly cou-
pled representation space and the inherent randomness of the
diffusion models. StyleID [Chung et al., 2024] replaces the
key and value of the content with those from the style im-
age, obtained via DDIM inversion, to inject the style using
the cross-attention mechanism during the generation process.
This integration, which relies on the similarity between the
style and content features, often leads to unsatisfactory out-
put, as shown in Figure 1. In contrast, FreeStyle [He et al.,
2024] combines the low-frequency components of the con-
tent features with the high-frequency components of the style
features for stylization. Although FreeStyle produces more
intense style effects than StyleID, it struggles with content
preservation, particularly in fine-grained structures. For ex-
ample, the face of the old man is transformed into that of a
child after stylization, as shown in Figure 1.

In this paper, we introduce a novel, training-free Fourier
phase diffusion model for style transfer, where the phase
spectrum of the content image is used to conditionally guide
generation. This approach outperforms existing models in
both content preservation and style transfer, as shown in Fig-
ure 1. Our motivation for utilizing the Fourier phase spectrum
lies in its ability to capture the structures of an image, in-
cluding object shapes and inner edges [Lv et al., 2024] [Yao
et al., 2024] [Yang and Soatto, 2020]. As illustrated in our
simple test in Figure 2, replacing the phase spectrum of an
image results in a complete alteration of the content. This
demonstrates the potential of the phase spectrum to decou-
ple and conditionally guide the highly randomized genera-
tive process, thereby maintaining the content while enabling
stylistic generation.

However, integrating the Fourier phase spectrum of the
content image into the diffusion model without training is
challenging, as it may interfere with the generation of natural-
looking stylized images. As shown in Figure 2, combining

the phase and amplitude from different images can result in
noticeable artifacts. To address this challenge, we propose a
phase spectrum fusion module to modulate intermediate styl-
ization results with the content phase, along with a strategy
to integrate the module into the generation process, aligning
with the stage-specific generative characteristics of the diffu-
sion model. Furthermore, to enhance content preservation,
inspired by ControlNet [Zhang et al., 2023a], we utilize the
U-Net architecture of the diffusion model to encode the con-
tent image, providing semantic guidance throughout the en-
tire generation process.

Our main contributions are summarized as follows:
• We propose a novel training-free Fourier phase diffusion

model for style transfer, which leverages the phase spec-
trum of a content image to guide the style generation
process, achieving outstanding performance in both con-
tent preservation and style transfer quality.

• We present a phase spectrum integration method that
incorporates the phase spectrum of the content image
into the generation process, preserving structural details
while generating visually appealing stylized images.

• We propose a semantic injection mechanism that ex-
tracts the content image’s semantics using the U-Net
within the diffusion model and subsequently incorpo-
rates these semantics into the generation process, further
enhancing content preservation.

• Extensive qualitative and quantitative evaluations
demonstrate that the proposed model outperforms
state-of-the-art methods in style transfer tasks.

2 Related Work
2.1 CNN-based Style Transfer
Gatys et al. [Gatys et al., 2016] pioneered CNN-based neu-
ral style transfer by using VGG features and Gram matrices
to capture style characteristics, and generating stylized re-
sults by optimizing both content and style objectives. Subse-
quent methods like AdaIN [Huang and Belongie, 2017] and
WCT [Li et al., 2017] leverage the VGG network [Simonyan
and Zisserman, 2014] for feature extraction and align feature
statistics for stylization. CycleGAN [Zhu et al., 2017] ap-
proaches style transfer through adversarial learning to estab-
lish cross-domain mappings. Recently, CLIPStyler [Kwon
and Ye, 2022] combines a CNN encoder-decoder architecture
with patch-wise CLIP loss to capture hierarchical content fea-
tures and refine stylization results. Despite their innovations,
these methods often struggle to achieve a satisfactory integra-
tion of content from a content image and style from a refer-
ence image, due to the inherent differences between the two.

2.2 Diffusion-based Style Transfer
Diffusion models have surpassed GANs in image generation
and have been successfully applied to various tasks, including
style transfer. Leveraging CLIP [Radford et al., 2021], the
Latent Diffusion Model (LDM) [Rombach et al., 2022] im-
proves sampling efficiency by encoding images into a latent
space using a pretrained auto-encoder [Esser et al., 2021],
enabling text-guided image generation through large-scale
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pretraining. Recent works like DEADiff [Qi et al., 2024]
and ArtAdapter [Chen et al., 2024] achieve style transfer by
integrating style information into diffusion models through
trained style embeddings or adapters. These methods rely
on text prompts for content specification, limiting their ap-
plicability to photographs. While works like Artbank [Zhang
et al., 2024b] take content images and style descriptions as
input, they still require substantial computational resources
for training. Training-free image stylization methods have at-
tracted much attention recently [Jiang and Chen, 2024] [He
et al., 2024], but maintaining content fidelity while achieving
the desired stylization remains an open challenge.

2.3 Controllable Text-to-Image Diffusion
Diffusion models need to focus on controlling the content of
generated images, which is also a crucial aspect of diffusion-
based style transfer. Several approaches have been proposed
to control the content of output generated by diffusion models
[Zhang et al., 2023a] [Ye et al., 2023] [Zheng et al., 2023] [Yu
et al., 2023]. For instance, ControlNet [Zhang et al., 2023a]
allows users to control the structures of the generated images
by conditioning them on various input types, such as depth
maps, Canny edges, or human poses. FreeControl [Mo et al.,
2024], a training-free method for controllable text-to-image
generation, enables control over the generated images based
on their semantic representations. Layout-diffusion [Zheng
et al., 2023] adopts a layout fusion module to control the
generated images. Although significant progress has been
made in controlling the output images of diffusion models,
these methods are not directly applicable to image styliza-
tion. However, their conditional guidance based on various
clues inspires us to address content preservation during styl-
ization.

3 Preliminaries of Diffusion Models
The diffusion model consists of two key processes: the diffu-
sion process and the sampling process. In the diffusion pro-
cess, noise is added to a given image x0 to obtain a noisy
image xt at time step t according to the equation:

xt =
√
αtx0 +

√
1− αtϵ (1)

where ϵ represents the Gaussian noise, and αt =
∏t

i=0 αi. αi

is a hyperparameter that controls the signal strength at time
step i.

The generation process of diffusion models typically starts
with the noisy image, and through iterative denoising steps,
the model gradually refines the content, eventually achieving
fine textures and details. In detail, given a text prompt y, dif-
fusion models use noise-predictor ϵθ (U-Net in our method)
to predict noise ϵθ(xt, t, C) from xt, where θ denotes param-
eters of the noise-predictor [Rombach et al., 2022] and C rep-
resents the text embedding of the prompt y. The down-block
and mid-block of ϵθ encode semantic information. In DDIM
[Song et al., 2020], x0,t at timestep t is given by

x0,t =
xt −

√
1− αtϵθ(xt, t, C)√

αt
(2)

As t approaches zero, x0,t becomes increasingly similar to
the generated result. x0,t is used to denoise xt to obtain xt−1.
Mathematically,

xt−1 =
√

αt−1x0,t +
√

1− αt−1 − σ2
t ϵθ(xt, t, C) + σ2

t ϵ

(3)
where σt controls the stochasticity of the sampling process.
DDIM sets σt to 0 in Eq. (3), making the sampling process
deterministic.

4 Method
4.1 Overview
The overall framework is shown in Figure 3. Given a con-
tent image Ic and a style text description ys, we aim to trans-
fer the style from ys to Ic, resulting in a stylized image Ics
that maintains the content of Ic. Firstly, we add noise to the
input image Ic using Eq. (1), setting t = T , to obtain the
noisy image xT , T = 1000. xT subsequently serves as the
starting point for the sampling process to generate the styl-
ized image Ics. The style text description ys is encoded by
the CLIP text encoder [Radford et al., 2021] into style em-
beddings, which influence the style of the generated result
through cross-attention. We design a phase spectrum fusion
module (see Section 4.2) and explore its integration into a
specific stage of the diffusion model, based on the stage-
specific generation characteristics (see Section 4.3). Addi-
tionally, to further enhance content preservation, we use the
U-Net of the diffusion model to extract semantics from the in-
put content image and inject them into the generation process
(see Section 4.4).

4.2 Phase Spectrum Fusion
Our phase fusion module is illustrated in Figure 4. At
timestep t, we obtain the intermediate stylized result x0,t us-
ing Eq. (2). Then we transform both x0,t and the content
image Ic into Fourier space, yielding Ifreqx and Ifreqc . The
transformation is given by

Ifreq(u, v) =
M−1∑
m=0

N−1∑
m=0

I(m,n)e−j2π(um/M+vn/N) (4)

where M and N are the length and width of the images, and
(m,n) and (u, v) represent the coordinates in the RGB image
space and its frequency space, respectively.

Ifreq(u, v) = R(u, v) + jQ(u, v) (5)

where R(u, v) and Q(u, v) are the real components and imag-
inary components, and j is the imaginary unit. We can obtain
the amplitude spectrum of x0,t and Ic, denoted as

∣∣Ifreqx

∣∣ and∣∣Ifreqc

∣∣, respectively, by using∣∣Ifreq(u, v)∣∣ = √
R2(u, v) +Q2(u, v) (6)

Then we add them linearly and empirically set the weight to
0.5, to obtain

∣∣Ifreqsum

∣∣. On the other hand, the phase spectrum
ϕfreq
c of Ic is computed as

ϕfreq
c (u, v) = arctan

[
Qc(u, v)

Rc(u, v)

]
(7)
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Figure 3: Overall pipeline of the proposed model. We use the phase spectrum fusion module (Section 4.2) to enhance the content structures
in the stylized image. The phase fusion module is applied stepwise at a specifically selected stage of the generation process (Section 4.3).
The semantics of the content image are injected, providing content information throughout the generation process (Section 4.4).

Figure 4: Our phase fusion module. The phase fusion module intro-
duces the phase spectrum of the content image into x0,t, influencing
x0,t in a residual manner.

Then we recombine the phase spectrum ϕfreq
c and the ampli-

tude spectrum
∣∣Ifreqsum

∣∣ to obtain the new frequency data Ifreqcomb,
as follows

Ifreqcomb =
∣∣Ifreqsum

∣∣ ejϕfreq
c (8)

Next, we perform inverse Fourier transform to obtain x′
0,t,

given by:

x′
0,t(m,n) =

1

MN

M−1∑
u=0

N−1∑
v=0

Ifreqcomb(u, v)e
j2π(um/M+vn/N)

(9)
Note that directly mixing the phase and amplitude spectra of
different images leads to artifacts, as explained in Figure 2.
AdaIN [Huang and Belongie, 2017] is known for effectively
aligning feature statistics in style transfer, while Style Spec-
troscope [Jin et al., 2024] has shown that AdaIN can only af-
fect the amplitude spectrum, not the phase spectrum. There-
fore, we apply AdaIN to align the statistics of x′

0,t with those
of x0,t, aiming to mitigate the color artifacts caused by the
amplitude and phase mismatch in Eq. 9.

x′′
0,t ← AdaIN(x′

0,t, x0,t) (10)

Finally, we introduce x′′
0,t into x0,t in the form of residuals,

namely
x̂0,t = αx′′

0,t + βx0,t (11)

where α and β are hyperparameters. α controls the amount of
phase from the content image Ic, while β controls how much
of the intermediate stylized result x0,t is retained. x̂0,t then
replaces x0,t in the subsequent denoising process.

4.3 Phase Spectrum Fusion in Diffusion
Prospect [Zhang et al., 2023b], FreeU [Si et al., 2024],
and other works [Guo and Lin, 2024][Zhang et al., 2024a]
have demonstrated that the diffusion model generates images
through a layout - content - fine texture process. Accordingly,
we divide the generation process into three stages: early,
middle, and late. We incorporate the content image via the
phase spectrum fusion module in the early stage, where the
edge structures exert the greatest influence on the final re-
sult’s structure. Additionally, incorporating the content phase
causes the intermediate results of the diffusion process to de-
viate from the learned data distribution. Several diffusion
steps are needed to bring these results back into the expected
distribution of the diffusion model. Therefore, we apply the
phase spectrum fusion module intermittently during the early
stage.

To support our design, we conduct contrastive experiments.
The results are shown in Figure 5. Groups A, B, and C ap-
ply the phase fusion module continuously during the early,
middle, and late stages, respectively, while groups D, E, and
F use the module intermittently across these stages. The re-
sults of groups D, E, and F are better than those of groups A,
B, and C, indicating that continuous application of the phase
fusion module is suboptimal. In contrast, intermittent use of
the module helps maintain content structures while achieving
higher-quality stylization. Among these, group D, which ap-
plies the phase fusion module intermittently in the early stage,
produces the most satisfying results, as expected.

4.4 Semantic Injection
Although phase spectrum fusion and its incorporation are ef-
fective, subsequent generation steps may introduce elements
unrelated to the semantic content of the input image. To
address this, inspired by ControlNet [Zhang et al., 2023a],
Zecon [Yang et al., 2023], and other works [Choi et al.,
2025][Lin et al., 2024][Li et al., 2024] in the virtual try-on
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Figure 5: Contrastive experiments on integrating phase spectrum
fusion in the diffusion model. We conducted six sets of experiments:
A, B, C, D, E, and F. The first five columns show the visualizations
of x0,t, while the last column displays the generated images. We
divide the generation process into three stages: early, middle, and
late. Groups A, B, and C use the phase fusion module continuously
within the early, middle, and late stages, respectively, while groups
D, E, and F use it intermittently within the corresponding stages.

task, which demonstrate that the U-Net in diffusion models
can extract semantic information, we extract and incorporate
the semantics of the content image as guidance during gener-
ation. We utilize the down-blocks and mid-blocks of the U-
Net in diffusion model to extract semantic features from the
content image, which are then injected into the corresponding
positions of the U-Net in the generative stylization model (as
illustrated in Figure 3) in a residual manner.

5 Experiments
5.1 Implementation Details
We utilize Stable Diffusion XL 1.0 as the foundational text-
to-image model and employ the DDIM sampler with 30 sam-
pling steps for each stylized image generation. The phase
fusion module is applied during the early sampling stage,
specifically at the 2nd, 5th, and 8th timesteps, with the pa-
rameters set to α = 0.5 and β = 0.7. Notably, our method
is training-free and does not require fine-tuning. All experi-
ments are conducted on a single RTX 3090 GPU.

5.2 Qualitative Comparison
We compare our method with state-of-the-art approaches, in-
cluding Zecon [Yang et al., 2023], CLIPStyler [Kwon and

Ye, 2022], FreeStyle [He et al., 2024], and StyleID [Chung
et al., 2024]. Unlike the other methods, which use a style
text prompt and a content image as input, StyleID requires
both a content image and a style image. To generate the
necessary style image for StyleID, we employed the Stable
Diffusion XL 1.0 model based on the provided style descrip-
tion. Figure 6 illustrates the comparison results. FreeStyle
demonstrates excellent style transfer but struggles to preserve
content. Conversely, CLIPStyler maintains content structures
but delivers weaker style transfer. Zecon also exhibits limited
style quality, likely due to the CLIP model’s emphasis on se-
mantic content rather than style. The Artist method produces
results nearly identical to the input content images, while
StyleID shows relatively weak style transfer and subopti-
mal structural preservation. In contrast, our method achieves
superior content preservation while delivering style quality
comparable to FreeStyle.

5.3 User Study

We conducted a user survey with 50 participants to compare
our method against five other approaches: FreeStyle, Artist,
Zecon, CLIPStyler, and StyleID. For these methods, all ex-
perimental results were produced using their publicly avail-
able default parameter settings. Participants were presented
with 25 groups of results, each paired with the corresponding
content image and style text description. For unconventional
styles, a style image generated by the Stable Diffusion model
was also included as a reference. Participants assessed both
the content preservation and style quality of the generated re-
sults, selecting at least two results they favored the most in
each group. The results of the user survey, presented in Fig-
ure 7, indicate that our method was more favored.

5.4 Quantitative Comparison

Evaluation Metrics
CLIP Aesthetic Score. It is a metric for assessing aesthetic
scores. The underlying model is a neural network that uses
CLIP embeddings as input and is trained to predict an image’s
aesthetic score based on its visual appeal.

HPS. The Human Preference Score (HPS) [Wu et al., 2023]
is a scoring model developed to predict human preferences for
generated images. Trained on a Human Preference Dataset,
this model assigns higher scores to images that are more
likely to be favored by people.

CLIP Score. We calculate the cosine similarity between the
CLIP features of a stylized image and the corresponding style
text description. A higher CLIP Score reflects a more accu-
rate alignment with the intended style.

SSIM. Structural Similarity Index (SSIM) is a metric used
to measure the similarity between two images. It evaluates
image similarity by analyzing three key dimensions: lumi-
nance, contrast, and structure within local regions of the im-
ages. An SSIM value close to 1 indicates high similarity be-
tween the images, while a value near 0 suggests significant
differences.
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Figure 6: Qualitative comparison with state-of-the-art methods. We mainly compared the methods that use text descriptions as style refer-
ences. While these methods typically take content images along with textual style prompts as input, StyleID uniquely requires both a content
image and a style image. For StyleID, we first generate the style image (shown in the last column) via text-to-image generation based on each
style prompt.

Methods CLIP Aesthetic Score ↑ HPS ↑ CLIP Score ↑ SSIM ↑
StyleID [Chung et al., 2024] 5.863 0.206 26.542 0.477
FreeStyle [He et al., 2024] 6.220 0.239 27.142 0.469
Artist [Jiang and Chen, 2024] 5.823 0.182 23.228 0.575
Zecon [Yang et al., 2023] 5.738 0.221 25.857 0.498
CLIPStyler [Kwon and Ye, 2022] 5.992 0.232 31.085 0.447
Ours 6.385 0.246 27.228 0.515

Table 1: Quantitative Comparison. For each metric, the bolded data represents the best result, while the underlined data indicates the second-
best result.

Figure 7: User study. We visualize the voting ratio for each method,
indicating the popularity of each method’s results. For each question
in the questionnaire, participants were asked to select at least two
answers they preferred, considering both content preservation and
stylization effects.

Quantitative Comparison Results
Table 1 provides a quantitative comparison of our method
with five competitive approaches. Our method achieves the
highest scores in both the CLIP Aesthetic Score and HPS
metrics, demonstrating that the results produced by our ap-
proach are more likely to be preferred by users. This aligns
with the results of our user study. For the CLIP Score, our
method ranks second, following CLIPStyler, which explicitly
incorporates the CLIP Score as a constraint in its style trans-
fer process. However, when evaluating performance, we pri-
oritize user-centric metrics, such as the CLIP Aesthetic Score
and HPS, as the CLIP Score is not considered the primary
criterion for assessing quality of stylized results.

To compute the SSIM score, a fine-grained similarity met-
ric, we used SAM [Kirillov et al., 2023] to mask out blank re-
gions in both the content images and the stylized ones. SSIM
was then calculated only on areas containing distinct con-
tent structures, thereby minimizing the influence of stylistic
elements in blank regions. While our method achieves the
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Figure 8: Ablation study of the modules. The third to fifth columns
show results obtained with different settings: the basic diffusion
model using only the style text prompt (TP) as input, the diffusion
model with semantic injection (SI), and our complete model with
both semantic injection (SI) and phase fusion (PF) modules.

second-highest SSIM score, Artist attains the highest score
for this metric. However, Artist struggles to deliver high-
quality style transfer results based on the given style descrip-
tions (see Figure 6).

5.5 Ablation Study

Effect of Modules
We validate the effectiveness of the two key modules, namely
the phase fusion module and the semantic injection module,
by incorporating them incrementally. The results are pre-
sented in Figure 8. The baseline model (w/TP) refers to the
original diffusion model that uses only the style text prompt
as input. The model w/TP + SI integrates the semantic injec-
tion module, while w/TP + SI + PF represents our complete
model, which includes both semantic injection and phase fu-
sion modules. As shown in Figure 8, the addition of semantic
injection helps to constrain the subjects, such as the cat and
flower, but their structures remain inconsistent with the con-
tent images. By further incorporating phase fusion, our model
achieves superior performance in both content preservation
and stylization.

Effect of Hyperparameters α and β

The parameter α determines the extent to which the phase
spectrum of the content image is introduced, while β controls
the amount of style information retained. While a full grid
search could be employed to determine these two hyperpa-
rameters, we simplified the process by initially setting both
α and β to 0.5 and performing a localized grid search within
specific ranges. First, we fixed β at 0.5 and adjusted α within
the range of 0.3 to 0.7. We observed that increasing α further,
which leads to a stronger influence from the content image’s
phase spectrum, introduces noticeable artifacts. In contrast,
decreasing α results in weaker stylization. Based on this ob-
servation, we set α to 0.5. Next, with α fixed at 0.5, we tuned
β within the range of 0.4 to 0.8. A smaller β resulted in strong
artifacts, while a larger β reduced the effectiveness of style
expression. Ultimately, we determined the optimal values as
α = 0.5 and β = 0.7, achieving a balance that ensured ef-
fectively stylized and artifact-free results. Once determined,
these hyperparameters are fixed for all stylization tasks.

Figure 9: Ablation study of α and β. First, we fix the value of β
and search for the optimal α. Then, we fix α and adjust β to find the
best result with desirable color. Finally, we set α to 0.5 and β to 0.7.
Once α and β are determined, they remain fixed for style transfer on
any image.

6 Conclusion
In this work, we proposed a Fourier domain phase spectrum
incorporation method to guide the diffusion model in preserv-
ing the content of an input image during style transfer. To
further enhance content preservation, we introduced a mech-
anism that integrates semantic information from the content
image. These two designs enable the diffusion model to
achieve high-quality style transfer results while ensuring the
generated image remains closely aligned with the input con-
tent image, in a completely training-free manner. Our method
currently does not support transferring styles from image ref-
erences. In the future, we plan to expand our model to ac-
commodate various types of style references.
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