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Abstract
Federated Unlearning (FU) addresses the “right to
be forgotten” in federated learning by removing
specific client data’s contribution without retrain-
ing from scratch. Existing FUs are data-dependent,
which make the assumption that systems can access
original training data or stored historical parameter
updates during unlearning. However, the assump-
tion cannot always hold in practice, as users usu-
ally request the deletion of client data and historical
parameter updates due to privacy concerns or stor-
age limitations. Therefore, it is crucial to develop
a zero-shot FU method without such data access.
The key challenge is how to distinguish and remove
the impact of target clients without data-level infor-
mation. Motivated by the idea that if we can learn
client-specific personalized information from the
model instead of data, FU can be model-centric and
data-free, we present the first zero-shot FU frame-
work ZeroFU. By embedding client contributions
into the model during learning via condition com-
putation, ZeroFU enables the model to possess per-
sonalized features for unlearning. The unlearning is
achieved using a proposed GAN-based distillation
framework that obfuscates the personalized feature
of the target client. Evaluations demonstrate its ef-
fectiveness in unlearning under non-IID settings.

1 Introduction
Privacy regulations such as GDPR [Voigt and Von dem Buss-
che, 2017] and CCPA [Illman and Temple, 2019] grant
clients in federated learning (FL) [McMahan et al., 2017]
the right to withdraw their data contributions. While the
most straightforward solution is to retrain the model from
scratch on the retained clients, it is costly and computation-
ally intensive. Federated Unlearning (FU) [Wu et al., 2022;
Liu et al., 2021] has thus emerged as a critical solution, aim-
ing to more efficiently “forget” the impact of specific data

*Corresponding Authors.

by fine-tuning the trained model or accelerating retraining.
According to the target of unlearning, current FUs focus on
classes, clients, or samples, aiming to eliminate the impact of
data from specific classes, clients, or samples, respectively.
FU in this paper refers to federated client-level unlearning.

Existing FUs are data-dependent, which make an assump-
tion that systems can re-access training data or model up-
dates while unlearning. They require clients to have access
to client-local data for model fine-tuning [Liu et al., 2022;
Wang et al., 2022] or reuse stored historical parameter up-
dates during training to accelerate retraining [Zhang et al.,
2023c; Liu et al., 2021; Lin et al., 2024]. However, such
an assumption cannot always hold in practice. First, for the
client requesting unlearning, any access to its data during the
unlearning phase should be strictly prohibited, e.g. if a user of
a shopping app discovers that its private data has been used to
train an FL model, they are likely to immediately revoke ac-
cess and request the deletion of the data’s impact. Second, for
retained clients who do not request unlearning, their training
data or historical updates are often inaccessible after training,
e.g. in the field of medical records, where privacy regula-
tions like HIPAA [Cohen and Mello, 2018] and user consent
withdrawal require that such records be permanently deleted
after training. Additionally, storing historical updates on the
server or client increases storage overhead and poses privacy
risks, making it infeasible for large-scale federated deploy-
ment. Such situations necessitate zero-shot federated un-
learning, i.e. forgetting the contributions of a specific client
without visiting the original data or stored updates.

The core challenge of zero-shot FU lies in how to distin-
guish the impact of the target client from non-target clients on
the model and remove the impact. Existing data-dependent
FUs typically achieve contribution differentiation through
client data distributions or gradient update differences during
training, but such information is unavailable in zero-shot sce-
narios with no client-specific knowledge available. One po-
tential idea is to be model-centric, i.e. embedding the client-
specific knowledge into the model. The key is to embed
personalized client features during training to enable model-
based unlearning rather than relying on the data itself, which
means transforming the FU from data-dependent to a person-
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alized model-centric approach. The personalized features of
the model can be used to distinguish the contributions of tar-
get clients for effective unlearning.

Motivated by the above ideas, we propose ZeroFU, a novel
FU framework designed for zero-shot scenarios which is per-
sonalized model-centric. ZeroFU innovatively addresses the
absence of data or updates after training based on the person-
alized client information embedded during training. Specifi-
cally, during the FL phase, we design a conditional computa-
tion mechanism to dynamically identify and utilize the unique
contributions of each client within the model. Then during the
FU phase, we propose a GAN-based distillation framework.
The adversarial structure of the GAN is responsible for gen-
erating pseudo data for model distillation. The goal of distil-
lation is to eliminate the influence of the target client while
preserving the overall model performance. This approach
ensures the contributions of target clients are effectively re-
moved while minimizing catastrophic forgetting [Bourtoule
et al., 2021; Liu et al., 2024] of other clients’ performance.
ZeroFU remains effective and reliable in zero-shot scenarios
where existing methods fail to work. Extensive experimental
results demonstrate that ZeroFU performs well on both target
and retained clients. The main contributions are as follows:

• We propose a novel zero-shot federated unlearning
framework, designed to handle scenarios where neither
training data nor historical updates are accessible. This
aligns closely with real-world data deletion requests.

• We propose utilizing personalized client information
embedded in the model during training to effectively
achieve unlearning by extracting and obfuscating client-
specific features, thereby transitioning FU from data-
dependent to personalized model-centric.

• We deploy and evaluate ZeroFU on real-world datasets,
achieving an accuracy improvement of up to 26.2%
compared to existing zero-shot machine unlearning
methods extended to federated scenarios.

2 Related Work
Federated Unlearning. Federated unlearning (FU) extends
machine unlearning (MU) to federated scenarios, aiming to
remove specific information from trained models for privacy
compliance. In addition to the class-level and sample-level
forgetting dimensions in MU, FU introduces client-level as an
additional dimension. Precise MU methods like SISA [Bour-
toule et al., 2021] retrain data partitions, while approximate
methods [Lee and Woo, 2023; Tarun et al., 2023] leverage
statistical properties. Existing FU methods often require his-
torical parameters or original data. For instance, class-level
methods [Wang et al., 2022] prune sensitive channels for spe-
cific classes, while client-level methods like FedEraser [Liu
et al., 2021] and others [Wu et al., 2022; Liu et al., 2022;
Su and Li, 2023] use historical updates, knowledge distilla-
tion, or retraining techniques to accelerate unlearning. These
methods depend on client access to data post-training, which
is often infeasible in practice. Despite these limitations, client
unlearning in zero-shot scenarios remains unexplored.

In client-level FU, given a training dataset D = {Di}Ki=1
from clients C1, C2, . . . , CK , let Cr represent the retained

client with data Dr, and Cf the forgotten (or target) client
with data Df . A retrained model, trained from scratch on
D \Df , is typically used as a benchmark for unlearning per-
formance [Bourtoule et al., 2021; Liu et al., 2021]. The FL
process, denoted as FL : D → ω, maps the client data D to
the global model parameters ω. The FU process is defined as
FU : FL(D)⊗D ⊗Df → ω′, where the goal is to produce
an unlearned model ω′ similar to the retrained model:

Φ[FL(D \Df )] = Φ[FU(FL(D), D,Df )], (1)

where Φ[·] denotes the probability distribution of the output.
Zero-shot Federated Unlearning. Existing FU methods
require access to Dr and Df , which is often impractical due
to privacy constraints. In contrast, a zero-shot client unlearn-
ing approach (FU ′) eliminates dependence on Dr and Df ,
relying instead on model queries as follows:

Φ[FL(D \Df )] = Φ[FU ′(Mr(D),Mf (D))], (2)

where FU ′ : FL(D) ⊗ Mr ⊗ Mf → ω′ queries the per-
sonalized models Mr and Mf of the retained and forgotten
clients, respectively. This method only requires access to the
model parameters ω, which are typically available.
Model Personalization. Existing FL methods like Fe-
dAvg [McMahan et al., 2017] train a single global model in
a privacy-preserving manner. However, data heterogeneity in
real-world scenarios limits the performance of such global
aggregation [Wang et al., 2020; Xu et al., 2024]. Model
personalization addresses this issue by tailoring the global
model for each client. Approaches such as GPFL [Zhang et
al., 2023a] and FedCP [Zhang et al., 2023b] improve local
accuracy by separating personalized and global information,
while others like DPMN [Ma et al., 2022], Peaches [Yan et
al., 2024], and TopFL [Chen et al., 2024] utilize personalized
model topologies. In this paper, we find that model person-
alization not only enhances model performance in non-IID
scenarios but also facilitates client FU in zero-shot scenarios.

3 Design of ZeroFU
3.1 Overall Architecture
The overall process involves first collaboratively training the
FL model, and then during unlearning, the forgotten client
sends an unlearning request to the retained clients, followed
by executing unlearning to remove its specific contributions.
ZeroFU Learning Framework. As shown in Figure. 1, the
components of learning include a Feature Extraction mod-
ule (θ), a Model Head (φ), a Class Embedding Generator
(eGen) and a Condition Module (CM ). ZeroFU employs
a personalized approach that extracts both global and client-
specific features. Following the principles of FedRep [Collins
et al., 2021], the backbone model, such as ResNet [He et al.,
2016], is divided into θ and φ during training. The φ corre-
sponds to the last fully connected (FC) layer of the backbone
model, while the θ comprises the remaining layers. Global
Embedding gEm and Personal Embedding pEmi are cal-
culated based on the class embedding (cEm) from eGen
and the label distribution (LDi) of client Ci using a look up
method. The gEm and pEmi are then fed into CM . The
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Figure 1: ZeroFU Learning Framework with Condition Module.

CM processes the extracting features fi from θ and gener-
ating both global features fg

i and client-specific features fp
i ,

which are then combined to produce the final classification re-
sult through φ. θ, φ, CM , and eGen share parameters among
clients and are trained in an end-to-end manner. The trainable
parameters include ωi = {ωθ, ωφ, ωCM , ωeGen}.

ZeroFU Zero-shot Unlearning Framework. As shown in
Figure. 2, the components of unlearning include the person-
alized model on retained client Cr and forgotten client Cf ,
a student model and a Generator G. ZeroFU uses Knowl-
edge Distillation (KD) and Generative Adversarial Networks
(GAN) to adjust model parameters and obscure the personal-
ized information of Cf . The unlearning process is conducted
on the client side for privacy reasons, with the teacher model
being the model of Cr. The student model has the same
model structure as the model on Cr. We use G to create data
points aimed at maximizing the difference FLoss between
personalized features fp

s on student and fp
f on Cf , while the

client local distillation minimizes FLoss to achieve the for-
getting of personalized feature information. Intuitively, the
personalized information of the client Cf are overshadowed
by that of the retained client Cr. Through knowledge distilla-
tion, zero-shot unlearning is realized. Knowledge transfer is
achieved by minimizing the divergence KLoss and distance
measures Aloss between the teacher and student model. CM
and eGen remain unchanged to maintain class consistency.

3.2 Learning Personalized Models on ZeroFU
ZeroFU’s learning phase aims to train personalized models
for each client, extracting client-specific features for unlearn-
ing. It involves collaboration between θ, φ, eGen, and CM .

Feature Extractor. θ extracts features fi from the input xi

on client Ci. θ is a backbone network module excluding the
model head φ, mapping θ : Rdim(x) → Rdim(fi), where typi-
cally data dimension dim(fi) ≪ dim(x). For client i,

∀(xi, yi) ∈ Di,fi = θ(xi;ω
θ). (3)

Generating Class Embedding. We design the embedding
generator eGen. eGen generates global class embedding
vectors (cEm) to compute Global Embedding (gEm) and
Personal Embedding (pEmi) as the condition for the con-
dition module CM . For an image classification task with U

Class
Embedding 

Retained Client 

Forgotten Client 

Generator

Feature
Extractor

Feature
Extractor

Condition
Module

Condition
Module

Model 
Head

Feature
Extractor

Condition
Module

Teacher

Student

FLoss ALoss KLoss

min

max

Forgotten Client
Retained Client
Loss

Model 
Head

gEm

Figure 2: ZeroFU Zero-shot Unlearning Framework.

classes, eGen takes a class index input cin ∈ {0, 1, . . . , U −
1} and outputs the embedding cEm. The output of eGen is:

cEmy = eGen(cin = y;ωeGen), (4)

where cEmy ∈ Rdim(fi) is the embedding vector for
class y. The global class embedding matrix is cEm =
[cEm0, cEm1, . . . , cEmU−1], where cEm ∈ RU×dim(fi).
Generating Global and Personal Embeddings. Based on
cEm, we generate gEm and pEmi for each client Ci. The
gEm captures the global information of all classes and is
shared across all clients. It is calculated as:

gEm =
1

U

∑︂U−1

y=0
cEmy. (5)

Let the label distribution vector of client Ci be LDi =
[LD0

i , LD
1
i , . . . , LD

U−1
i ], where:

LDy
i = E(xi,yi)∼Di

I{yi, y}, (6)

where I is an indicator function. The personalized embedding
pEmi is calculated based on the LDi as:

pEmi =
∑︂U−1

u=0
(cEmu · LDu

i ). (7)

The pEmi reflects the specific label distribution information
of Ci, providing conditions for non-IID data in FL settings.
Generating Personalized and Global Features. Inspired
by conditional computation techniques [Guo et al., 2019;
Zhang et al., 2023a], the function of CM is to utilize the
conditions from gEm and pEmi to generate personalized
feature representations fi

p and global feature representations
fi

g from the input feature fi, respectively. This enables per-
sonalized model adjustments for each client. The CM in-
cludes a Conditional Bias module CMB and a Conditional
Weight module CMW . For the global feature extraction, the
output weight vector W and bias vector b are:

W = CMW (gEm;ωCM ),b = CMB(gEm;ωCM ). (8)

For the personal feature extraction, the output vectors are:

Wi = CMW (pEmi;ω
CM ),bi = CMB(pEmi;ω

CM ). (9)

We compute fg
i and fp

i by performing affine transforma-
tions [Zhang et al., 2023b; Zhang et al., 2023a] as follows:

fg
i = ReLU (b+ (W + 1)⊙ fi) ,

fp
i = ReLU (bi + (Wi + 1)⊙ fi) ,

(10)

where ⊙ denotes Hadamard product, 1 is an all-ones matrix.
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Model Head Output. We concatenate fp
i and fg

i , and then
the model head φ converts the concatenated feature vector
into the final prediction result ŷi:

ŷi = φ([fp
i ;f

g
i ];ω

φ). (11)

Training Loss Function. ZeroFU’s loss function combines
multiple terms. The primary loss for classification tasks is the
cross-entropy (CE) loss [Mannor et al., 2005]:

LCE
i = CrossEntropyLoss(yi, ŷi), (12)

where ŷi is calculated according to Eq. (11). Additionally, in-
spired by the class embedding loss functions [Pu et al., 2024],
we incorporate an extra loss term for cEm to adjust the up-
date direction of cGen. We aim to minimize the similarity
between the feature vector and its corresponding class em-
bedding while maximizing its distance from other class em-
beddings, thereby preserving the specificity of different class
embeddings. We calculate the cosine similarity between fg

i
and its corresponding class embedding as follows:

LEM
i = − log

(︄
exp(cos sim(fg

i , cEmyi))∑︁U
u=1 exp(cos sim(fg

i , cEmu))

)︄
, (13)

where the cosine similarity is calculated as the formula
cos sim(f, emb) = f ·embT

∥f∥·∥emb∥ . Combining the loss func-
tions above, the overall loss function for client Ci is:

Li(ωi) = LCE
i + LEM

i + λ1∥ωcGen∥22 + λ2∥ωCM∥22, (14)

where we add L2 regularization terms to the cGen and CM ,
with λ1, λ2 as hyperparameters. We minimize the loss func-
tion using SGD and aggregate the updates. The entire learn-
ing process is outlined in Algorithm 1.

3.3 Zero-shot Unlearning Process on ZeroFU
ZeroFU aims to efficiently remove the influence of a forgotten
client Cr on a retained client Cr by forgetting personalized
features in a zero-shot setting based on KD and GAN.

Data Generator. We use a generator G(z, ωG) to generate
data points from a random noise vector z ∈ Rzdim , sampled
from N (0, 1). The generator first maps z to a higher di-
mensional space using a series of layers, including Linear,
View, Batch Normalization, and Upsampling. It then pro-
cesses the feature maps with convolution, batch normaliza-
tion, and Leaky RELU activation to generate pseudo-samples
for knowledge distillation training, denoted as x = G(z;ωG).
These pseudo-samples are then used as inputs for the teacher
model, student model, and the model to be forgotten on Cf .

Zero-shot Knowledge Distillation. ZeroFU uses the re-
tained model R(x;ωr) on Cr as the teacher and a randomly
initialized model S(x;ωs) as the student. The model to be
forgotten on Cf is F (x;ωf ). To maintain training accu-
racy, CM and cGen parameters are kept unchanged, ωCM

s =
ωCM
r , ωcGen

s = ωcGen
r . The objective is to maintain per-

formance on Cr while unlearning Cf ’s information. Inspired
by [Chen et al., 2023; Lee and Woo, 2023], we aim to alter
the decision space on Cf by mapping its personalized infor-
mation decision space to the Cr’s personalized information

Algorithm 1: Model Personalization Based Training
Input: Client Ci training data Di; Learning rate η;

Hyperparameters λ1, λ2; Total communication
rounds T ; Local training rounds Tl; Ratio of
joining clients per round α.

Output: Updated global model parameters ωT for K
clients.

1 Initialize global parameters shared among clients with:
ω0 ← {ωθ,0, ωφ,0, ωCM,0, ωeGen,0}.

2 for each communication round t from 1 to T do
3 Randomly select a fraction α of clients to form set Ot.
4 Server sends ωt−1 to client ∀Ci ∈ Ot, set ωt

i ← ωt−1.
5 for each selected client Ci ∈ Ot in parallel do
6 for each local training round tl from 1 to Tl do
7 Extract features fi from θ using Eq. (3).
8 Generate gEm, pEm using Eq. (5),(7).
9 Compute fg

i and fp
i from CM using

Eq. (10).
10 Compute prediction ŷi from φ using Eq. (11).
11 Compute loss function Li(ωi) using Eq. (14).
12 Update local parameters using gradient

descent: ωt
i ← ωt

i − η∇Li(ωi).

13 Share updated parameters ωt
i with the server.

14 Aggregate global parameters on the server:
ωt ← 1∑︁

i∈Ot |Di|
∑︁

i∈Ot |Di|ωt
i .

15 return Updated global model ωT .

decision space, achieving approximate unlearning. Specifi-
cally, we aim to make the personalized feature information
fp
f extracted from client Cf close to the fp

s of the student.
We obtain fp

s and fp
f from S(x;ωs) and F (x;ωf ) using

Eq. (9) and (10), respectively. We have set pEms = pEmr,
using the personal embedding of the client Cr on the student
model. The similarity between fp

s and fp
f is as follows:

FLoss = 1− cos sim(fp
s ,f

p
f ) = 1−

fp
s · fp

f
T

∥fp
s ∥ · ∥fp

f ∥
, (15)

where a smaller FLoss indicates a higher cosine similarity,
achieving “masking” of Cf ’s personalized information with-
out affecting the decision space of the Cr. Similarly, we can
compute fp

r (the personalized information feature on Cr) by
using pEmr. The fg

s and fg
r (global feature information

of student and teacher models) can be calculated by replac-
ing pEm with gEm. Let yr̂ and yŝ be the predictions of
the teacher and student models on x respectively. To en-
able the knowledge transfer from teacher to student, KLoss
maximizes the Kullback-Leibler divergences [Kullback and
Leibler, 1951] DKL(R(x)∥S(x)) between the outputs:

KLoss = τ2
∑︂U−1

i=0
σ(yr̂/τ)i log

(︃
σ(yr̂/τ)i

log σ(yŝ/τ)i

)︃
, (16)

where τ is a temperature parameter, σ represents the softmax
function. Additionally, inspired by [Micaelli and Storkey,
2019], we incorporate attention loss with L2 normalization:

ALoss =
1

|NL|
∑︂
l∈NL

⃦⃦⃦⃦
⃦ f(A

(r)
l )

∥f(A(r)
l )∥2

−
f(A

(s)
l )

∥f(A(s)
l )∥2

⃦⃦⃦⃦
⃦
2

, (17)
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Algorithm 2: ZeroFU Zero-shot Unlearning Process
Input: Teacher model on Cr: R(x;ωr); Forgetting model

on Cf : F (x;ωf ); Generator: G(z;ωG);
Hyperparameters β and γ; Unlearning training
rounds Tu; KD rounds Tk; Learning rate η.

Output: Updated student model S(x;ωs).
1 Initialize student model S(x;ωs) with random weights ωs.
2 Set ωCM

s ← ωCM
r , ωcGen

s ← ωcGen
r .

3 for each unlearning round t from 1 to Tu do
4 Sample a batch of random noise z ∼ N (0, 1).
5 Generate pseudo-samples x← G(z;ωG).
6 for each KD round k from 1 to Tk do
7 Compute personalized features fp

r , fp
s , fp

f .
8 Compute global information features fg

r and fg
s .

9 Compute FLoss using Eq. (15).
10 Compute predictions yr̂ and yŝ using Eq. (11).
11 Compute KLoss using Eq. (16).
12 Compute attention loss ALoss using Eq. (17).
13 Compute S(x;ωs) total loss: Fstu using Eq. (19).
14 Update S(x;ωs) parameters using gradient

descent: ωθ,φ
s ← ωθ,φ

s − η∇
ω
θ,φ
s

Fstu.

15 Update G(z;ωG) parameters ωG using gradient ascent:
ωG ← ωG + η∇ωGFLoss.

16 return Updated student model S(x;ωs).

where A
(r)
l and A

(s)
l denote the outputs of the teacher and

student models at layer l, respectively, and NL represents the
subset of layers used for calculating the attention loss, specif-
ically the activation layers of θ. Al outputs contain nl chan-
nels. The function f(Al) = 1

nl

∑︁
c a

2
l,c, where al,c denotes

the c-th channel of the activation block Al.
GAN Training Process. The generator G is optimized to
maximize the difference between the personalized informa-
tion features of the model F (x;ωf ) on the Cf and the student
model R(x;ωr). Here, the personalized feature information
acts as the discriminator in the GAN. The goal of G is:

argmax
ωG

FLoss. (18)

During knowledge distillation, the student model updates its
weights with an adversarial goal of forgetting specific person-
alized information on Cf , i.e., minimizing FLoss. With the
hyperparameters β and γ, the total loss for the student is:
arg min

ωθ
s ,ω

φ
s

Fstu,where Fstu = FLoss+ βKLoss+ γALoss,

(19)
The entire unlearning process is outlined in Algorithm 2.

4 Evaluation
4.1 Methodology
Testbed. We deployed ZeroFU on NVIDIA A100 40GB
Tensor Core GPUs using PyTorch 2.3.1 and Python 3.8.
Datasets and Backbone Models. Datasets include:
MNIST [LeCun et al., 1998], SVHN [Netzer et al.,
2011], Fashion-MNIST [Xiao et al., 2017], and CI-
FAR10 [Krizhevsky and Hinton, 2009]. The backbone model
includes two conv layers (32 and 64 5 × 5 filters with ReLU
and 2× 2 max-pooling) followed by a linear output layer.

Baselines. Given the lack of zero-shot unlearning in fed-
erated environments, we adapted zero-shot methods from
MU for federated unlearning and compared them under
ZeroFU’s learning configuration in a non-IID setting: i).
FedMM: Employs the Error Minimization-Maximization
Noise method [Tarun et al., 2023; Chundawat et al., 2023b],
learning noise matrices to minimize FLoss for retained
clients’ personalized features while maximizing it for forgot-
ten clients’ features. ii). FedGKT: Extends Gated Knowl-
edge Transfer [Chundawat et al., 2023b] to FL. It filters out
forgotten client information via a band-pass filter between
personalized features fp

r and fp
f . iii). FedBadT: Utilizes

both competent and incompetent teacher models [Chundawat
et al., 2023a], retaining the zero-shot data generator. The
retained client model acts as the competent teacher, while
the forgotten client outputs random noise as the incompetent
teacher. We also compared with non-zero-shot FUs in §4.3.

Evaluation Metrics. The evaluation metrics are: i). Accu-
racy: The accuracy of Df and Dr for Cf and Cr should be
closer to that of the retrained model, as the expected behavior
of the unlearned model should resemble the retrained model.
ii). Weight Distance: We measure model similarity using
L2 Norm Distance [Thudi et al., 2022], with smaller differ-
ences indicating higher similarity. iii). Membership Infer-
ence Attack (MIA): MIA, framed as a binary classification
task using a logistic regressor [Yan et al., 2022], determines
if a data point in Df was used in training [Chen et al., 2023;
Liu et al., 2021]. The threat model, trained on fp

i ex-
tracted by unlearned model on Dr with the labels indicat-
ing whether this data was used during training, aims to match
retrained model performance, indicating reduced attack capa-
bility. Metrics include attack precision and recall.

Settings and Hyperparameters. We used 10 clients with
α = 1 per round. To simulate the FL environment, we ap-
plied label shift heterogeneity under two settings: iii). Patho-
logical label skew: Data with different labels and sizes were
sampled for each client [McMahan et al., 2017]. ii). Prac-
tical label skew: A Dirichlet distribution (Dir(ζ), with the
concentration parameter ζ = 0.01/0.1) was used [Lin et al.,
2020]. The learning rate was η = 0.005 with Tl = 3, and
regularization parameters λ1 = λ2 = 0.1. During FU, τ = 2,
Tk = 9, and the loss hyperparameters were β = 5.0, γ = 2.0.

4.2 Overall Performance
Performance on Retained and Forgotten Data. Table 1
compares ZeroFU’s accuracy with baseline methods on re-
tained data Dr and forgotten data Df . Under ζ = 0.01
(highly imbalanced data, simulating class unlearning [Zhang
et al., 2023c]), ZeroFU achieves an average difference of
0.87% on Dr and 0.44% on Df , outperforming FedMM
(11.34%, 2.46%), FedGKT (8.43%, 2.44%), and FedBadT
(2.59%, 47.15%). For ζ = 0.10 (overlapping label distri-
butions), ZeroFU maintains differences of 3.21% on Dr and
0.44% on Df , while baselines exceed 20%. FedBadT strug-
gles on FMNIST and CIFAR10 due to unbalanced KL diver-
gence between two teachers. FedGKT suffers catastrophic
forgetting under ζ = 0.10 due to its gating mechanism block-
ing same-label propagation, while FedMM’s noise method re-
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DataSet ζ Cr Cf
Origin Retrained ZeroFU FedMM FedGKT FedBadT

Dr Df Dr Df Dr Df Dr Df Dr Df Dr Df

MNIST
0.01 0 1 96.40 99.22 96.30 0.24 92.63 0.00 73.11 0.00 71.14 0.00 88.75 0.00

8 9 98.54 99.91 98.81 0.01 97.05 0.01 89.11 0.00 89.11 0.00 89.11 1.13

0.1 4 5 99.10 99.26 99.03 57.18 96.03 38.95 20.98 0.00 60.70 0.12 82.66 27.53
3 6 96.02 97.29 94.41 83.79 91.04 83.54 44.89 65.19 54.60 0.00 85.00 73.23

SVHN
0.01 0 1 96.02 95.13 96.02 0.00 96.02 0.00 96.02 0.00 96.02 0.00 96.02 4.96

8 9 95.99 99.99 95.84 0.00 95.99 0.00 95.99 0.00 93.44 0.00 95.99 8.95

0.1 4 5 98.13 70.87 98.13 60.26 98.13 46.60 98.13 36.98 98.13 39.98 98.13 38.10
3 6 88.23 59.93 86.08 54.60 88.26 45.41 88.16 0.00 88.16 0.00 88.16 8.40

FMNIST
0.01 0 1 99.45 99.06 99.45 6.27 99.45 8.69 100.00 12.70 71.95 0.00 100.00 96.28

8 9 99.98 99.44 99.50 12.96 99.98 12.13 99.99 0.00 99.98 0.00 99.98 84.92

0.1 4 5 83.12 85.91 88.13 13.35 79.78 16.11 63.12 16.11 59.41 16.11 59.40 83.48
3 6 76.74 98.11 88.41 13.88 84.81 17.31 49.61 0.00 21.04 0.00 73.84 95.41

CIFAR10
0.01 0 1 98.78 100.00 98.78 0.00 98.78 0.00 98.78 0.00 98.78 0.00 98.78 100.00

8 9 80.36 99.96 77.88 0.00 78.76 0.00 21.28 0.00 75.68 0.00 80.13 99.96

0.1 4 5 86.08 80.27 79.77 28.22 78.10 29.01 71.01 7.07 48.70 2.30 71.11 12.11
3 6 87.19 91.70 80.15 3.76 76.67 2.01 47.48 0.00 41.20 9.58 65.30 92.21

Table 1: Forgetting Accuracy Results Comparison under Different Datasets with the Red Numbers the Optimal Results.
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Figure 3: Deviation of Parameters between Unlearned Model and Retrained Model under Different Methods.
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(d) Attack Recall (ζ = 0.10)

Figure 4: Performance of Membership Inference Attacks (MIAs).

duces accuracy and amplifies forgetting. ZeroFU effectively
balances forgetting and retention by disrupting Df ’s decision
boundary without impacting other clients’ boundaries.

Weight Deviation of Unlearned Models. The comparisons
between the weights of unlearned and retrained models are
shown in Figure. 3. The weights of the unlearned models cre-
ated using ZeroFU are generally closer to the retrained mod-
els, demonstrating better performance. The parameter devia-
tion decreases when approaching the model head.

Privacy Leakage of Forgotten Data. We conducted MIAs
on Df in non-IID scenarios. As shown in Figure 4, Ze-
roFU achieves MIA accuracy and recall closer to retrained
models, demonstrating better privacy protection. Unlearned
models generally leak more privacy due to reliance on orig-
inal models than retrained models. At ζ = 0.01, FedMM,
FedGKT, and FedBadT averaged 4.15%, 3.39%, and 6.60%
higher accuracy, and 10.65%, 11.58%, and 4.55% higher re-
call than ZeroFU. At ζ = 0.10, their attack accuracy averaged
0.90%, 5.04%, and 2.54% higher, with recall 9.89%, 6.63%,

and 10.77% higher. This is because ZeroFU more effectively
conceals the impact of the forgotten information.

Visualization. We conducted visualization on MNIST and
CIFAR10 with ζ = 0.10, using t-SNE [Van der Maaten and
Hinton, 2008] to map personalized feature fp

i of retrained
and unlearned models. As shown in Figure 5, unlearned mod-
els closely resemble retrained models in feature space distri-
bution, appearing isomorphic but not isometric. Furthermore,
we observed that the ZeroFU model has the capability to map
the same label data from different clients to distinct feature
spaces. This prevents catastrophic forgetting of the same la-
bel in other clients when a specific label from one client is
forgotten. The differentiation in feature spaces across clients
also highlights the capacity for learning in non-IID scenarios.

4.3 Comparison with the SOTA FU Methods
We summarize FU method attributes. FedEraser [Liu et al.,
2021] uses historical gradients to accelerate retraining, Fe-
dRecovery [Zhang et al., 2023c] relies on historical param-
eters for differential privacy forgetting, and Knot [Su and
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(c) CIFAR10 Retrained
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(d) CIFAR10 Unlearned

Figure 5: t-SNE Visualizations of Personalized Features for Unlearned and Retained Clients.
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(c) Scalability Study: ζ = 0.10

Figure 6: Ablation and Scalability Study: Impact of Components of ZeroFU and Number of Clients.

Dataset Model FedEraser FedRecovery Knot ZeroFU
Dr Df Dr Df Dr Df Dr Df

MNIST retrain 99.01 98.44 99.01 98.44 99.15 98.48 97.78 96.53
unlearn 96.23 95.84 92.08 91.89 97.66 97.12 94.05 94.77

SVHN retrain 94.07 89.07 94.07 89.07 97.89 89.36 93.81 89.01
unlearn 87.55 87.50 81.24 78.90 94.97 93.18 90.45 89.03

FMNIST retrain 93.79 91.09 93.79 91.09 93.97 90.99 92.24 92.75
unlearn 90.36 90.09 86.42 83.78 86.27 85.90 91.46 90.88

CIFAR10 retrain 88.73 68.23 88.73 68.23 90.65 87.75 86.70 85.38
unlearn 85.08 63.57 75.34 63.21 85.33 85.28 85.43 83.78

(a) IID Scenario

Dataset Model FedEraser FedRecovery Knot ZeroFU
Dr Df Dr Df Dr Df Dr Df

MNIST retrain 98.72 87.79 98.72 87.79 97.37 88.72 94.41 83.79
unlearn 77.16 65.89 90.78 82.36 94.34 85.46 91.04 83.54

SVHN retrain 84.26 59.26 84.26 59.26 81.95 79.05 86.08 54.60
unlearn 57.81 42.94 70.12 40.25 80.31 77.63 88.26 45.41

FMNIST retrain 58.46 22.49 58.46 22.49 58.22 12.55 88.41 13.88
unlearn 42.32 15.70 49.56 10.98 48.09 38.21 84.81 17.31

CIFAR10 retrain 52.79 39.58 52.79 39.58 71.31 33.89 79.77 28.22
unlearn 44.10 34.54 40.78 32.08 53.41 33.91 78.10 29.01

(b) non-IID Scenario (ζ = 0.10)

Table 2: Performance Comparison of ZeroFU with State-of-the-Art Client Unlearning Methods: Considering It Cannot Access the Training
Dataset, ZeroFU Performs Quite Well. The Red Numbers Represent the Optimal Values, While the Blue Ones Indicate the Second-best.

Li, 2023] employs sub-cluster retraining in asynchronous FL.
ZeroFU is unique in not requiring access to training data or
historical updates. Performance comparisons (Table 2) show
ZeroFU achieves similar unlearning results under IID sce-
narios. For MNIST, ZeroFU’s deviation from the retrained
model on Dr and Df is 3.73% and 2.76%, respectively, com-
pared to Knot’s 1.39% and 1.36%. In non-IID scenarios, Ze-
roFU delivers higher training accuracy, outperforming others
by 30% on FMNIST. This is because personalization is con-
ducive to the adaptation of non-IID data. ZeroFU’s unlearn-
ing effectiveness surpasses FedEraser and FedRecovery and
is comparable to Knot. When training data and historical up-
dates are unavailable, ZeroFU remains effective, while others
cannot work due to the lack of client-specific information.

4.4 Ablation and Scalability Study
We first conducted ablation experiments using two variants:
(a) w/o LCE

i , removing the class embedding loss, and (b) w/o
FLoss. Results on CIFAR10 are shown in Figure 6a: (a) Re-
moving LCE

i reduced learning accuracy by 6.89% due to the
loss of global guidance, though unlearning remained effec-
tive due to feature remapping by the conditional model CM .
(b) Without FLoss, unlearning effectiveness dropped, with

Df accuracy 20.32% higher than the retrained model, show-
ing FLoss is critical for disrupting Df ’s decision bound-
aries. For scalability, we tested ZeroFU with 5/10/15/20/50
clients in non-IID settings (Figure 6). In the highly imbal-
anced ζ = 0.01 scenario, learning and unlearning performed
well. Under ζ = 0.10, learning accuracy was stable for 5-
20 clients but dropped 12.54% with 50 clients compared to
10. For unlearning, Dr accuracy remained strong as client
numbers increased, but Df accuracy showed a 19.16% gap
from the retrained model with 50 clients. This is because as
the number of clients increases, overlapping data distributions
may retain contributions from clients similar to the target.

5 Conclusion
This paper addressed the pressing need for zero-shot FU, a
critical capability in FL systems to comply with privacy reg-
ulations and client data withdrawal requests. Unlike exist-
ing data-dependent FUs that rely on access to training data
or stored updates, ZeroFU pioneers a personalized model-
centric approach, embedding client-specific contributions di-
rectly into the model to empower unlearning. This study pro-
vides a new perspective to advance FU research.
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