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Abstract

Graph Neural Networks (GNNs) excel in many ap-
plications but struggle when trained with noisy la-
bels, especially as noise can propagate through the
graph structure. Despite recent progress in devel-
oping robust GNNs, few methods exploit the in-
trinsic properties of graph data to filter out noise.
In this paper, we introduce ProCon, a novel frame-
work that identifies mislabeled nodes by measur-
ing label consistency among semantically similar
peers, which are determined by feature similar-
ity and graph adjacency. Mislabeled nodes typi-
cally exhibit lower consistency with these peers,
a signal we measure using pseudo-labels derived
from representational prototypes. A Gaussian Mix-
ture Model is fitted to the consistency distribu-
tion to identify clean samples, which refine pro-
totype quality in an iterative feedback loop. Ex-
periments on multiple datasets demonstrate that
ProCon significantly outperforms state-of-the-art
methods, effectively mitigating label noise and en-
hancing GNN robustness.

1 Introduction
Graph Neural Networks (GNNs) have demonstrated excel-
lent performance in various applications. Training a GNN
requires data, but the labels of data can be noisy. This noise
can originate from human annotators or automatic label ex-
traction tools, such as crowd-sourcing and web crawling. Ex-
isting research indicates that GNNs tend to memorize label
noise [Zhang et al., 2021], and noise can propagate through
the graph structure [Dai et al., 2021; Qian et al., 2023], de-
grading the performance. Therefore, training a robust GNN
to resist label noise is crucial. As label noise problems may
appear in any context, such robustness enhances GNN relia-
bility in many applications, including recommender systems

∗Corresponding Author

[Wu et al., 2022], traffic forecasting [Sun et al., 2022] and
molecular property prediction [Wieder et al., 2020].

Current research presents various solutions to mitigate the
issue of label noise. One prevalent approach involves iden-
tifying accurately labeled samples. A commonly adopted
strategy is to consider samples with small loss values as
clean. This strategy is based on the observation that, in the
early stages of training, loss values of clean samples are
smaller than those of mislabeled samples [Han et al., 2018;
Yu et al., 2019]. Some studies also leverage representa-
tion space [Wu et al., 2020] or training dynamics [Pleiss et
al., 2020] to identify noisy data. To enhance the robustness
of GNNs against label noise, existing methods utilize graph
structure. These approaches include graph structure refine-
ment [Dai et al., 2021; Dai et al., 2022], topology-based cur-
riculum learning [Wu et al., 2024], and introduction of addi-
tional supervision signals [Qian et al., 2023; Du et al., 2023;
Yuan et al., 2023a; Chen et al., 2024]. Despite these ad-
vancements, existing approaches for identifying clean sam-
ples remain dependent on model outputs. However, noisy su-
pervision during training can compromise the reliability of
outputs. Consequently, sample selection that relies on model
outputs can be misled by noisy labels, potentially resulting in
confirmation bias [Tarvainen and Valpola, 2017] and subop-
timal performance. The intrinsic properties of graph data are
not adequately exploited, thereby reducing the effectiveness
in dealing with label noise.

To address this issue, we propose a method that leverages
the label consistency of semantically similar nodes for sam-
ple selection. For each target node, a set of peers is identified,
comprising nodes with either similar features or structural ad-
jacency within the graph. Label consistency is defined as the
proportion of peers sharing the target node’s assigned label,
serving as a metric to evaluate its correctness. This approach
is grounded in two general properties of graph data: (1) nodes
with similar features are more likely to share the same la-
bel [Zhu et al., 2022], and (2) graph homophily [McPherson
et al., 2001] and monophily [Altenburger and Ugander, 2018]
suggest that nodes often belong to the same semantic class as
their one-hop or two-hop neighbors. Consequently, correctly
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(a) Ground truth
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(b) GNN classifier
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Figure 1: Peer-Informed Label Consistency distributions and node representations from WikiCS dataset. Subfigures (a-c) depict label consis-
tency distributions based on (a) ground truth labels, (b) GNN classifier predictions, and (c) ProCon leveraging prototypes. Subfigure (d) shows
a t-SNE visualization of node representations obtained by training a GNN on noisily labeled WikiCS. Colors indicate noisy labels. Markers
‘×’ represent nodes with incorrect labels. Prototypes for the blue class, derived from both ground truth and noisy labels, are highlighted.

labeled nodes typically demonstrate higher label consistency
with peers, while mislabeled nodes exhibit lower consistency.
This discrepancy, as illustrated in Figure 1a, underpins the
identification of mislabeled nodes through the analysis of
peer-informed label consistency.

The challenge arises from the unavailability of ground truth
labels, which prevents the calculation of true label consis-
tency. One workaround is to use the predictions from a
neural network classifier as a proxy. However, neural net-
works are prone to memorizing and overfitting noisy labels
[Arpit et al., 2017; Zhang et al., 2021]. Additionally, the
message-passing mechanism of GNNs inherently smooths
outputs across neighboring nodes [Chen et al., 2020]. Con-
sequently, classifier predictions for the peers of mislabeled
nodes tend to align with incorrect labels, making label con-
sistency between mislabeled and correctly labeled nodes in-
distinguishable, as shown in Figure 1b.

To address this challenge, we employ representations and
prototypes to assign pseudo-labels to nodes and estimate true
label consistency. A prototype is calculated as the aver-
age representation of samples in a class, serving as a rep-
resentative point in the representation space. Intuitively,
samples with the same ground truth label tend to cluster
together in the representation space [Papyan et al., 2020;
Zhu et al., 2021], with clean samples dominating the proto-
type calculation, as shown in Figure 1d. Consequently, pro-
totypes are more robust and less prone to memorizing noisy
labels compared to neural network classifiers. Each node is
assigned the label of its nearest prototype, and the resulting
label consistency is referred to as prototypical consistency. A
Gaussian Mixture Model is then fitted to the prototypical con-
sistency distribution of the training set to distinguish between
correctly labeled and mislabeled nodes. The correctly labeled
nodes identified in this process refine the prototypes, leading
to more accurate label consistency estimation and enhanced
reliability of label identification in subsequent iterations,
forming a positive feedback loop. Since noisy labels can de-
grade the quality of node representations [Wang et al., 2024;
Wu et al., 2020], we incorporate a graph self-supervised mod-
ule to maintain high-quality node representations even in the
presence of noisy labels. Our contributions are as follows:

1) We introduce a novel perspective, suggesting that the
intrinsic properties of graph data can be exploited to identify

mislabeled nodes.
2) We propose ProCon, a novel graph learning framework

for noisy labels, incorporating the peer-informed label consis-
tency and node representations to identify mislabeled nodes.

3) Extensive experiments conducted on multiple datasets
demonstrate that ProCon outperforms current state-of-the-art
methods, demonstrating its superior performance in handling
noisy-labeled graph data.

2 Related Work
2.1 Learning with Noisy Labels
Approaches to learning with noisy labels can be primarily di-
vided into robust algorithms and sample selection strategies.
Robust algorithms are designed to train networks on noisy
datasets while mitigating performance degradation. This ap-
proach includes modifications in network architectures [Lee
et al., 2019; Goldberger and Ben-Reuven, 2017], loss func-
tions [Zhang and Sabuncu, 2018], and robust regularization
[Wei et al., 2021; Menon et al., 2020].

Sample selection methods focus on identifying clean sam-
ples within noisy datasets. Motivated by the memoriza-
tion effect of deep neural networks (DNNs) [Arpit et al.,
2017], early studies typically employ peer networks and the
small-loss trick, exemplified by methods such as Decoupling
[Malach and Shalev-Shwartz, 2017], Co-teaching [Han et al.,
2018], and Co-teaching+ [Yu et al., 2019]. Another line of
research aims to establish new sample selection criteria. For
instance, AUM [Pleiss et al., 2020] identifies mislabeled data
by monitoring its prediction margin during training, while
TopoFilter [Wu et al., 2020] identifies isolated data in the rep-
resentation space as mislabeled. Upon obtaining clean data, a
straightforward strategy is to train the network solely on clean
data or to re-weight the data. Some studies [Li et al., 2020;
Wang et al., 2024] treat selected noisy data as unlabeled
and apply semi-supervised or contrastive learning techniques.
Others [Xiao et al., 2015; Yi and Wu, 2019] develop label-
correction modules to pseudo-label noisy data for training.

2.2 Robust Graph Neural Networks
Graph Neural Networks (GNNs) excel in tasks such as node
classification, link prediction, and graph classification by
leveraging graph structure to propagate information and cap-
ture both local and global patterns [Sun et al., 2024]. Nev-
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Figure 2: Pipeline of ProCon. The prototypical consistency is determined based on pseudo-labels from peers. A Gaussian Mixture Model is
then fitted to identify clean nodes. Subsequently, the identified clean nodes are utilized to refine the prototypes. ProCon effectively identifies
clean nodes by exploiting the discrepancy of the Peer-Informed Prototypical Consistency between mislabeled and correctly labeled nodes.

ertheless, existing work [Dai et al., 2021; Du et al., 2023;
Qian et al., 2023] reveals that the performance of GNNs can
be substantially compromised by noisy labels.

Recent studies have introduced various strategies to en-
hance the robustness of GNNs against noisy labels. Several
approaches enhance message passing in GNNs to counteract
the effects of label noise. For instance, NRGNN [Dai et al.,
2021] connects unlabeled nodes with similar labeled coun-
terparts to integrate clean label information, while RS-GNN
[Dai et al., 2022] diminishes noisy edges by learning a de-
noised graph.

Other approaches introduce supplementary and reliable su-
pervision, including self-reinforcement and consistency reg-
ularization [Qian et al., 2023], principles guided by infor-
mation theory [Zhou et al., 2023], and pairwise interactions
[Du et al., 2023]. Additionally, graph contrastive learning
has been utilized to address label noise, as evidenced by
RNCGLN [Zhu et al., 2024], ALEX [Yuan et al., 2023a],
and CGNN [Yuan et al., 2023b]. In addition, UnionNet [Li et
al., 2021] employs label aggregation to facilitate sample re-
weighting and label correction. TSS [Wu et al., 2024] intro-
duces a Class-conditional Betweenness Centrality measure to
optimize sample selection using topological information for
curriculum learning. ERASE [Chen et al., 2024] adopts label
propagation and maximize coding rate reduction. Further-
more, GNN Cleaner [Xia et al., 2024] presuppose the avail-
ability of a clean set.

While previous studies have effectively enhanced the ro-
bustness of Graph Neural Networks (GNNs) against label
noise, few have leveraged the intrinsic properties of graph
data to filter out noisy samples. In contrast, our method lever-
ages peer-informed label consistency by selecting semanti-
cally similar peers based on feature similarity and graph adja-
cency. This intrinsic exploitation allows ProCon to accurately
identify mislabeled nodes, thereby significantly improving
the robustness and effectiveness of GNNs.

3 Method
3.1 Preliminaries
We focus on the node classification task with label noise. For
an undirected graph G = (V, E) with n nodes, the node set is
denoted as V = {v1, v2, ..., vn}, and the edge set is denoted
as E ⊆ V × V . Let A ∈ Rn×n be the adjacency matrix of
G. If nodes vi and vj are connected, then Aij = 1, otherwise
Aij = 0. Let X ∈ Rn×d denote the node feature matrix,
where Xi ∈ Rd represents the feature vector of node vi. Let
Y = (y1, y2, . . . , yn) denote the node label vector, where
yi ∈ [L] = {1, 2, . . . , L} represents the label of node vi.
The training node set is denoted as Vtr ⊂ V . The labels of
the training set, denoted as Ytr, are corrupted by noise. Our
objective is to train a GNN encoder f and a classifier g from
the noisy training set such that g ◦ f : (X,A)→ Y.

3.2 Divide by Peer-Informed Prototypical
Consistency

Our goal is to identify correctly labeled nodes and estimate
their probabilities of being correct. The key to our method lies
in harnessing the disparity in peer-informed label consistency
between correctly labeled and mislabeled nodes.

We first outline the process for identifying the peers of
each node. The objective is to ensure that the labels of the
selected peers are likely to align with the label of the tar-
get node. Peer selection is driven by two main factors: (1)
feature similarity, as nodes exhibiting similar features are
more prone to sharing the same label, and (2) graph adja-
cency, since nodes are more likely to share labels with their
first- or second-order neighbors [McPherson et al., 2001;
Altenburger and Ugander, 2018]. To quantify feature sim-
ilarity, we construct a similarity matrix S ∈ Rn×n, where
Si,j represents the cosine similarity between nodes vi and vj ,
computed as follows:

Si,j =
Xi ·Xj

∥Xi∥∥Xj∥
(1)
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Subsequently, the similarity matrix S is refined by incor-
porating graph adjacency information:

S̃ = S⊙
(
α11⊤ + (1− α)A[2]

)
(2)

Here, ⊙ represents the Hadamard product, and 1 is a column
vector of ones. The matrix A[2] ∈ Rn×n represents the two-
hop reachability matrix of graph G. If nodes vi and vj are
reachable within two hops, then A

[2]
i,j equals 1; otherwise, it

is 0. The hyperparameter α ∈ (0, 1) controls the influence of
graph structure on the similarity matrix. A smaller value of
α emphasizes selecting peers from local neighbors, while a
larger value places more weight on global feature similarity.
The vector S̃i represents the topology-aware similarity of all
nodes with respect to node vi. For a target node vi, let the
peer set be denoted as Ṽ(i). Peers are selected based on the
top-k largest values in S̃i:

Ṽ(i) = {vj |vj ∈ Topk(S̃i)} (3)

where Topk(·) represents the set of nodes corresponding to
the top-k largest entries in the input.

To evaluate label consistency between training nodes and
peers, pseudo-labels are assigned to unlabeled peers using a
prototype-based method. We define the node representation
matrix as Z, with Zi denoting the representation of node vi.
Node representations are derived from a GNN encoder f , pa-
rameterized by θ, as Z = f(X,A;θ). For each class ℓ, a
prototype representation cℓ is maintained as its representative
vector. The pseudo-label ŷi for node vi corresponds to the
class of the closest prototype:

ŷi = argmin
ℓ∈[L]

(
1− zi · cℓ
∥zi∥∥cℓ∥

)
. (4)

We use cosine distance to measure the closeness between rep-
resentations. The prototypical pseudo-label ŷi indicates the
class to which node vi belongs in the representation space.

Subsequently, label consistency for training nodes is com-
puted by given labels and prototypical pseudo-labels of peers.
We term the label consistency value Peer-Informed Prototyp-
ical Consistency.

Definition 1 (Peer-Informed Prototypical Consistency).
Peer-Informed Prototypical Consistency for a node vt is
defined as the proportion of its peers whose prototypical
pseudo-labels match the given label:

ht =

∣∣∣{vj | vj ∈ Ṽ(t) ∧ yt = ŷj

}∣∣∣
|Ṽ(t)|

, (5)

where yt is the given label of node vt, ŷj is the prototypical
pseudo-label of node vj , and Ṽ(t) represents the peers of vt.

The prototypical pseudo-labels of peers represent the ex-
pected labels for the target node, derived from representa-
tions, features, and graph structure. Prototypical consistency
measures this expectation, with lower values reflecting in-
creased conflict between the given label and the expected la-
bel, thereby implying a higher likelihood of label error.

The prototypical consistency can vary across different
nodes and graphs. Therefore, rather than setting a fixed
threshold for sample selection, we analyze the empirical dis-
tribution of prototypical consistency value. Let the consis-
tency values of training nodes be H = {ht : vt ∈ Vtr}. To
distinguish between mislabeled and correctly labeled training
nodes, a two-component Gaussian Mixture Model (GMM)
is fitted to H using the expectation-maximization algorithm.
For any training node vt, the GMM outputs the posterior
probability p(m | ht) of its label being clean, where m repre-
sents the Gaussian component with the larger mean. For sim-
plicity, we refer to p(ℓ | ht) as wt. LetW = {wt : vt ∈ Vtr}
be the set of clean probabilities of training nodes. We set a
threshold τ on clean probabilities, and consider nodes satisfy-
ing wt > τ as clean. The set of all selected clean nodes is de-
noted as Vc = {vt : vt ∈ Vtr ∧ wt > τ}. Note that Vc ⊂ Vtr.
Using GMM to fit the distribution allows for a more flexible
and accurate selection process than setting a fixed threshold,
as it can adapt to different prototypical consistency distribu-
tions and provide the probability of each sample being clean.

3.3 Weighted Prototype Updating
The canonical way for updating prototypes is to take the sim-
ple average of representations from the same class after each
training iteration. However, mislabeled samples may lead to
the inclusion of representations that are not truly from the
same class, thereby compromising prototype quality.

To achieve robust and accurate prototypes, we propose us-
ing a weighted average of selected clean sample representa-
tions. Specifically, the prototype updates are performed as
follows:

cℓ ← γcℓ + (1− γ)

∑
vj∈Vℓ

c
wjzj∑

vj∈Vℓ
c
wj

, (6)

where Vℓ
c = {vi : vi ∈ Vc ∧ yi = ℓ} denotes the set of identi-

fied clean training nodes with label ℓ. wi represents the clean
probability of node vi, and γ ∈ (0, 1) is the prototype mo-
mentum factor. For each class, the average of filtered clean
samples, weighted by clean probabilities, is computed. Sub-
sequently, prototypes are updated using the exponential mov-
ing average method. Both the representations and the updated
prototypes are normalized to the unit sphere.

Updating prototypes by computing the weighted average
of selected clean node representations mitigates the impact of
mislabeled nodes, thereby enhancing prototype quality. This
enhanced prototype quality subsequently improves the ac-
curacy of pseudo-labeling and label consistency estimation.
As label consistency estimation becomes more precise, the
GMM more effectively identifies noisy labels, resulting in
cleaner samples for future prototype updates and establishing
a positive feedback loop.

3.4 Robust Representation Learning
Noisy labels can compromise the quality of representations
learned by the network [Wang et al., 2024; Yi et al., 2022;
Li et al., 2022], resulting in suboptimal prototypes and in-
accurate sample selection. To mitigate the impact of noisy
labels and achieve robust node representations, ProCon in-
corporates a self-supervised learning module.
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Drawing inspiration from bootstrap self-supervised learn-
ing techniques [Grill et al., 2020; Thakoor et al., 2022], this
module enhances node representations by predicting alterna-
tive augmentations of the input. Two encoders, namely an
online encoder and a target encoder, are employed to obtain
node representations from different augmentations. Specifi-
cally, for the graph G with node feature matrix X and adja-
cency matrix A, two independent random graph augmenta-
tions are applied to G, generating two views G(1) and G(2).
The augmented feature matrices are denoted as X(1) and
X(2), with the corresponding adjacency matrices A(1) and
A(2). Besides the encoder f(·, ·;θ) serving as the online
encoder, this module introduces a target encoder f̃(·, ·; θ̃)
sharing the same architecture. The two different views G(1)
and G(2) are processed through the online encoder and tar-
get encoder, respectively, yielding node representation ma-
trices node representation matrices Z(1) = f(X(1),A(1);θ)

and Z(2) = f̃(X(2),A(2); θ̃). The online representation Z(1)

is subsequently fed into a predictor network fp, producing
predictions H(p) = fp(Z

(1);θp) for the target representation
Z(2). The loss function for updating the online encoder and
predictor is defined as the mean negative cosine similarity be-
tween Z(2) and H(p) for each node:

LU = − 1

|V|
∑
vi∈V

H
(p)
i ·Z

(2)
i

∥H(p)
i ∥∥Z

(2)
i ∥

, (7)

where vector H(p)
i and Z

(2)
i represent the i-th components of

the matrices H(p) and Z(2), respectively. The target encoder
parameters θ̃ are updated as the exponential moving average
of the online encoder parameters θ with a decay rate µ:

θ̃ ← µθ̃ + (1− µ)θ. (8)

The self-supervised learning module functions independently
of noisy labels during training, thus mitigating the detrimental
effects of noisy labels on node representations. Additionally,
this module utilizes unlabeled nodes, facilitating the encoder
in learning superior node representations.

3.5 Model Training
The training regime within our framework is partitioned into
two modules. The first module entails supervised learning
with only the selected clean training nodes, whereas the sec-
ond module involves self-supervised learning encompassing
all nodes. Both modules use the same GNN encoder f . For
the supervised learning module, the cross entropy loss func-
tion is used, defined as follows:

LCE = − 1

|Vc|
∑
vi∈Vc

∑
ℓ∈[L]

yℓi log
eg

ℓ(zi;ϕ)∑L
j=1 e

gj(zi;ϕ)
, (9)

where g(·;ϕ) is a linear classifier parameterized by ϕ, which
takes a node representation as input and produces a logit vec-
tor. The term yℓi represents the ℓ-th component of the one-hot
encoded label yi, while gℓ(zi;ϕ) indicates the ℓ-th compo-
nent of vector g(zi;ϕ).

For the self-supervised learning module, the loss function
LU is defined in Eq. (7). The overall loss function inte-
grates the cross entropy loss and the self-supervised loss as
a weighted average:

L = λLCE + (1− λ)LU. (10)

The parameter λ ∈ (0, 1) operates as the loss balance fac-
tor, regulating the trade-off between representation learning
and classification. The pseudo code of ProCon is presented
in the Appendix A, with an overview depicted in Figure 2.

4 Experiments
4.1 Setup
Datasets and Settings. We conduct experiments on
Cora [McCallum et al., 2000], CiteSeer [Giles et al., 1998],
and WikiCS [Mernyei and Cangea, 2020] datasets. More ex-
perimental results from additional datasets and dataset statis-
tics are detailed in Appendix D and B. For all datasets, 10% of
the nodes are randomly selected for training, 10% for valida-
tion, and the rest for testing. Following previous works [Dai
et al., 2021; Du et al., 2023], labels of training and validation
sets are randomly corrupted in the following two ways:

1) Symmetric-p (Sym-p): Labels have a probability p of
being uniformly flipped to any other class.

2) Asymmetric-p (Asym-p): Labels have a probability p
of being non-uniformly flipped to specific other classes, re-
flecting common error patterns where some classes are more
likely mislabeled as similar ones.

Details of the noise synthesis process are provided in Ap-
pendix C. The probability p is also referred to as the ‘noise
rate’. We set p ∈ {0.2, 0.4, 0.6} for symmetric noise and
p ∈ {0.2, 0.3, 0.4} for asymmetric noise.

Implementation details including model architectures and
hyperparameters are provided in Appendix E. All hyperpa-
rameters are tuned on validation sets. Each experiment is re-
peated 10 times with different random seeds. The means and
standard deviations are reported.
Baselines. We compare ProCon with several state-of-the-
art noisy label learning methods to evaluate its effective-
ness. General noisy label learning methods compared in-
clude Me-momentum [Bai and Liu, 2021], Co-teaching+ [Yu
et al., 2019] and ProMix [Xiao et al., 2023], which use the
memorization effect, AUM [Pleiss et al., 2020] based on
training dynamics, and TopoFilter [Wu et al., 2020] leverag-
ing representation space. Additionally, ProCon is compared
against noisy label learning approaches for graph data, in-
cluding NRGNN [Dai et al., 2021], PI-GNN [Du et al., 2023],
RTGNN [Qian et al., 2023] and TSS [Wu et al., 2024].

4.2 Main Results
Table 1 reports the experimental results under different noise
settings for the Cora, CiteSeer, and WikiCS datasets. ProCon
consistently exhibites superior performance across diverse
datasets and noise levels. For the Cora dataset, ProCon
achieves an average improvement of 3.25% under symmet-
ric noise and 3.51% under asymmetric noise compared to the
best baseline. On the WikiCS dataset, ProCon shows an aver-
age improvement of 3.63% under symmetric noise and 4.88%
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Dataset Method
Symmetric Asymmetric

p = 0.2 p = 0.4 p = 0.6 p = 0.2 p = 0.3 p = 0.4

Cora

Cross Entropy 76.35±1.25 69.41±1.26 61.86±2.31 75.41±1.63 68.43±3.20 59.20±6.87
Me-momentum 78.79±0.97 70.86±1.32 62.38±2.53 74.76±0.88 67.12±4.10 60.74±7.33
Co-teaching+ 76.30±0.90 69.42±1.02 61.75±2.01 77.87±1.53 67.80±3.35 58.52±8.04

TopoFilter 76.55±0.84 71.55±1.58 63.28±2.89 72.33±2.06 66.62±4.26 59.34±6.60
ProMix 75.71±1.67 69.52±0.93 60.14±2.13 74.81±1.97 65.48±3.02 60.32±6.17
NRGNN 77.76±0.73 73.22±1.30 63.57±3.02 75.59±1.30 70.49±3.57 63.26±6.72
RTGNN 78.37±0.93 71.49±1.93 63.33±3.47 77.93±0.71 71.55±4.04 64.29±5.23
PI-GNN 77.16±1.20 72.10±1.00 65.65±3.18 76.30±0.92 68.42±1.51 62.39±7.01

TSS 79.24±1.02 73.08±1.82 64.90±2.94 77.81±1.28 70.27±5.07 63.08±7.87
ProCon 79.38±1.46 77.93±1.97 70.55±3.55 78.78±1.83 76.61±4.35 68.91±7.24

CiteSeer

Cross Entropy 65.62±1.93 59.05±1.67 52.83±2.15 61.53±1.65 58.44±4.56 52.29±1.03
Me-momentum 67.12±1.31 60.73±2.24 53.85±2.83 63.57±2.03 58.01±4.73 48.70±2.61
Co-teaching+ 66.91±1.90 58.43±2.21 51.73±2.75 62.64±2.07 61.54±5.67 54.58±1.31

TopoFilter 65.98±0.91 60.33±1.74 52.69±2.80 58.08±2.18 59.33±3.32 54.37±1.65
ProMix 65.01±1.51 60.84±1.13 53.75±3.51 62.45±1.75 57.65±4.23 52.55±2.87
NRGNN 67.09±1.86 60.19±1.62 54.51±1.87 63.37±1.77 57.36±2.89 53.02±2.31
RTGNN 66.93±1.38 63.13±2.85 53.71±3.27 64.56±0.98 59.94±3.77 55.86±2.56
PI-GNN 66.45±1.95 61.91±3.56 55.52±3.34 66.41±2.00 62.19±4.26 56.45±2.13

TSS 65.55±1.97 62.07±2.54 57.66±3.58 62.87±2.18 60.56±3.37 56.13±1.80
ProCon 68.56±1.29 67.40±1.59 62.84±3.27 69.00±1.34 66.23±4.30 64.46±2.86

WikiCS

Cross Entropy 76.24±1.04 71.29±1.08 60.32±1.74 74.11±1.95 67.28±2.92 56.07±5.54
Me-momentum 75.72±0.78 73.17±0.97 59.01±1.43 74.61±1.31 66.37±1.17 56.99±4.04
Co-teaching+ 76.06±1.22 71.58±1.63 61.53±1.00 73.08±0.85 66.93±2.11 57.42±5.17

TopoFilter 76.60±0.26 71.28±1.02 60.39±0.96 72.85±1.12 68.41±1.86 56.71±5.05
ProMix 75.34±1.43 71.21±0.85 59.75±1.53 72.95±1.72 66.51±1.79 56.64±6.01
NRGNN 75.90±1.11 74.72±0.76 63.53±1.67 74.96±1.67 70.31±2.31 59.79±6.65
RTGNN 76.02±0.64 73.26±0.05 63.83±2.33 75.68±0.84 71.64±1.49 59.24±5.10
PI-GNN 77.46±1.78 73.47±0.22 61.20±1.87 74.37±1.29 69.72±1.23 58.85±6.51

TSS 77.73±0.66 74.12±0.37 63.77±1.28 75.26±0.75 70.14±2.84 59.15±5.70
ProCon 78.48±0.58 75.74±1.10 70.33±1.79 76.75±1.58 72.26±2.34 64.81±5.23

Table 1: Node classification accuracy (%, mean ± std) under symmetric and asymmetric noise on Cora, CiteSeer and WikiCS datasets. p
denotes the noise rate of each noise setting. Best in bold.

under asymmetric noise settings compared to the best base-
line. Under high noise scenarios, our method demonstrates
remarkable performance gains over other baseline methods.
For example, with an asymmetric noise rate of 0.4, ProCon
surpasses the vanilla Cross Entropy method by 8.74% on the
WikiCS dataset, while the best baseline improves by only
3.72%. Additionally, graph-specific baseline methods con-
sistently outperforms general ones, emphasizing the advan-
tage of utilizing graph properties in noisy label learning. This
partly elucidates the superior performance of ProCon, as it
harnesses graph structure to identify mislabeled nodes.

Sample Selection Performance. Figure 3 illustrates the
sample selection efficacy of ProCon. We compare ProCon
with two alternative baselines: 1) RTGNN [Qian et al., 2023],
a graph learning approach that utilizes loss distributions for
sample selection, and 2) TopoFilter [Wu et al., 2020], a gen-
eral sample selection method that leverages representational
patterns. ProCon integrates label consistency with feature
similarity, representation, and graph adjacency for sample se-
lection. Performance is evaluated using three metrics: Preci-
sion, Recall, and F-score, where the F-score is calculated as
the harmonic mean of Precision and Recall. Overall, ProCon
demonstrates a consistent improvement over the other base-
lines. For example, with a Sym-0.6 noise on the Cora dataset,
the F-score of ProCon surpasses that of TopoFilter by 11%.

4.3 Ablation and Analysis
Effect of Sample Selection. We conduct ablation stud-
ies on the sample selection module of ProCon. Specifi-
cally, ProCon is compared with two variants: (1) No Selec-
tion: ProCon without the sample selection module, where
the entire training dataset is used for model updating. (2)
ProCon-C: Employing labels predicted by the classifier to de-
termine label consistency distribution. Figure 5 illustrates the
accuracy comparison between ProCon and two variants on
Cora and WikiCS dataset. Both ProCon-C and ProCon out-
perform the No Selection variant. This indicates that merely
enhancing node representations through the self-supervised
module is insufficient for robustness, and sample selection
is crucial. Additionally, ProCon outperforms ProCon-C sub-
stantially (e.g., +7.8% on WikiCS with an asymmetric noise
rate of 0.4), highlighting the effectiveness of using represen-
tations for sample selection.

Effect of Self-Supervised Learning and Loss Balance Fac-
tor λ. Figure 4 illustrates the performance of ProCon across
the Cora and WikiCS datasets as the loss balance factor λ
is varied. We evaluated the accuracy of ProCon for λ ∈
{1e−3, 5e−3, 1e−2, 5e−2, 1e−1, 5e−1, 1}. A larger λ sig-
nifies an increased emphasis on supervised learning with
noisy labels. It is noteworthy that λ = 1 excludes the self-
supervised module from ProCon. As λ increases, the per-
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Figure 3: Sample selection performace on Cora and WikiCS.
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Figure 4: Ablation on loss balance factor λ with a logarithmic x-axis.
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Figure 5: Ablation on sample selection.

formance of ProCon generally deteriorates, with marked de-
clines observed at λ = 5e−1 and 1. This trend highlights the
detrimental impact of noisy labels and accentuates the neces-
sity of self-supervised learning. Furthermore, for λ < 1e−2,
ProCon’s performance remains stable, indicating that smaller
λ values do not significantly affect the results, thereby simpli-
fying hyperparameter tuning. Consequently, we fix λ at 1e−2
across all datasets and noise settings.

Effect of Weighted Prototype Updating. We validate the
effectiveness of weighted prototype updating. The follow-
ing variants are considered: 1) Vtr S-AVG, which applies the
simple average of all training samples, equivalent to setting
wj = 1, τ < 0, and Vk

c = Vk
tr in Eq. (6). 2) Vc S-AVG, which

utilizes the simple average of samples in the clean node set,
equivalent to setting wj = 1 in Eq. (6). 3) Vtr W-AVG, the
prototype updating method of ProCon. Table 2 summarizes
the results on Cora and WikiCS dataset. The Vc S-AVG vari-
ant notably outperforms the Vtr S-AVG variant (e.g. +2.7%
on Cora and +2.5% on WikiCS under asymmetric noise with
a noise ratio of 0.4), highlighting the effectiveness of proto-

Dataset Variant
Symmetric Asymmetric

p = 0.4 p = 0.6 p = 0.4

Cora
Vtr S-AVG 73.81±1.59 64.27±2.89 65.38±7.46
Vc S-AVG 74.73±1.68 68.92±3.47 68.06±7.97
Vc W-AVG 77.93±1.97 70.55±3.55 68.91±7.24

WikiCS
Vtr S-AVG 74.97±1.65 68.86±1.57 60.89±6.42
Vc S-AVG 74.73±1.15 69.64±1.86 63.38±5.08
Vc W-AVG 75.74±1.10 70.33±1.79 64.81±5.23

Table 2: Ablation on prototype updating. Node classification accu-
racy is reported under different prototype updating strategies.

type updates utilizing clean nodes. Furthermore, the Vtr W-
AVG variant improves upon the Vc S-AVG variant, demon-
strating the benefits of weighting samples.

5 Conclusion
In this paper, we introduce ProCon, a novel framework de-
signed to enhance the robustness of Graph Neural Networks
(GNNs) against label noise. ProCon identifies mislabeled
nodes by leveraging peer-informed label consistency, select-
ing semantically similar peers based on feature similarity
and graph adjacency. We assess label consistency using
pseudo-labels derived from representational prototypes and
employ a Gaussian Mixture Model to distinguish clean sam-
ples from mislabeled ones. Extensive experiments across
multiple datasets demonstrate that ProCon consistently out-
performs state-of-the-art methods, effectively mitigating la-
bel noise and strengthening GNN robustness. Future work
will explore applying this method to other areas, such as fair-
ness, partial label learning, and graph anomaly detection.
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Remi Munos, Petar Veličković, and Michal Valko. Large-
scale representation learning on graphs via bootstrapping.
In ICLR, 2022.

[Wang et al., 2024] Haobo Wang, Ruixuan Xiao, Yixuan Li,
Lei Feng, Gang Niu, Gang Chen, and Junbo Zhao. Pico+:
Contrastive label disambiguation for robust partial label
learning. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pages 3183–3198, 2024.

[Wei et al., 2021] Hongxin Wei, Lue Tao, Renchunzi Xie,
and Bo An. Open-set label noise can improve robustness
against inherent label noise. In Proc. of NeurIPS, pages
7978–7992, 2021.

[Wieder et al., 2020] Oliver Wieder, Stefan Kohlbacher,
Mélaine Kuenemann, Arthur Garon, Pierre Ducrot,
Thomas Seidel, and Thierry Langer. A compact review of
molecular property prediction with graph neural networks.
Drug Discovery Today: Technologies, pages 1–12, 2020.

[Wu et al., 2020] Pengxiang Wu, Songzhu Zheng, Mayank
Goswami, Dimitris Metaxas, and Chao Chen. A topologi-
cal filter for learning with label noise. In Proc. of NeurIPS,
pages 21382–21393, 2020.

[Wu et al., 2022] Shiwen Wu, Fei Sun, Wentao Zhang,
Xu Xie, and Bin Cui. Graph neural networks in rec-
ommender systems: a survey. ACM Computing Surveys,
pages 1–37, 2022.

[Wu et al., 2024] Yuhao Wu, Jiangchao Yao, Xiaobo Xia,
Jun Yu, Ruxin Wang, Bo Han, and Tongliang Liu. Mitigat-
ing label noise on graphs via topological sample selection.
In Proc. of ICML, pages 53944–53972, 2024.

[Xia et al., 2024] Jun Xia, Haitao Lin, Yongjie Xu, Cheng
Tan, Lirong Wu, Siyuan Li, and Stan Z. Li. Gnn cleaner:
Label cleaner for graph structured data. IEEE Transac-
tions on Knowledge and Data Engineering, pages 640–
651, 2024.

[Xiao et al., 2015] Tong Xiao, Tian Xia, Yi Yang, Chang
Huang, and Xiaogang Wang. Learning from massive noisy
labeled data for image classification. In Proc. of CVPR,
pages 2691–2699, 2015.

[Xiao et al., 2023] Ruixuan Xiao, Yiwen Dong, Haobo
Wang, Lei Feng, Runze Wu, Gang Chen, and Junbo Zhao.
Promix: combating label noise via maximizing clean sam-
ple utility. In Proc. of IJCAI, pages 4442–4450, 2023.

[Yi and Wu, 2019] Kun Yi and Jianxin Wu. Probabilistic
end-to-end noise correction for learning with noisy labels.
In Proc. of CVPR, pages 7017–7025, 2019.

[Yi et al., 2022] Li Yi, Sheng Liu, Qi She, A. Ian McLeod,
and Boyu Wang. On learning contrastive representations
for learning with noisy labels. In Proc. of CVPR, pages
16682–16691, 2022.

[Yu et al., 2019] Xingrui Yu, Bo Han, Jiangchao Yao, Gang
Niu, Ivor W. Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption?
In Proc. of ICML, pages 7164–7173, 2019.

[Yuan et al., 2023a] Jingyang Yuan, Xiao Luo, Yifang Qin,
Zhengyang Mao, Wei Ju, and Ming Zhang. Alex: Towards
effective graph transfer learning with noisy labels. In Proc.
of MM, pages 3647–3656, 2023.

[Yuan et al., 2023b] Jingyang Yuan, Xiao Luo, Yifang Qin,
Yusheng Zhao, Wei Ju, and Ming Zhang. Learning on
graphs under label noise. In Proc. of ICASSP, pages 1–
5, 2023.

[Zhang and Sabuncu, 2018] Zhilu Zhang and Mert R.
Sabuncu. Generalized cross entropy loss for training deep
neural networks with noisy labels. In Proc. of NeurIPS,
pages 8792–8802, 2018.

[Zhang et al., 2021] Chiyuan Zhang, Samy Bengio, Moritz
Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning (still) requires rethinking generalization.
Communications of the ACM, pages 107–115, 2021.

[Zhou et al., 2023] Zhanke Zhou, Jiangchao Yao, Jiaxu Liu,
Xiawei Guo, Quanming Yao, Li He, Liang Wang,
Bo Zheng, and Bo Han. Combating bilateral edge noise for
robust link prediction. In Proc. of NeurIPS, pages 21368–
21414, 2023.

[Zhu et al., 2021] Zhihui Zhu, Tianyu Ding, Jinxin Zhou,
Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained
features. In Proc. of NeurIPS, pages 29820–29834, 2021.

[Zhu et al., 2022] Zhaowei Zhu, Zihao Dong, and Yang Liu.
Detecting corrupted labels without training a model to pre-
dict. In Proc. of ICML, pages 27412–27427, 2022.

[Zhu et al., 2024] Yonghua Zhu, Lei Feng, Zhenyun Deng,
Yang Chen, Robert Amor, and Michael Witbrock. Ro-
bust node classification on graph data with graph and label
noise. In Proc. of AAAI, pages 17220–17227, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


