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Abstract
Recent data-driven image colorization methods
have leveraged pre-trained Text-to-Image (T2I) dif-
fusion models as generative prior, while still suf-
fering from unsatisfactory and inaccurate semantic-
level color control. To address these issues, we pro-
pose a Semantic Adaptation method (SeAda) that
enhances the prior while considering the seman-
tic discrepancy between color and grayscale image
pairs. The SeAda employs a semantic adapter to
produce refined semantic embeddings and a con-
trolled T2I diffusion model to create reasonably
colored images. Specifically, the semantic adapter
transfers the embedding from grayscale to color do-
main, while the diffusion model utilizes the refined
embedding and prior knowledge to achieve realistic
and diverse results. We also design a three-staged
training strategy to improve semantic comprehen-
sion and prior integration for further performance
improvement. Extensive experiments on public
datasets demonstrate that our method outperforms
existing state-of-the-art techniques, yielding supe-
rior performance in image colorization.

1 Introduction
Image colorization aims to assign plausible color informa-
tion to grayscale images and produce visually realistic col-
ored versions [Kang et al., 2023; Zabari et al., 2023]. This
technique relies on the inference of appropriate colors for di-
verse objects, principally guided by semantic understanding
of the scene [Weng et al., 2024; Liang et al., 2024].

The emergence of deep learning has drawn significant
attention and shows encouraging advancements in image
colorization. Previous methods use CNNs to predict per-
pixel color distribution [Cheng et al., 2015; Zhang et al.,
2016]. Despite their early promise, these approaches may
produce suboptimal results due to the lack of image se-
mantic understanding. To overcome the limitations, recent
techniques [Kim et al., 2022; Wu et al., 2021] resort to

∗Corresponding author. E-mail: jc@fudan.edu.cn

Figure 1: Semantic descriptions of grayscale and color images are
generated by pre-trained captioner. The semantic description of
color images includes additional attributes, such as color and style,
which are absent in the descriptions of grayscale images.

GANs, exploiting their rich representations as generative pri-
ors for more accurate colorization. Nevertheless, the con-
strained representation space leads to unsaturated results or
unpleasant artifacts. Moreover, some methods integrate trans-
former [Vaswani et al., 2017] for colorization, but they may
cause noticeable color bleeding in complex scenarios [Weng
et al., 2022; Ji et al., 2022; Kumar et al., 2021].

In recent studies, denoising diffusion probabilistic models
(DDPMs) [Ho et al., 2020] possess remarkable image gener-
ation efficacy, showing their ability to produce high-quality
visuals. Researchers have leveraged pre-trained DDPMs to
solve image restoration tasks. However, their applicabil-
ity to various scenarios is constrained by semantic under-
standing. In the development of the field, large-scale pre-
trained text-to-image (T2I) models [Rombach et al., 2022;
Saharia et al., 2022a] have been trained on surpassing 5 bil-
lion image-text pairs, and have risen as formidable tools in
generating diverse visual outputs. These models excel at
embedding rich semantic information into generated images,
thereby enhancing the relationship between semantic and vi-
sual information.

While T2I models have harnessed substantial semantic
knowledge from image-text datasets, their training is mostly
on color images, which constrains semantic inference for
grayscale images in colorization task. There are discrepancy
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in semantic comprehension between color and grayscale im-
ages. As shown in Figure 1, we utilize a pre-trained cap-
tioner [Yu et al., 2022] to derive semantic descriptions from
both grayscale and color images. The semantics extracted
from grayscale images tend to focus on structural elements
and overall content. The color images provide additional
color and style related information. When grayscale im-
age semantics are insufficient for accurate color inference,
the additional semantics can serve as a powerful supplement.
We believe that refined semantic information can yield more
pleasing visualizations.

Based on the aforementioned observations, we present a
novel method named SeAda, Semantic Adaptation for image
colorization. SeAda leverages refined semantic embedding to
strengthen the generative capabilities of pretrained T2I mod-
els. SeAda contains two main components: semantic adapter
and controlled T2I diffusion model. The semantic adapter
focuses on refining initial semantic embeddings of grayscale
images, transferring the embedding from grayscale to color
domain and capturing more detailed semantic representation.
Subsequently, the controlled T2I diffusion model exploits the
refined embeddings to achieve superior colorization. In terms
of training methodology, we design a staged training strategy:
we first focus on optimizing the initial semantic embedding to
procure refined embedding. Subsequently, we fine-tune the
pre-trained controlled T2I diffusion model, which receives
the refined embeddings to recover image colors. Finally,
the semantic adapter and controlled T2I diffusion model are
jointly trained to establish the relation between semantic em-
bedding and generative prior.

Overall, our contributions can be summarized as follows:

• We introduce semantic-visual information into an image
colorization method based on T2I diffusion models. The
refined semantic embedding can capture comprehensive
semantic information compared with initial embedding
through our carefully designed semantic adapter.

• We present a staged training strategy that incrementally
refines the capability of the model. Each component is
specifically optimized for more accurate colorizations.

• Extensive experimental results on public datasets show
that our method achieves state-of-the-art performance on
both colorful metrics and perceptual quality.

2 Related Work
2.1 Image Colorization
Colorization methods are generally classified into two cate-
gories: automatic colorization methods and conditional im-
age colorization methods.
Automatic colorization. Early methods treat image coloriza-
tion as a classification task [Zhang et al., 2016]. To incorpo-
rate semantic information into colorization, researchers have
integrated class labels [Kim et al., 2022] or instance bounding
boxes [Su et al., 2020] into the colorization networks. Subse-
quently, GANs [Goodfellow et al., 2014] have shown promis-
ing results in this task. Notably, methods like GCPColor [Wu
et al., 2021] and BigColor [Kim et al., 2022] harness the

generative priors of pre-trained GANs to enhance perfor-
mance. Furthermore, leveraging the extensive receptive field
of Transformers [Vaswani et al., 2017], recent advancements
involve the prediction of color tokens, thereby improving the
contextual relevance of the colorization results [Kumar et al.,
2021; Huang et al., 2022]. DDColor [Kang et al., 2023] in-
cludes a multi-scale image decoder and a transformer-based
color decoder. The two decoder aims to learn semantic-aware
color embedding and optimize color queries. MultiColor [Du
et al., 2024] automatically colorize grayscale images that
combines clues from multiple color spaces.
Conditional colorization introduces user-defined controls
into colorization. The technique can be divided into three
categories: stroke-based, reference-based, and prompt-based
colorization. Stroke-based colorization utilizes similarity
metrics, such as spatial offsets or neural network-learned fea-
tures [Levin et al., 2004; Endo et al., 2016] to disseminate
localized color hints throughout the image. Reference-based
colorization leverages a pre-trained network to perform fea-
ture matching between the grayscale image and a color ref-
erence image [He et al., 2018; Huang et al., 2022]. This
colorization not only maintains the structural integrity of the
grayscale image but also closely aligns with the color distri-
bution of the reference. Prompt-based colorization integrates
textual descriptions to guide the colorization process. Tech-
niques of this category have evolved to include the fusion of
textual and visual features [Chen et al., 2018]. More recent
works [Chang et al., 2023; Zabari et al., 2023] use diffusion
prior to achieve prompt control, such as L-CAD [Chang et
al., 2023], Diffusing Colors [Zabari et al., 2023], Control
Color [Liang et al., 2024] and GoLoColor [Yue et al., 2025].

2.2 Diffusion Models in Image Restoration
Diffusion models have been applied to image restoration.
Based on generation space, diffusion-based image restoration
can be divided into image and latent space based methods.

The image space-based methods directly synthesize struc-
tures and textures. SR3 [Saharia et al., 2022b] lever-
ages diffusion model to generate conditional images and
achieves super-resolution through a stochastic denoising pro-
cess. Whang et al. [Whang et al., 2022] present a novel
framework for blind image deblurring, utilizing conditional
diffusion models for this application. For image inpainting
task, Repaint [Lugmayr et al., 2022] leverages pre-trained un-
conditional DDPM [Ho et al., 2020] as the generative basis
and modifies the reverse diffusion process to incorporate sam-
ples from the unmasked regions of the available image. Ad-
ditionally, diffusion models are also applied in various image
restoration tasks, such as image denoising [Feng et al., 2023],
low-light enhancement [Wang et al., 2023], and shadow re-
moval [Guo et al., 2023].

The latent space-based methods utilize a well-designed en-
coder to convert images into a latent representation, thereby
enhancing the efficiency of generation processes. Diff-
BIR [Lin et al., 2024] achieves realistic image restoration
by leveraging the generative capacities of the pre-trained Sta-
ble Diffusion. Besides, text-to-image diffusion models en-
code text inputs into latent vectors using pre-trained language
models [Radford et al., 2021] and achieve state-of-the-art re-
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Figure 2: The overall framework. Stage I: The semantic embedding of grayscale image is optimized using semantic adapter. The semantic
description of grayscale and real color image is produced by pre-trained captioner. Stage II: The semantic adapter is frozen to preserve the
refined semantic embeddings. We then fine-tune the controlled T2I diffusion model, conditioned with grayscale image to predict colored
result. Stage III: The semantic adapter and controlled T2I diffusion model are jointly trained to achieve the desired colorized result. The red
arrow indicates model updates.

sults in image restoration. SeeSR [Wu et al., 2024] explores
the impact of different styles of text prompts on the gener-
ated super-resolution image. BFRffusion [Chen et al., 2024]
leverages generative priors encapsulated in pretrained Stable
Diffusion for blind face restoration.

3 Semantic Adaptation Image Colorization
3.1 Preliminaries
We begin with a brief review of Stable Diffusion (SD) [Rom-
bach et al., 2022], which is the basis of the proposed ap-
proach. SD is structured as a two-stage diffusion model,
which comprises an autoencoder and an UNet denoiser. In
the first stage, the autoencoder is trained to encode images,
denoted as x0, into a latent representation z0 and reconstruct
them. In the second stage, the UNet denoiser executes the
denoising operation directly within the latent space. The op-
timization process can be defined as follows:

L = Ezt,c,ε,t(||ε− εθ(zt, t, c)||22), (1)

where zt =
√
αtz0 +

√
1− αtε represents the noised fea-

ture map at step t, and ε ∈ N (0, I). c represents the con-
ditional information. εθ refers to the function of UNet de-
noiser. During inference, the input latent map zt is synthe-
sized from a random Gaussian distribution. Given zt, εθ es-
timates the noise at each step t, conditioned on c. Through
iterative subtraction of the estimated noise, the noised fea-
ture map is progressively clarified. After T iterations, the re-
fined latent feature ẑ0 is decoded by the autoencoder to gen-
erate the final image. In the conditional part, SD utilized the

pre-trained CLIP [Radford et al., 2021] text encoder to map
text inputs to sequence representation. Subsequently, cross-
attention mechanism integrates the representation into the de-
noising process.

3.2 Framework
Given a grayscale image xg ∈ RH×W×1, our goal is to cre-
ate colorized version xc ∈ RH×W×3 that exhibits semantic
correctness and visual fidelity. To achieve this, we explicitly
modeling semantic information for controlled T2I diffusion
model to facilitate colorization process. Distinct from previ-
ous diffusion-based colorization approaches that rely on pre-
defined text prompts, SeAda leverages a semantic adapter to
produce refined semantic embedding. When the controlled
T2I diffusion model is equipped with the refined semantic
embeddings, it is capable of generating colored images that
align well with the semantic information. As depicted in Fig-
ure 2, SeAda employs a three-stage training strategy and we
will describe each stage in detail.
Stage I: Semantic embedding optimization. We start to re-
fine initial semantic embedding of grayscale image through
semantic adapter. Before the refinement process, both the
grayscale image and corresponding real color image are first
processed through individual fixed captioner, which produce
semantic descriptions denoted as Desg and Desc. Here we
leverage CoCa [Yu et al., 2022] to generate these descrip-
tions. Then the Desg and Desc are fed into the semantic
adapter and mapped into semantic embedding by individual
semantic encoder. The purpose of the semantic adapter is to
transfer the semantic embedding of grayscale image into em-
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Figure 3: Architecture of the semantic adapter.

bedding of color image description. The refined semantic em-
bedding provides deeper understanding of image content. We
freeze the parameters of the controlled T2I diffusion model
and optimize the initial semantic embedding to produce col-
orized image. Note that, the conditional image is real color
image which enables refined semantic embedding to match
the color image as closely as possible.
Stage II: Controlled T2I diffusion model fine-tuning. This
stage differentiates from Stage I by focusing on fine-tuning
the controlled T2I diffusion model rather than the operation
of the semantic adapter. Here, the adapter only processes the
semantic description of grayscale image and generates its cor-
responding semantic embedding. Following the Stage I, the
refined semantic embedding is enriched with more compre-
hensive information. We freeze the semantic adapter to main-
tain the quality of the embeddings and finetune controlled T2I
diffusion model. This operation allows the model to effec-
tively incorporate the refined semantic embeddings into the
colorization process and enhances the overall quality of col-
orized results. In this stage, the conditional image of the con-
trolled T2I diffusion model is grayscale image, ensuring col-
orization aligns with the original content and structure.
Stage III: Jointly training. We finally jointly train the se-
mantic adapter and controlled T2I diffusion model to achieve
the desired colorized result. Although Stage II established
robust color recovery model, the feature distribution between
different components is still biased. To address the limita-
tion, we focus on optimization of the whole model to enhance
its performance and adaptability. In this stage, the parame-
ters of both the semantic adapter and the controlled T2I dif-
fusion model are fully trainable. The joint training manner
allows semantic adapter and T2I diffusion model to further
learn from each other, which can fuse information of differ-
ent modalities effectively.

3.3 SeAda Design
Semantic adapter. The semantic adapter is segmented into
three parts as shown in Figure 3. In part (a), the seman-
tic description of grayscale image Desg is processed through
a semantic encoder [Radford et al., 2021]. The encoder
transforms Desg into its corresponding semantic embedding
eg ∈ RL×d, where L is the length of the embedding, and d
is the embedding dimension. Meanwhile, semantic descrip-
tions of real color images are also encoded into ec in part
(b). Although the semantic embedding of grayscale images
provides approximative semantic information, it struggles to
capture color attributes present in the color images. In order

Figure 4: Architecture of Controlled T2I diffusion model.

to enhance semantic understanding effectively, we integrate a
trainable semantic embedding, denoted as et in part (c). The
embedding is designed to synergize with eg to guide the col-
orization process. Specifically, the trainable semantic embed-
ding et ∈ RL×d matches the size of the output of semantic
encoder. To further refine the semantic embedding, a cross-
attention layer is introduced to facilitate interaction between
eg and et. The overall process is defined as:

eg = SeEnc(Desg) (2)

er = MLP(softmax(et · eTg /α) · eg + eg) (3)
where SeEnc is semantic encoder, MLP is MLP layers, and
α is scaling parameter to control the magnitude of the dot
product before applying the softmax. er is refined semantic
embedding and can provide valuable semantic guidance for
the following colorization process.
Controlled T2I diffusion model. Figure 4 illustrates the de-
tailed structure of the controlled T2I diffusion model. Ben-
efit from the success of ControlNet [Zhang et al., 2023] in
conditional image generation, we employ it as the controller
within our T2I diffusion model for image colorization. Fol-
lowing ControlNet [Zhang et al., 2023], we make a trainable
copy of the pre-trained SD encoder as conditional encoder,
designated as the conditional encoder (Econ). The encoder
processes the conditional image to generate control informa-
tion. The copy strategy offers an advantageous weight initial-
ization for the network. Initially, the input conditional image
with dimensions of 512× 512 is downscaled to 64× 64 latent
space vector cf that matches the size of Stable Diffusion. The
transformation is implemented by a conditional mapper com-
prising four convolutional layers, each utilizing 4× 4 kernels
and 2× 2 strides. Then, the concatenation of cf and the noisy
latent zt at time t forms the input to Econ. Additionally, we
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incorporate zero convolutions within Econ to avoid random
noise as gradients during the early training stage and enhance
the stability of the model.

In contrast to ControlNet which adds the conditional rep-
resentation directly to SD decoder, we incorporate Represen-
tation Cross-Attention (RCA) [Yang et al., 2024; Wu et al.,
2024] in Stage II and Stage III, to better preserve the struc-
tural integrity of the image. The RCA block are placed after
the SD decoder block.

3.4 Training Objectives
Stage I. We fixed the parameters of pre-trained controlled T2I
diffusion model, and focus on refining the semantic embed-
ding er using the denoising diffusion objective:

Ls = Et,ε,er,cf ,θ

[
‖ε− εθ(zt, t, cf , er)‖22

]
(4)

where t represents a randomly selected timestep between 1
and T, zt is a noisy version of z0 (the latent representation of
real color image xc) by using Gaussian noise ε ∈ N (0, I),
and θ is the diffusion model weights. Note that during this
stage, part (b) of the semantic adapter is frozen, whereas parts
(a) and (c) remain trainable.

To enhance the robustness of the semantic embedding, we
impose a constraint that encourages the semantic embedding
eg derived from the grayscale image, to closely align with the
embedding of the real color image ec by MSE loss:

Lr = MSE(ec, eg) (5)

The objective is to ensure the semantic embedding accurately
reflects color image. The overall objective for learning the
semantic embedding is formulated as:

Le = Lr + λsLs (6)

where λs is set to 0.5 in our experiments.
Stage II. The conditional image at this stage is grayscale im-
age, we specifically utilize parts (a) and (c) of the semantic
adapter to predict the refined semantic embedding er. Since
the er has been refined, we freeze the semantic adapter. This
allows us to focus on optimizing the parameters θ of the con-
trolled T2I diffusion model. The optimization of these param-
eters is guided by the same loss function presented in Eq. (4).
The zt is obtained by latent representation of grayscale image
xg and Gaussian noise ε ∈ N (0, I).
Stage III. In this stage, we jointly train semantic adapter
and conditioned T2I diffusion model using the loss function
presented in Eq. (4). Consistent with Stage II, the semantic
adapter continues to utilize parts (a) and (c). The distinction
in final stage is that the semantic adapter is fully trainable, un-
like in Stage II where it was fixed. This adjustment allows the
semantic adapter to dynamically refine its performance based
on the feedback received from the training process.

4 Experiments
Dataset. To keep fairness with previous methods, our ex-
periments are conducted on ImageNet [Russakovsky et al.,
2015]. We utilize the training part of ImageNet to train our

model, assessing its performance on the validation set. Be-
sides, in order to demonstrate the generalization capability of
our method, we further evaluate it on the validation sets of
COCO-Stuff [Caesar et al., 2018] and ADE20K [Zhou et al.,
2017] without any fine-tuning.
Evaluation metrics. The principal evaluation criteria for im-
age colorization include perceptual realism and color vivid-
ness. To measure perceptual realism, we utilize the Fréchet
Inception Score (FID) [Heusel et al., 2017] to quantify the
distribution similarity between the predictions and ground
truth images. For assessing color vividness, we employ
the absolute colorfulness score difference ∆CF [Hasler and
Suesstrunk, 2003]. This metric compares the colorfulness
between the real color and recolored images. Additionally,
we include the Peak Signal-to-Noise Ratio (PSNR) metric
commonly used standard in prior works [Vitoria et al., 2020;
Su et al., 2020; Wu et al., 2021; Ji et al., 2022]. While PSNR
provides a measure of error relative to the ground truth, plau-
sible colorization outcomes may vary significantly in hue and
saturation from the original images.
Implementation details. Stable Diffusion 1.5 is adopted as
foundational denoising diffusion network. Following Con-
trolNet [Zhang et al., 2023], we pretrain the controlled T2I
diffusion model of Stage I with grayscale conditional im-
age. We use AdamW optimizer [Kingma and Ba, 2015] with
β1 = 0.9 and β2 = 0.999. The initial learning rate is set
to 10−5. We train our model for 80K steps with a batch
size of 32. The first 20K training aims to optimize seman-
tic adapter and the later 50K steps add semantic embedding
for fine-tuning T2I diffusion model. The final 10K is for joint
training. All experiments are conducted on 4 NVIDIA Tesla
A100 GPUs.

4.1 Comparisons with Previous Methods
We compare performance with previous colorization meth-
ods, including CNN-based methods, GAN-based methods,
transformer-based methods, and diffusion-based methods.
Quantitative comparison. We compare quantitative perfor-
mance with recent colorization methods as reported in Ta-
ble 1. Our method achieves sota performance in most met-
rics. Specifically, SeAda achieves 0.06dB (24.53→24.47)
and 0.33 (3.69→3.36) improvements in terms of PSNR and
FID on the ImageNet-5K test set compared with the second-
best method Diffusing Colors [Zabari et al., 2023] and L-
CAD [Chang et al., 2023], respectively. On the COCO-
Stuff test set, SeAda obtains FID and PSNR of 5.07 and
24.37dB that greatly outperform the second-best approaches,
i.e., DDColor [Kang et al., 2023] and DeOldify [Antic, 2019],
by 0.11 (5.18→5.07) and 0.18db (24.37→24.19). On the
ADE20K test set, our method improves the two metrics by
at least 1.93 (=7.64→5.71) and 0.47db (24.87→24.40). In
terms of ∆CF, the lower ∆CF values imply more precise col-
orization, with our method achieving comparable ∆CF val-
ues, highlighting its efficacy in generating natural and lifelike
colorization results.
Qualitative comparison. Figure 5 presents visualization of
colorization results. We display comparisons of images in
different scenes from the ImageNet validation dataset. Note
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Method
ImageNet (val5k) COCO-Stuff ADE20K

FID↓ CF↑ ∆CF↓ PSNR↑ FID↓ CF↑ ∆CF↓ PSNR↑ FID↓ CF↑ ∆CF↓ PSNR↑
CIC [Zhang et al., 2016] 8.72 31.60 6.61 22.64 27.88 33.84 4.40 22.73 15.31 31.92 3.12 23.14
DeOldify [Antic, 2019] 6.59 21.29 16.92 24.11 13.86 24.99 13.25 24.19 12.41 17.98 17.06 24.40
InstColor [Su et al., 2020] 8.06 24.87 13.34 23.28 13.09 27.45 10.79 23.38 15.44 23.54 11.50 24.27
GCPColor [Wu et al., 2021] 5.95 32.98 5.23 21.68 13.97 28.41 9.83 24.03 13.27 27.57 7.47 22.03
CT2 [Weng et al., 2022] 5.51 38.48 0.27 23.50 13.15 36.22 2.02 23.67 11.42 35.95 0.91 23.90
BigColor [Kim et al., 2022] 5.36 39.74 1.53 21.24 12.58 36.43 1.81 21.51 11.23 35.85 0.81 21.33
ColorFormer [Ji et al., 2022] 4.91 38.00 0.21 23.10 8.68 36.34 1.90 23.91 8.83 32.27 2.77 23.97
Unicolor [Huang et al., 2022] 4.36 41.38 3.17 22.83 10.62 41.91 3.67 23.56 10.87 32.92 2.12 23.85
Diffusing Colors [Zabari et al., 2023] 3.69 38.42 0.21 - 8.05 36.56 1.68 - - - - -
DDColor [Kang et al., 2023] 3.92 38.26 0.05 23.85 5.18 38.48 0.24 22.85 8.21 34.80 0.24 24.13
L-CAD [Chang et al., 2023] 4.36 34.53 3.68 24.47 7.36 40.78 2.54 23.87 7.64 35.55 0.51 24.07
Control Color [Liang et al., 2024] 4.29 44.72 6.51 - 10.26 33.00 5.24 - - - - -
SeAda [Ours] 3.36 36.98 1.23 24.53 5.07 38.99 0.75 24.37 5.71 35.41 0.37 24.87

Table 1: Quantitative comparison of different methods on benchmark datasets. Best and second best results are in bold and underlined
respectively. ↑ (↓) indicates higher (lower) is better.

Figure 5: Visual comparison of previous methods on image colorization.

that the GT images are provided for reference only but the
evaluation criterion should not be color similarity. A notice-
able trend is that our results exhibit a more vivid appearance.
We can see that the booth colorization (Row 1) of previous
methods looks unnatural in contrast to our consistent color.
Meanwhile, our method produces more saturated coloriza-
tion results. InstColor [Su et al., 2020] employs a pre-trained
detector to detect objects and cannot color the whole image
well (Column 2). GCPColor [Wu et al., 2021] and Color-
Former [Ji et al., 2022] usually lead to incorrect semantic
colors and low color richness. The Control color [Liang et
al., 2024] correctly estimated realistic colors, but the shapes
are warped and the fine-grained details in the image have
been roughened. Instead, our method maintains the consis-
tent color and captures the details as shown in row 2 of Fig-
ure 5. Furthermore, our method can yield more diverse and
lively colors for the whole image as shown in the last row.

Stage I Stage II Stage III FID↓ ∆CF↓ PSNR↑
X 6.93 4.31 22.67

X 5.37 3.42 23.16
X X 3.72 2.06 23.74
X X 3.47 2.11 23.53
X X X 3.36 1.23 24.53

Table 2: Ablation studies of training strategy.

4.2 Ablation Study
In this section, we explore the effects of different designs of
our method. We conduct all experiments on ImageNet val-5k.
Staged training strategy. Table 2 shows the impact of
staged training strategy for colorization. We observe that
staged training significantly improves colorization perfor-
mance. The goal of stage I is to optimize semantic embed-
ding and the conditional image of T2I diffusion model is real
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Figure 6: Visualization for the semantic embeddings and coloriza-
tion results. Compared with initial semantic embedding of grayscale
image, the refined semantic embeddings are more closely with the
embedding of real color images. The refined semantic embedding
can guide the model to restore more realistic colors.

Adapter FID↓ ∆CF↓ PSNR↑
(a) 6.47 3.77 22.89
(a)+(b) 4.12 1.82 24.26
(a)+(b)+(c) 3.36 1.23 24.53

Table 3: Effects of semantic adapter.

color image, thus the results of this stage are not reported.
Row 1 shows the results of training the model only using
Stage II, where the controlled T2I diffusion model is updated
under the grayscale semantic embedding. In Row 3, the se-
mantic adapter is optimized using Stage I, and the model
exhibits a significantly improved ability (PSNR=6.93→3.72,
∆CF=4.31→2.06).

For semantic embedding visualization, we utilize t-SNE
technology [Van der Maaten and Hinton, 2008] for dimen-
sionality reduction. The visualization of the embedding (with
& w/o Stage I training) and corresponding colorization results
are shown in Figure 6. Stage III trains semantic adapter and
T2I diffusion model at the same time, and the performance
is better than Stage II training. Moreover, staged training
strategy iteratively refines the parameters, leading to improve-
ments in the colorization results.
Semantic adapter. Recall that different parts of the seman-
tic adapter as shown in Figure 3. To assess the effectiveness
of semantic adapter, we conduct experiments by selectively
removing parts from the full setting. The quantitative results
are detailed in Table 3. As shown in row 1, only part (a) re-
sults in decreases in all metrics, as the generative capacity
of T2I diffusion models relies heavily on semantic embed-
ding and part (a) only produces semantic embedding of the
grayscale image. The part (b) is designed to learn robust rep-
resentation embedding, thus combining part (b) can boost the
performance. The incorporation of trainable embedding (part
(c)) further yields noticeable improvements, which can be im-
proved by 0.76 and 0.59 for FID and ∆CF, respectively.
Controlled T2I diffusion model. The default diffusion
model contains a series of RCA modules. To test the impor-
tance of the RCA modules, we remove them, which caused
a significant drop in performance. Table 4 shows that RCA
modules yield 1.22 dB PSNR gain than without RCA.

Configure FID↓ ∆CF↓ PSNR↑
w/o RCA 4.57 2.85 23.31
with RCA 3.26 1.23 24.53

Table 4: Effects of RCA module.

Captioner FID↓ ∆CF↓ PSNR↑
ClipCap [Mokady et al., 2021] 3.47 1.25 23.95
BLIP [Li et al., 2022] 3.51 1.66 23.85
BLIP2 [Li et al., 2023] 3.45 1.46 24.53
CoCa [Yu et al., 2022] 3.36 1.23 24.48

Table 5: Ablation studies of captioner.

Captioner. We explore the influence of different captioners
for our image colorization model: ClipCap [Mokady et al.,
2021], BLIP [Li et al., 2022], BLIP2 [Li et al., 2023], and
CoCa [Yu et al., 2022]. The results of the ablation experi-
ments are shown in Table 5. We can observe that CoCa cap-
tioner for our model achieves the most satisfactory results.
Moreover, while the CoCa captioner leads in performance,
replacing it with other captioners does not result in a signifi-
cant degradation of performance. Our model requires the cap-
tioner to generate semantic information for each image which
may decelerate the colorization speed.

Figure 7: Colorizing real historical grayscale photos.

4.3 Real-world Applications
We collect some real historical photos, such as Dunhuang
grayscale images, to demonstrate the capability of our method
in real-world scenarios (as shown in Figure 7).

5 Conclusion
We propose a diffusion-based framework named SeAda for
efficient image colorization. The technical core of our ap-
proach lies in a controlled T2I diffusion model, which lever-
ages the refined semantic embedding combined with the gen-
erative prowess of diffusion models to yield visually satisfac-
tory results. To enhance the semantic embedding of grayscale
images, we implement a semantic adapter that transfers the
embeddings from grayscale to color domain. Furthermore,
we design a staged training strategy to improve semantic
understanding and generative priors for further performance
improvements. Experimental results on publicly available
benchmarks demonstrate that our method outperforms pre-
vious methods both quantitatively and qualitatively.

This work was supported by AI for Science Foundation of
Fudan University (FudanX24AI028) and National Archives
Administration of China Research Program (2024-X-013).
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