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Abstract

Text-attributed graph (TAG) provides a text de-
scription for each graph node, and few- and zero-
shot node classification on TAGs have many appli-
cations in fields such as academia and social net-
works. Existing work utilizes various graph-based
augmentation techniques to train the node and text
embeddings, while text-based augmentations are
largely unexplored. In this paper, we propose Text
Semantics Augmentation (TSA) to improve accu-
racy by introducing more text semantic supervision
signals. Specifically, we design two augmentation
techniques, i.e., positive semantics matching and
negative semantics contrast, to provide more ref-
erence texts for each graph node or text descrip-
tion. Positive semantic matching retrieves texts
with similar embeddings to match with a graph
node. Negative semantic contrast adds a negative
prompt to construct a text description with the op-
posite semantics, which is contrasted with the orig-
inal node and text. We evaluate TSA on 5 datasets
and compare with 13 state-of-the-art baselines. The
results show that TSA consistently outperforms all
baselines, and its accuracy improvements over the
best-performing baseline are usually over 5%. The
code is at https://github.com/wyx11112/TSA.

1 Introduction

Text-attributed graph (TAG) [Yan et al., 2023] is a preva-
lent type of graph-structured data, where each node is as-
sociated with a text description. For instance, in a cita-
tion network, the papers (i.e., nodes) are linked by the ci-
tation relations (i.e., edges), and the abstract of each pa-
per serves as the text description. Few-shot and zero-shot
node classification on TAGs (FZNC-TAG) predict the cat-
egories of the nodes using a few or even no labeled data
since labeled data are expensive to obtain [Liu et al., 2021;
Liu et al., 2022]. The two tasks have many applications in
areas such as recommender system [Gao et al., 2022], so-
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Figure 1: The contrastive loss of G2P2 (a) and two semantic aug-
mentation techniques proposed by TSA (b,c). The node-text pair of
G2P2 is specified by data as each node has a text description, and
TSA mines more semantic information for nodes and texts.

cial network analysis [Yu er al., 2020], and anomaly detec-
tion [Noble and Cook, 2003].

Existing methods for FZNC-TAG typically follow a two-
step process: first learn node and text embeddings on the
TAGs and then use prompting to produce classification re-
sults [Wen and Fang, 2023; Huang et al., 2023]. They mainly
differ in embedding learning and can be classified into three
categories. @ Self-supervised graph learning methods em-
ploy graph augmentation techniques, such as node adding and
feature masking, to generate more generalized node embed-
dings [You er al., 2020; Deng and Hooi, 2021]. They exploit
the graph topology but ignores the information in the text se-
mantics. ® The two-stage learning methods encode the text
using large language models (LLMs) and add the text embed-
ding as additional node features [Tang ef al., 2024; Chen et
al., 2024]. Then, graph neural network (GNN) methods, e.g.,
TextGCN [Yao et al., 2019] and GraphSAGE [Hamilton er
al., 2017], are used to learn the node embeddings. The lim-
itation of these approaches is that the LLMs are not updated
during GNN training [Yan et al., 2023]. ® The state-of-the-
art end-to-end learning method, G2P2 [Wen and Fang, 2023],
jointly trains the GNN and language model via contrastive
learning [He ef al., 2020]. As shown in Figure 1(a), G2P2
contrasts each node-text pair to ensure that the GNN and lan-
guage model are aligned in the embedding space.

Existing work utilizes various graph-based augmentation
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to train the node and text embeddings, however, neglecting
the semantics information in the texts. As shown in Fig-
ure 1(a), G2P2 merely aligns the raw node-text pairs in the
TAGs. Furthermore, we observe that the classification accu-
racy of G2P2 is low. For instance, on the Fitness dataset [Yan
et al., 2023], G2P2 only achieves an accuracy of 68.24% and
45.99% for few- and zero-shot classification, respectively.
The significantly lower accuracy in zero-shot classification
also suggests that the problems are caused by the lack of text
semantics and that G2P2’s sole reliance on the graph-based
augmentation is inadequate for training high-quality models.
Thus, we ask the following research question:

How to exploit more text semantics to enhance few-
and zero-shot classification on TAGs?

To answer the question, we present TSA, where embedding
learning can be improved by enforcing similarity relations
among embeddings. Inspired by this idea, we design two aug-
mentation techniques, i.e., positive semantics matching and
negative semantics contrast, as shown in Figure 1(b,c). These
techniques create additional node-text pairs that have similar
or dissimilar embeddings to facilitate model learning.

Positive semantics matching. In Figure 1(b), we provide
multiple positive text embeddings for each node embedding.
This is achieved by searching the texts that have similar em-
beddings to the text of the considered graph node. We also
encourage the node embedding to be similar to those text em-
beddings. This augmentation provides more supervision to
GNN training and enforces the prior that nodes may belong
to the same categories if their texts have similar semantics.

Negative semantics contrast. In Figure 1(c), we pair each
text with a semantically opposite negative text, which is con-
structed by adding a learnable negative prompt to the original
text. We then encourage the original text embeddings and its
corresponding node to be dissimilar to the negative text. This
augmentation provides additional text semantics to make the
classification robust. For instance, to classify a paper as being
related to artificial intelligence, it should not only be similar
to the description “a paper is published at IJCAI” but also be
dissimilar to “a paper is published at The Lancet” .

We conduct extensive experiments to evaluate TSA, using
5 datasets and comparing with 13 state-of-the-art baselines.
The results show that TSA consistently achieves higher ac-
curacy than all baselines for both few-shot and zero-shot set-
ting. In particular, TSA improves the accuracy and F1 scores
of few-shot classification by 4.6% and 6.9% on average, and
zero-shot classification by 8.8% and 9.3%, respectively.

In summary, we make the following contributions:

* We observe that prior methods only contrast node-text
pairs, thus failing to effectively capture text semantics. To
solve this issue, we propose TSA to enhance the semantic
understanding in both model pre-training and inference.

* We incorporate two novel augmentation techniques into
TSA: positive semantics matching and negative semantics
contrast. These techniques create additional node-text pairs
by mining more text semantics from diverse perspectives.

* We conduct extensive experiments to evaluate TSA and
compare with state-of-the-art baselines, demonstrating that

TSA enjoys high model accuracy and training efficiency.

2 Preliminaries

Text-attributed graph. We denote a text-attributed graph
(TAG) as G = (V,£,X), in which V, £, and X are the node
set, edge set, and text set, respectively. Take citation network
as an example for TAG. Each node v; € V is a paper, inter-
connected by the edges e € £ that signify citation relations.
Let x; € X denote the text (i.e., paper abstract) of the i-th
node. Each node has a label to indicate the topic of the pa-
per. Since the graph nodes and papers have a strict one-to-one
correspondence, node v; and text x; share an identical label.

Few- and zero-shot learning. For few-shot classification, the
test dataset encompasses a support set S and a query set Q.
S comprises C classes of nodes, with K labeled nodes drawn
from each class. These nodes can be used to train or fine-tune
the classifier, which is then utilized to classify the nodes in
Q. Zero-shot node classification is essentially a special case
of few-shot classification with K = 0. There are no labeled
nodes for both training and testing, and classification depends
solely on the class names.

Contrastive loss. Recent researches [Wen and Fang, 2023;
Zhao et al., 2024] use the contrastive loss to jointly train
the graph and text encoders. Specifically, they employ
GCN [Kipf and Welling, 2016] as the graph encoder ¢ to
encode each node v; into a node embedding n;, and adopt
Transformer [Vaswani er al., 2017] as the text encoder 1) to
map each text x; to a text embedding t,. That is,

n; = ¢(vi), ti=1(x). (1

Then, they use InfoNCE [He et al., 2020] loss L1, to max-

imize the similarity between each node n; and its correspond-

ing text t;, while simultaneously minimizing the similarity

between node n; and other mismatched texts t;. As shown in
part (1) of Figure 2, L, is calculated as follows:

Z log

(ni,ti)GB

exp(sim(n;, t;)/7)
> jziexp(sim(ng, t;)/7)’

1
Lo =— 3] 2

where B is a data batch, sim(, ) is the cosine similarity, and 7
is a learnable temperature.

3 The TSA Framework

In this section, we present a novel pre-training and inference
framework, named TSA. We start with a overview and follow
up with the detailed descriptions of its components.

3.1 Overview

The overall architecture of our framework is illustrated in Fig-
ure 2. The model for few-shot consists of a graph encoder and
a text encoder, and an extra negative text encoder is included
for zero-shot pre-training. We introduce them as follows.

* Graph encoder ¢. We adopt a graph neural network as the
encoder to generate the node embedding n.

+ Text encoder ). We choose Transformer [Vaswani et al.,
2017] as the text encoder, and it produces a text embedding
t for each text description.
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Figure 2: The overview of TSA.

* Negative text encoder "9, This maintains the same ar-
chitecture as the text encoder, with the difference that we
train it independently with a negative prompt to generate
the negative text presentation t™<9.

To effectively train the above encoders, we design two
novel loss functions: positive semantics matching loss and
negative semantics contrast loss, which can assist the pre-
training model in mining more semantic information. Next,
we propose a strategy in Section 3.3, probability-average, to
enhance zero-shot node classification.

3.2 Text Semantics Augmentation

In this section, we introduce two novel augmentations: neg-
ative semantics contrast and positive semantics matching, to
exploit text semantics to enhance model training on TAGs.

Positive semantics matching loss. We provide more positive
text embeddings for each node embedding. G2P2 [Wen and
Fang, 2023] defaults to only one text embedding similar to
each node embedding, however there may be multiple similar
texts to the target node in TAGs [He et al., 2020; Chuang et
al., 2020]. Therefore, we search for multiple text embeddings
that are similar to the text embedding of the target node and
subsequently encourage the target node embedding to align
with these similar text embeddings t. The positive semantics
matching loss is denoted as follow:

Z log

(ni.t;)eB

Ziilexp(sim(ni, t5)/7)
> jziexp(sim(ng, t;)/7)

e

1
Lpsy = — 3]

where K is the number of similar text embeddings.
However, the above method has two serious drawbacks:
first, the complexity of brute-force search for similar text em-
beddings among all text embeddings is unacceptable; second,
storing all text embeddings in GPU memory may lead to out-
of-memory. To address these issues, we create a text bank
with a capacity of 32K to model the whole text embedding
space. As illustrated in the Figure 2(2), whenever a new batch
of data arrives, the earliest text embedding is discarded if the
capacity of the text bank exceeds a predetermined threshold.

Otherwise, it is stored in the bank. Subsequently, we identify
the most K similar text embeddings for target node through
similarity calculations. In this way, our text bank is both time-
efficient and space-efficient.

Negative prompt. After co-training the graph and text en-
coder using Equations (2) and (3), the model now possesses
the base capability to distinguish node-text pairs. However,
understanding the negative semantics within the input text
description poses a challenge for the model. For example,
we represent a text description such as “a paper is pub-
lished at IJCAI” and its negation “a paper is published at The
Lancet”. In the embedding space, these two descriptions are
likely to be very similar, as their raw texts differ by only few
words. To address this issue, we employ negative prompts
to generate multiple negative texts that are semantically op-
posed to the original text descriptions. These negative texts
are then used to train a negative text encoder independently.
This process helps the negative text encoder learn parameters
that are contrary to those of the text encoder.

Our initial idea is to manually construct a series of negative
prompts. Specifically, we manually alter the text descriptions
by incorporating negation terms such as “no”, “not”, “with-
out”, etc., thus creating a negative prompt corpus that are se-
mantically opposite to the original ones, denoted as XY,
Then, we input the negative text x.“’ into negative text en-
coder 1™ to generate negative text embedding t; .

However, manual modification of the raw text is time-
consuming and labor-intensive. To solve this problem, in-
spired by CoOp [Zhou et al., 2022], we propose a learnable
negative prompt and add it to the front of raw text. The un-
derlying logic is to represent negative semantics by constantly
optimizing the learnable prompt, thereby mirroring the hand-
crafted negative prompts X"¢9. Specifically, we concatenate
the raw text with M learnable vectors to generate the negative
prompt h, allowing X™¢9 to be replaced by h. Then we input
h into the negative text encoder ¢"Y, denoted as follows:

h = [Vl, VQ, VM, XL t?eg = wneg(hi), (4)
N—————’
negative prompt

where the negative text encoder is a Transformer with the
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same architecture as the text encoder. We further demonstrate
from the perspective of information entropy that negative text
can replace hand-crafted negative prompt.

Theorem 1. Given the learnable negative prompt h and
hand-crafted negative prompt X"%9, the information entropy
of the learnable negative prompt H (h) is related to the lower
bound of the information entropy of the hand-crafted negative
prompt LowerBound (H (X"¢9)) as follow:

H(h) > LowerBound(H (X"Y)). ®)

This indicates that learnable negative prompts exhibit higher
information entropy than the lower bound of hand-crafted
negative prompts. Therefore, learnable negative prompts can
effectively capture the negative semantics present in hand-
crafted negative prompts. Proof see in Appendix A of [Wang
et al., 2025b].

Negative semantics contrast loss. There is still an unsolved
problem: how do we train a negative text encoder? In other
words, how do we ensure that the semantics of the negative
text embeddings contradict the original text embeddings. To
address this problem, we introduce a novel loss functions,
termed negative semantics contrast loss, which comprises
margin loss and semantics-opposite loss.

The margin loss anticipates the greatest possible similarity
between positive pairs, and conversely, it expects dissimilar-
ity in the case of negative pairs. As shown in Figure 2(3),
given a target node v;, the corresponding negative text de-
scription t'“Y is deemed a negative text, while any other non-
corresponding text t7;7 are considered positive texts. Sub-
sequently, we employ margin loss to assess the degree of
matching between the target nodes, positive texts, and nega-
tive texts. Specifically, margin loss ensures that the similarity
between the target node and the positive text is at least a mar-
gin m higher than the similarity with the negative text. Here,
we use margin loss instead of InfoNCE loss because margin
loss remains constant when the gap between positive and neg-
ative samples exceeds m. This is favorable because positive
and negative samples are already easily distinguishable. The
margin loss £y, is denoted as follows:

Lyr = maz (0,1 + sim(n;, t;°) — sim(ny, t727))  (6)

As shown in Figure 2(4), semantics-opposite loss seeks to
maximize the mean square error between positive and nega-
tive text embeddings. As text x; and negative text t; “/ are se-
mantically opposite, their corresponding embeddings should
be as far apart as possible in the text embedding space. We
compute the semantics-opposite loss Lgo as follow:

1
Lso =15 > It =7, (7)
t;eB

where |||, is the L2 norm. Thus, the negative semantics con-
trast loss is equal to the sum of margin loss and semantics-
opposite loss, denoted as Lysc = Ly, + Lso- It enforces
both the node and text embeddings are dissimilar to the cor-
responding negative text embedding.

Objective. In summary, we denote the total loss of TSA as:

L=Lcr+ Lpsmu +alnsc, (8)

where « is the hyperparameter with respect to loss activa-
tion. In few-shot pre-training, we do not activate the loss
Lysc (i.e., a = 0) because the prompts in few-shot are in-
herently learnable, incorporating negative prompts would in-
troduce more noise and lead to sub-optimal performance. In
contrast, zero-shot classification lacks labeled data during the
pre-training. We analyze the ablation experiments on the loss
function in detail in Section 4.3.

Complexity Analysis. TSA incorporates both a GNN and a
Transformer. The GNN takes O(LNd?) time for aggregating
the neighboring nodes, where L is the network depth, NV is
the number of nodes and d is the number of dimensions. The
Transformer’s time complexity is O(sd? + sd), where s the
maximum length of the input sequence. O(sd?) time is used
for mapping vectors at each position to query, key and value
vectors, and O(s2d) time is utilized for the computation of the
attention score. Consequently, the overall time complexity of
our method is O(LNd? + sd? + s%d).

3.3 Prompt Tuning and Inference

Based on the pre-trained model, we tune the model parame-
ters to adapt to the few/zero-shot tasks, which enables classifi-
cation with a few even no labeled samples while concurrently
freezing the pre-trained model’s parameters. Prompt tun-
ing is a prompt optimization technique in multimodal mod-
els for improving accuracy in few/zero-shot tasks. It uses
learnable context vectors [v] to replace the static prompt
words. For example, “a photo of a [class]” is replaced
by [v1][va][vs][class]. Next, we introduce the foundational
paradigm of few- and zero-shot node classification.

Zero-shot classification. In the zero-shot setting, we op-
erate without any labeled samples and rely solely on class
name description. To perform C-way node classification, we
construct a series of class descriptions {D.}<_,, via discrete
prompts, such as “a paper of [class]”. Then, we input the
description text into the pre-trained text encoder to generate
the class embedding g. = ¥(D.). We predict the category of
a node v; by computing the similarity between the node em-
bedding n; with the class embedding g.. The insight behind
this is that we align the pre-training and prompting objec-
tives (i.e., to determine whether nodes and texts are similar).
Thus, we do not have to tune the parameters of the pre-trained
model. The similarity probability between the target node and
the candidate class description is calculated as follows:

o exp(sim(n;, g.)/7) . 9
"7 T explsim(ng. g0)/7) ®

Few-shot classification. In the few-shot setting, we conduct
a C-way K-shot classification task. Unlike discrete prompts
(i.e., “a paper of ...”) in the zero-shot setting, we have C' x K
labeled samples to train learnable prompts. Specifically, we
construct a continuous prompt g, by adding M learnable vec-
tors to the front of the class description D.. Formally, we
denote g. = ([e1,es,...,ex,D.]). Then, we use Equa-
tion (9) to predict the node category, and update the continu-
ous prompts by minimizing the discrepancy between the pre-
dicted and ground-truth labels via cross-entropy loss. It is
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Figure 3: The illustration of probability-average.

worth noting that because C' x K is a small value, the param-
eters required to fine-tune the prompts are considerably less
than those needed for the pre-trained model.

Probability-average. As shown in Figure 3, we propose
probability-average to predict node category. Specifically, we
first compute p; by Equation (9). We use the negative text
encoder to generate the negative class embedding. Then, we
compute negative probability p; “’ by contrasting these nega-
tive class embeddings with the target node embedding using
Equation (9). p; denotes the probability that a node belongs
to each category and vice versa, p; “Y represents the proba-
bility that a node does not belong to each category. Finally,
we utilize (p; + 1 — p;"“?)/2 to predict the node label. Un-
like using a single-encoder model, the negative text encoder
provides additional predictive auxiliary for the positive text
encoder. Therefore, we use probability-average to balance
the output probabilities of the positive and negative text en-
coders and thus enhancing classification accuracy. Formally,
the probability-average strategy can be denoted as follows:

Y = argmax (p; + 1 —p;*%)/2. (10)

Note that the probability-average stragety is only appli-
cable to zero-shot classification, as it requires the negative
prompts and negative text encoder to calculate p;"“?. In con-
trast, few-shot classification directly uses p; to predict labels.

4 Experimental Evaluation

In this section, we conduct extensive experiments to evaluate

TSA and answer the following research questions.

e RQ1: How does TSA compare with state-of-the-art meth-
ods for few- and zero-shot classification on TAGs?

e RQ2: Do our augmentation techniques improve accuracy?

e RQ3: How efficient is TSA in training and inference?

4.1 Experiment Settings

Datasets. Following related researches [Yan et al., 20231, we
use 5 datasets for experiments. Cora [McCallum ez al., 2000]
is a citation network, where papers are linked by citation rela-
tions and abstract serves as the text. Art, Industrial, M.I., and
Fitness are derived from Amazon product categories [Yan et

al., 2023], namely, arts, crafts and sewing for Art; industrial
and scientific for Industrial; musical instruments for M.1.; and
sports-fitness for Fitness, respectively. For the four datasets,
an edge is added to construct the graph if a user visits two
products successively, and the text is the product description.
The five datasets cover different scales (from thousands to
millions of nodes) and number of classes (from tens to thou-
sands). These datasets are stored in OceanBase [Yang erf al.,
2022] and the dataset statistics is provided in Appendix B
of [Wang et al., 2025b].

Baselines. We compare TSA with 13 baselines from 5 cate-
gories, briefly describe as follow.

o Supervised GNNs: GCN [Kipf and Welling, 2016],
SAGEsup [Hamilton et al., 2017], TextGCN [Yao et al.,
2019]. They are trained in a supervised or semi-supervised
manner for the node classification tasks.

* Self-supervised GNNs: GraphCL [You er al., 2020], In-
foGCL [Xu et al., 2021], PGCL [Lin er al., 2022]. They
are first pre-trained via contrastive learning and then fine-
tuned for the classification tasks.

e Graph prompt methods: GPPT [Sun er al, 2022],
GFP [Fang er al., 2024], GraphPromt [Liu et al., 2023].
They reduce the divergence between the pre-training and
inference by designing the training objectives and prompts.

» Language models: BERT [Devlin et al., 2018], LLM-
GNN [Chen et al., 2023], GraphTranslator [Zhang er al.,
2024]. Bert is first pre-trained and then fine-tuned for text
classification. LLM-GNN and GraphTranslator translate
graph into language and predict the labels by LLMs.

 Co-trained model: G2P2 [Wen and Fang, 2023]. It em-
ploys the contrastive loss to train the GNN and language
model jointly such that they produce similar node embed-
ding and text embedding for each node-text pair.

Following G2P2, we use classification accuracy and F1
score to measure performance. We report the average value
and standard deviation across 5 runs. Note that we only se-
lect language models and G2P2 as the baselines for zero-shot
classification, since the other baselines require at least one
labeled sample per class for either training or inference.

Environment. During pre-training, we use Adam as the opti-
mizer with a learning rate of 2e-5 for 2 epochs, and the batch
size is 64. The number of similar text representations and the
capacity of the text bank are set to 1 and 32K, respectively.
The length of the learnable negative prompt is 16. Margin m
is set to 1. For few-shot pre-training, we do not activate the
negative semantics contrast loss, so « is set to 0. Instead, « is
set to 0.5 during zero-shot pre-training. Our experiments are
conducted on a server with Intel(R) Xeon(R) Platinum 8375C
CPU @ 2.90GHz and 8 NVIDIA RTX A6000 48G GPUs.

Task configurations. For few-shot classification, we use a 5-
way 5-shot setup, i.e., 5 classes are taken from all classes, and
then 5 nodes are sampled from these classes to construct the
training set. The validation set is generated in the same way
as the training set, and all remaining data is used as the test
set. For zero-shot classification, we use 5-way classification,
which samples classes but does not provide labeled nodes.
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\ Cora | Fitness | M.L | Industrial | Art
Method

I ACC FI | ACC FI | ACC FI | ACC FI | ACC FI
GCN 41.15+£2.41  34.50+2.23 | 21.64+1.34 12.31£1.18 | 22.54+0.82 16.26+0.72 | 21.08+£0.45 15.23+0.29 | 22.47+£1.78 15.45+1.14
SAGEsup 41424290 35.14+2.14 | 23.92+0.55 13.66+0.94 | 22.14+0.80 16.69+0.62 | 20.74+0.91 15.31+0.37 | 22.60+0.56 16.01+0.28
TextGCN 59.78+1.88  55.85£1.50 | 41.49+0.63 35.09+0.67 | 46.26£0.91 38.75+0.78 | 53.60+0.70 45.97+0.49 | 43.47+1.02 32.20+1.30
GraphCL 76.23+£1.80 72.23+1.17 | 48.40+0.65 41.86+0.89 | 67.97£2.49 59.89+2.51 | 62.13£0.65 54.47+0.67 | 65.15+1.37 52.79+0.83
InfoGCL 78.53+1.12  74.58+1.24 | 47.56+0.59 41.98+0.77 | 68.06+0.73 60.64+0.61 | 52.29+0.66 45.26+0.51 | 65.41+0.86 53.57+0.75
PGCL 76.32+1.25  73.47+1.53 | 48.90+0.80 41.31+0.71 | 76.70£0.48 70.87+£0.59 | 71.87+0.61 65.09+0.47 | 76.13£0.94 65.25+0.31
GPPT 75.25£1.66 71.16.+£1.13 | 50.68+0.95 44.13+1.36 | 71.21+£0.78 54.73+0.62 | 75.05+0.36 69.59+0.88 | 75.85+1.21 65.12+0.83
GFP 75.33+1.17  70.78+1.62 | 48.61+x1.03 42.13+1.53 | 70.26+£0.75 54.67+0.64 | 74.76+£0.37 68.55+0.29 | 73.60+0.83 63.05+1.61
GraphPrompt 76.61+£1.89  72.49+1.81 | 54.04+1.10 47.40+1.97 | 71.77£0.83 55.12+1.03 | 75.92+0.55 70.21+0.28 | 76.74+0.82 66.01+£0.93
BERT 37.86+£5.31 32.7845.01 | 43.26£1.25 34.97+£1.58 | 50.14+£0.68 42.96+1.02 | 54.00£0.20 47.57£0.50 | 46.39+1.05 37.07+0.68
LLM-GNN 76.15+£0.34  72.31+1.03 | 63.86+1.85 57.16x1.61 | 82.19+0.60 75.86+0.30 | 80.78+0.78 75.12+0.97 | 78.84+1.29 67.15%£1.29
GraphTranslator | 79.13+1.38  74.26+0.93 | 67.55+1.53 56.53+1.71 | 80.72+0.80 74.20+0.36 | 82.02+0.61 75.16+0.48 | 81.01+0.21 69.27+1.27
G2P2 ‘ 80.08+1.33  75.91%1.39 ‘ 68.24+0.53 58.35+0.35 ‘ 82.74+198 76.10+1.59 ‘ 82.40+0.90 76.32+1.04 ‘ 81.13+1.06 69.48+0.15
TSA 82.66+0.77 79.05+1.25 | 70.79+1.09 62.72+1.21 | 87.99+0.64 82.61+0.81 | 85.75+0.31 80.45+0.25 | 85.55+0.58 75.59+0.16
Gain +3.2% +4.1% +3.7% +7.5% +6.3% +8.6% +4.3% +5.4% +5.4% +8.8%

Table 1: Accuracy for few-shot node classification (mean+std). The best and runner-up are marked with bold and underlined, respectively.
Gain is the relative improvement of TSA over the best-performing baseline.

Method \ Cora | Fitness | M.L | Industrial | Art
[ ACC FI | ACC FI | ACC FI | ACC FI | ACC Fi

BERT 23.56£1.48 17.92+0.86 | 32.63+1.24 26.58+1.21 | 37.42+0.67 30.73+0.93 | 36.88+0.56 29.46+1.12 | 35.72+1.59 24.10£1.06
LLM-GNN 62.67£1.43 5521£1.47 | 42.47£1.01 35.13£1.55 | 70.81£0.83 62.66+£0.84 | 74.51£1.09 63.54+£1.56 | 74.63£1.46 62.68+1.11
GraphTranslator | 62.65£1.85 56.92+0.41 | 44.07+1.57 38.09+1.89 | 72.67£1.43 64.72+0.34 | 74.58+1.31 65.13+1.08 | 73.77£0.98 61.20£0.65
G2P2 64.35£2.78 58.42+1.59 | 45.9940.69 40.06£1.35 | 74.77£1.98 67.10£1.59 | 75.66£1.42 68.27+£1.31 | 75.84+£1.57 63.59£1.62
TSA 69.21+1.35 61.41+1.82 | 54.41+1.10 47.45+1.63 | 79.85+1.35 72.58+0.79 | 81.99+0.58 73.84+0.33 | 78.22+1.70 67.71+0.02
Gain +7.6% +5.1% +18.3% +18.4% +6.8% +8.2% +8.4% +8.2% +3.1% +6.5%

Table 2: Accuracy for zero-shot node classification (mean+std). The best and runner-up are marked with bold and underlined, respectively.
Gain is the relative improvement of TSA over the best-performing baseline.

4.2 Main Results (RQ1)

Few-shot node classification. Table 1 reports the accuracy
of TSA and the baselines for few-shot node classification.
We can see that TSA consistently outperforms all baselines
across the datasets, with an average improvement of 4.6% and
6.9% for classification accuracy and F1 score, respectively.
Moreover, the improvements of TSA over the baselines are
over than 5% in 6 out of the 10 cases. The results show that
TSA can mine text semantics effectively to enhance model
pre-training and thus improve accuracy. More explanations
are in Appendix C.1 of [Wang et al., 2025b].

Zero-shot node classification. Table 2 reports the accuracy
of TSA and the baselines for zero-shot node classification.
We only include the language models and G2P2 because the
other methods require at least one labeled sample for infer-
ence. The results show that TSA consistently outperform
all baselines by a large margin. Compared with the best-
performing baseline G2P2, the average improvements of TSA
in classification accuracy and F1 score are 8.8% and 9.3%,
respectively. All methods have lower accuracy for zero-shot
classification than few-shot classification because zero-shot
classification does not provided labeled samples, and thus the
task is more challenging. However, the improvements of TSA
are larger for zero-shot classification because it introduces
more text semantics for learning.

Robustness to task configuration. We conduct the fewer-
way and fewer-shots classification on M.I. dataset. The ex-
perimental results are provided in Appendix C.2 of [Wang

Setting | Loss | ML Industrial Art
Lcor 82.74+1.98 82.40+0.90 81.13%£1.06

Few-shot | Lor4psm 87.91+0.59 85.75+0.31 85.37+0.60
Lor+psm+nsc | 87.80£0.28  85.63+0.41  85.29+0.66
Lo, 74.77£1.98  75.66+1.42 75.84+1.57

Zero-shot | Lor+psm 78.32+1.22 81.85+0.55 79.48+1.88
Lor+psm+nsc | 79.15£1.35  81.99+0.58 80.22+1.70

Table 3: Ablation study of our augmentation techniques. Lc, is the
contrastive loss for baseline, PSM for positive semantics matching,
and NSC for negative semantics contrast. Best accuracy in bold.

et al., 2025b]. The results show that TSA outperforms G2P2
across different configurations of ways and shots. We observe
that to achieve the same accuracy, TSA requires fewer labeled
samples (i.e., shots) than G2P2. Moreover, TSA surpasses the
G2P2 across the different ways for zero-shot classification.

4.3 Micro Experiments

Effect of the augmentations (RQ2). Table 3 presents an
ablation study by gradually enabling different augmentations
techniques in TSA. We can see that all augmentations are
effective in improving accuracy, as adding each of them
outperforms the baseline. The best-performing combina-
tion for few-shot classification deactivates negative semantics
contrast (i.e., £Lysc) while zero-shot classification actives
Lysc. This is because few-shot classification uses labeled
samples to learn the prompt, and the negative prompt learned
by £y sc may interfere with prompt tuning. In contrast, zero-
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Figure 4: The time cost comparison of pre-training and prompting
for G2P2 and TSA.
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Figure 5: The comparison of the number of similar texts and the
capacity of text bank for TSA on M.I. anf Industrial.

shot classification lacks labeled data for prompt tuning, and
the £y sc can provide more text semantics.

Efficiency (RQ3). To examine the efficiency of TSA, we
compare with G2P2 for pre-training time and prompting time
at inference time. We experiment on Industrial and Art, the
two largest datasets, as the running time is shorter on the
smaller datasets. Figure 4 shows that TSA and G2P2 have
similar pre-training time and prompting time. This is be-
cause they both jointly train the GNN and language model,
and computing the loss terms has a small cost compared with
computing the two models. Few-shot classification has longer
prompting time than zero-shot classification because it needs
to tune the prompt using the labeled samples.

Hyperparameter sensitivity. We conduct the hyperparam-
eter experiments with respect to the number of similar texts
and the capacity of text bank. Figure 5 examines the effect of
the two parameters on the Industrial and M.I. datasets. We ob-
serve that accuracy first increases but then decreases with the
number of similar texts. This is because while more similar
texts can provide more text semantics, an excessive number
of these signals may introduce noise by including texts that
are not truly similar to the target node. Hence, the optimal
accuracy are obtained at an intermediate value to balance be-
tween semantic supervisions and noises. When increasing the
capacity of the text bank, accuracy first increases but then sta-
bilizes. This is because using a larger text bank allows a node
to identify texts that are more similar but the similarity will
become sufficiently highly when the bank is large enough.

5 Related Work

Graph Pre-training and Prompting. GNNs [Kipf and
Welling, 2016; Velickovié¢ et al., 2017] use message pass-

ing to aggregate features from neighboring nodes to compute
graph node embedding. However, early GNN models, such
as GCN [Kipf and Welling, 2016], and GAT [Veli¢kovié et
al., 20171, are supervised and require many labeled nodes for
training. To mine supervision signals from unlabeled data,
graph self-supervised learning is proposed to train using well-
designed pretext tasks. For instance, DGI [Veli¢kovic et al.,
2018] learns node embeddings by maximizing mutual infor-
mation between the global and local node embeddings. GPT-
GNN [Hu et al., 2020] utilizes a self-supervised graph gener-
ation task to combine the graph structural and semantic infor-
mation.

Graph self-supervised learning [Wang et al., 2024a; Wang
et al., 2024b; Liang et al., 2025; Wang et al., 2025a;
Zhang et al., 2025] methods still require many labeled to fine-
tune specific tasks (e.g., node classification). To further re-
duce the reliance on labeled instances, graph prompt learning
is proposed for few-shot node classification. For example,
GPPT predicts the node label by deciding whether an edge
exists between the target node and candidate labels. Graph-
Prompt [Liu ef al., 2023] learns embeddings for subgraphs
rather than nodes to unify graph-level and node-level tasks.
These approaches consider only the graph and thus have lim-
ited accuracy for TAGs with text descriptions. To account for
the text, TextGCN [Yao er al., 2019] generates text embed-
dings using pre-trained language models and adds these em-
beddings as node features for GNN training. G2P2 [Wen and
Fang, 2023] jointly trains the language model and GNN with
the contrastive strategy and uses prompting for few-shot and
zero-shot node classification. However, TSA targets TAGs
and considers the graph and text modalities jointly by mining
more text semantics while graph pre-training methods con-
sider only the graph.

Pre-trained Language Models (PLMs). PLMs [Devlin et
al., 2018; Yang et al., 2022; Yang et al., 2023; Han et al.,
2024] enhance the ability to understand natural language
by pre-training on large-scale text corpus. The well-known
BERT [Devlin et al., 2018], for instance, is pre-trained with
two tasks, i.e., masked token reconstruction and next token
prediction, to capture contextual information. ROBERTa [Liu
et al., 2019] improves BERT by eliminating the next token
prediction task, increasing the batch size and data volume
during pre-training, and using a dynamic masking strategy.
While PLMs achieve great success for text oriented tasks,
they cannot capture the topology information for TAGs.

6 Conclusion

In this paper, we study few-shot and zero-shot node classifica-
tion on text-attributed graphs. We observe that the prior meth-
ods is limited to graph-based augmentation techniques, thus
we propose TSA as a novel pre-training and inference frame-
work. TSA incorporates two key augmentation techniques,
i.e., positive semantics matching and negative semantics con-
trast, to exploit more text semantics. Extensive experiments
show that TSA outperforms existing methods by a large mar-
gin. We believe our methodology, i.e., generating node-text
pairs that have similar/dissimilar embeddings, is general and
can be extended beyond our augmentation techniques.
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