
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Transformer-based Reinforcement Learning for Net Ordering in Detailed Routing

Zhanwen Zhou1 , Hankz Hankui Zhuo2,3∗ , Jinghua Zhou1 and Wushao Wen1

1School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
2National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

3School of Artificial Intelligence, Nanjing University, Nanjing, China
zhouzhw26@mail2.sysu.edu.cn, hankz@nju.edu.cn, zhoujh76@mail2.sysu.edu.cn,

wenwsh@mail.sysu.edu.cn

Abstract
With feature size shrinking and design complex-
ity increasing, detailed routing has become a cru-
cial challenge in VLSI design. Although detailed
routers have been proposed to judiciously handle
hard-to-access pins and various design rules, their
performances are sensitive to the order of nets to
be routed, especially for those sequential routers
with ripup-and-reroute scheme. In the published
literature, net ordering strategies mainly rely on ex-
perts’ knowledge to design heuristics to guaran-
tee their performances. In this paper, we propose
a novel transformer-based reinforcement learning
framework for net ordering in detailed routing, aim-
ing at automatically gaining failure/success routing
experiences and building net order policies to guide
detailed routing. Our experimental results show
that our framework can effectively reduce the num-
ber of design rule violations and routing cost with
comparable wirelength and via count, with compar-
ison to state-of-the-art approaches.

1 Introduction
In the realm of very large-scale integration (VLSI) design,
routing presents significant challenges and has emerged as a
critical bottleneck in practical applications. This is mainly
due to intricate design rules and extensive solutions involved
[Liu et al., 2019; Chen et al., 2019]. VLSI routing is gen-
erally divided into two stages: global routing and detailed
routing [Zhou and Zhuo, 2024]. Global routing involves di-
viding the entire routing space into smaller units called global
cells (GCells) and routing the nets across these GCells. This
process is often guided by congestion predictions to optimize
routing paths [Liu et al., 2013]. Detailed routing, on the other
hand, focuses on creating rectilinear wiring interconnections
that adhere to design rules [Park et al., 2019]. The objective
is to finalize the placement of segments and vias based on
global routing solutions while minimizing design rule viola-
tions (DRV), wirelength, and the number of vias.

In detailed routing, a large routing area is often divided into
nonoverlapping regions to facilitate parallel routing, each of

∗Corresponding author.

which generally has a set of nets to be routed. Optimizing
the order of nets to be routed is a challenging task due to the
large scale of nets and complicated interconnections among
nets [Kahng et al., 2020b; Lin et al., 2021]. In this paper we
focus on tackling this challenging task for detailed routing.

There have been rules-based approaches proposed to op-
timize the order of nets [Jia et al., 2017; Chen et al., 2019;
Kahng et al., 2020b]. In those approaches, rules are manu-
ally designed for specific objectives with respect to the num-
ber of pins in a net [Kahng et al., 2020b], the region size of
the global guide for a net [Chen et al., 2019], the bounding
box of all pins in a net [Kahng et al., 2020b], or the number of
DRV [Jia et al., 2017]. They tend to focus on specific char-
acteristics of the routing process, which are then hardcoded
into routing approaches, making them difficult to generalize
to new design rules. To address the generalization issue, Lin
et al. [Lin et al., 2021] propose an asynchronous reinforce-
ment learning framework to optimize the order of nets. The
order of nets in their framework is determined by features,
such as sizes of routing regions, numbers of conflicted nets,
and previous routing results of each net. They fail to con-
sider the accessibility of pins, available spaces of rout-
ing regions, and overlapping relationships between two
nets, which are crucial for optimizing the order of nets. It
is challenging to design effective models to represent the
above-mentioned features thoroughly and use the repre-
sentations to build effective models to capture the order
of nets.

In this work, we propose a novel GCNs and Transformer-
based REinforcement learning framework for Net ordering
in Detailed routing, namely TREND1. Specifically, in order to
represent features thoroughly, we build a graph convolutional
network (GCN) to consider complicated influence relation-
ships of nets. In order to optimize the sequential order of
nets based on the output of GCN, we design a transformer
model to effectively capture the order of nets. Finally we
build a pointer network to generate indices of nets one by one
via considering both influences of previously generated (in-
dices of) nets and features of currently unordered nets. Note
that, similar to [Lin et al., 2021], our TREND approach tar-
gets at detailed routing of large-scale nets derived from real
chips. We are aware of learning-based works [He et al., 2022;

1https://github.com/xrouting/trend

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Chen et al., 2023; Lin et al., 2024] that were recently pro-
posed for chip routing. They are either predominantly trained
and evaluated in artificially generated small grid environ-
ments, or designed for global routing.

2 Background and Problem Formulation
Routing is on a stack of metal layers, each of which has a
preferred direction for routing, either horizontal or vertical.
The preferred routing directions of adjacent layers are or-
thogonal to each other to minimize signal crosstalk. A wire
segment routes along the preferred direction on the regularly
spaced tracks, which are pre-defined according to the mini-
mum width and spacing constraint of wire. Wires on adjacent
metal layers can be electrically connected by vias through
the crosspoint of tracks. On each track, there are a series of
crosspoints viewed as vertices. The vertices and connections
among them on all metal layers compose a 3D grid graph for
chip routing, as shown in Figure 1. A vertex is uniquely de-
fined by a 3D index ⟨l, t, c⟩, which is a tuple of layer index,
track index, and crosspoint index along the track. Adjacent
vertices are connected by on-track wire segment edges on the
same layer, or cross-layer via edges. Over a chip, there are
some obstacles that vias and wire segments should avoid to
prevent short and spacing violations. In Figure 1, net1 has
three pins (A,B,C) to connect, and the orange path is one
viable routing option. Note that there can be as many as mil-
lions of nets to be routed in a real chip.

layer1

layer2

layer3

track1

via

pin A

pin B

pin C
track2

track3
track4

net1

obstacle

crosspoint1 crosspoint2 crosspoint3 crosspoint4

Figure 1: 3D grid graph for chip routing.

Given a placed netlist, design rules, and routing guides
generated by global routing, detailed routing aims at suc-
cessfully routing all nets and optimizing the weighted sum
of total wirelength, via count, non-preferred usage (includ-
ing wrong-way wires, out-of-guide and off-track wires/vias),
and DRV count (including short, spacing, and minimum area
violations) [Mantik et al., 2018; Liu et al., 2019]. Note that
DRV are highly discouraged and suffer much more significant
penalty than others.

The net ordering problem in detailed routing can be for-
mally defined as follows. Given a set of m unrouted nets in a
routing environment, numbered 1, 2, ...,m, train a net order-
ing policy to generate a specific order of these net numbers,

then the ordered nets will be routed sequentially. The objec-
tive is to minimize the overall wirelength, number of vias, and
DRV of the routing solution. By optimizing the policy, the
routing process becomes more efficient, cost-effective, and
compliant with design constraints.

For example, Figure 2(a) shows a two-layer routing region
with four nets. A common net ordering strategy may prior-
itize routing net1 and net2 first, using maze routing based
on net size. However, this approach can result in paths that
block connections for net3 and net4. A straightforward so-
lution is to rip up net1 and net2, and reroute net3 and net4
first, as illustrated in Figure 2(b). This example underscores
the importance of net ordering in the context of VLSI routing.

3 Our Routing Approach
3.1 Modeling
Net ordering in the context of electronic design automation
can be effectively modeled using a Markov decision process
(MDP), represented by the tuple ⟨S,A,P,R, γ⟩. By model-
ing net ordering as an MDP, it becomes possible to apply rein-
forcement learning techniques to find optimal routing strate-
gies that efficiently connect all nets while minimizing costs
and adhering to design constraints.
State Space (S). For real chips with over thousands of nets,
the routing space is extremely large. To reduce the prob-
lem size to a tractable level, a chip design is partitioned into
nonoverlapping GCell-aligned regions, each of size G × G
GCells, where G is a hyper-parameter. A GCell usually has
15 routing tracks on one metal layer. For each region, a
nonregular-spaced 3D grid graph is built to support irregular
tracks and off-track routing. The 3D grid graph is constructed
by overlaying all preferred x- and y-direction grid lines (in-
cluding on-track lines that align with the routing tracks, off-
track lines that pass through any access point [Kahng et al.,
2020a] of a pin, and boundary lines) on each metal layer, and
then repeating as many times as the number of metal layers
along the z direction. Each state s ∈ S comprehensively rep-
resents the current routing scenario. It includes:

• A 3D grid graph, which models the physical layout of
the routing area. The dimensions of the 3D grid graph
are denoted as (Dx, Dy , Dz), representing the number
of vertical lines, horizontal lines, and metal layers, re-
spectively. The vertices of the 3D grid graph represent
routing resource occupancy and congestion information
in the routing environment. Each vertex is character-
ized by six properties: 1) grid coordinates range from
(0, 0, 0) to (Dx − 1, Dy − 1, Dz − 1); 2) physical lo-
cation in the region; 3) vertex type, recording whether
it is an obstacle, pin access point [Kahng et al., 2020a],
routable point, or nonexistent point; 4) pin number if it
is an access point; 5) occupancy status; 6) occupying net
identifier (if occupied).

• A netlist, which is a list of electrical connections that
need to be established.

• All pins that are the connection points for the nets.
• The paths that have already been routed for the nets, pro-

viding a partial solution to the routing problem.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

A

B
C

D

E

H

I

J

G

F
K

(a) Resource conflicts arise in the routing region.

A

B
C

D

E

H

I

J

G

F
K

(b) Rip up, reorder and reroute the conflicting nets.

net2: pin D, E, F

net3: pin G, H

M2 tracks

blockages

net1: pin A, B, C

net4: pin I, J, K

M1 tracks

Figure 2: Bad ordering of nets can lead to a large number of ripup-and-reroute iterations in detailed routing.

Table 1 summarizes the features of each net extracted from
the state s. The first feature is the number of pins in the
net. The second feature indicates the accessibility of the net,
which is calculated by dividing the number of access points
by the number of pins. The third feature denotes the occu-
pancy of the routing area, which is the ratio of available ver-
tices to total vertices in the bounding box. The fourth and fifth
features are the net’s 3D position and size relative to the re-
gion. The sixth feature is the count of other nets with bound-
ing boxes overlapping the current net’s bounding box.

Feature Dim. Description

Pins 1 Number of pins in the net.
Accessibility 1 Ratio of access point count to pin count.
Availability 1 Available / total vertices in the bounding box.
Position 3 Bottom left corner of the bounding box.
Size 3 Size ratio of the bounding box to the region.
Conflicts 1 Number of other nets that overlap with the net.

Table 1: Features of each net.

Action Space (A(s)). This space represents all feasible
routing actions at state s. These actions are state-dependent
and involve ordering the nets for subsequent routing. All pos-
sible order of unrouted nets constitute the action space, which
is not fixed since the number of unrouted nets for each region
is not the same. To solve this problem, we build a pointer
network to generate the appropriate number of nets.

Transition Model (P(s′|s, a)). This is a probabilistic
model that defines the likelihood of moving to a new state s′
from the current state s after taking action a. It captures the
dynamics of the routing process, including potential changes
in the grid graph and netlist as routing progresses.

Reward Function (R). In the net ordering problem, the re-
ward function R : S × A → R plays a crucial role. It is
a bounded function that provides feedback from the routing
environment after taking an action that involves routing a list
of ordered nets within the grid. The reward is influenced by
several factors:

• Increased Wirelength (wl): The additional wirelength
incurred during routing. Minimizing wirelength is often
desirable to reduce signal delay and resource usage.

• Vias (vias): The via count, representing vertical inter-
layer connections in the grid. Excessive vias increase
manufacturing complexity and cost.

• Design Rule Violations (drvs): Violations of fabrication
constraints that may cause functional failures or yield
loss. The reward function penalizes DRV-inducing ac-
tions.

The routing cost is defined as the weighted sum of these
metrics, as shown in Equation 1. We set the weights as w1 =
0.5, w2 = 4 and w3 = 500 in our experiments, consistent
with the ISPD-2019 detailed routing contest parameters [Liu
et al., 2019]. The reward R of an action a is defined as the
cost difference between current state s and the new state s′
after taking the action, as shown in Equation 2. α is set to the
half-perimeter of the region for normalization across different
regions. The initial routing cost is set to the cost of routing
all nets in pre-defined order. The objective of the agent is to
learn a policy to minimize the routing cost.
cost(s) = w1 · wl(s) + w2 · vias(s) + w3 · drvs(s) (1)

R =
cost(s)− cost(s′)

α
(2)

Discount Factor (γ). This parameter, usually between 0
and 1, determines the importance of future rewards. A higher
value of γ places more emphasis on long-term benefits, en-
couraging strategies that optimize the routing solution over
time.

A policy π : S × A → [0, 1] is a probabilistic mapping
from states to actions. For a given state s, π(a|s) represents
the probability of selecting action a. The objective of detailed
routing is to find a policy π that maximizes the expected sum
of discounted rewards, denoted as JR

π :

JR
π (s) := E

a∼π,s∼P

[∑
t

γtR(st, at)

]
(3)

This objective effectively translates to minimizing the overall
wirelength, via count, and DRV count simultaneously in the
routing solution.

3.2 Network Architecture
We design and implement a transformer-based reinforcement
learning framework for net ordering in detailed routing, as
shown in Figure 3.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

A

B

C

D

E

H

I

J

G

F
K

net1 net2 net3 net4

2

1

4

3

Observation Node Features: [n, 10]

- 1 1
1 - 0
1 0 -
1 1 0

1
1
0
-

Edges: [num_edges, 2]

Region State Actor Network

Critic Network

net_order

prediction

[n,128] [n,128]

[1]

[n]GCN
Embedder

Transformer
Encoder

Pointer
Network
Decoder

GCN
Embedder

[n,128] [n,128]Transformer
Encoder

Glimpse
Network
Predictor

Figure 3: Network architecture of our routing approach.

Given a preordered set of n unrouted nets N = {neti}ni=1
in a routing environment (ordered by baseline strategies), an
undirected graph is constructed to represent the observation
of the nets and their relationships within the routing region.
We create one node for each net and draw an edge to connect
two nets if their bounding boxes overlap. We use num edge
to represent the total number of edges in the graph. The fea-
tures of these nets are defined as X = [x1, ..., xn]

T , where
X ∈ Rn×10, while the overlapped relationships between
them are denoted as connectionsC, whereC ∈ Znum edge×2.
The model of our routing approach consists of an actor net-
work and a critic network. Both networks process the state
observation as input. The actor goes through three steps to
generate the order of nets through a stochastic policy, while
the critic establishes a performance baseline by estimating the
expected routing cost of these nets based on the order recom-
mended by the actor, providing policy gradient signals for
continuous improvement. The goal of this architecture is to
increase the probability of generating good orders for the nets
in the routing environment.

Actor Network
The actor network is meticulously designed with three inte-
gral components: a graph convolutional network (GCN) em-
bedder, a transformer encoder, and a pointer network decoder.
Each of them plays a crucial role in generating the appropriate
order of the nets.

Each routing region contains a distinct number of nets to be
routed, and the overlapping relationships among these nets
significantly impact the routability of the congested areas.
To enhance the routing environment representation, GCN
is used to map the net features and their overlapping rela-
tionships to a state embedding M = GCN(X,C) where
M = [m1, ...,mn]

T ∈ Rn×d denotes the learned feature ma-
trix with d-dimensional embeddings for n nets. d is set to 128
in our implementation. We use 2 convolutional layers with
rectified linear unit (ReLU) activation to generate net embed-
dings. The first layer expands the feature dimension from 10
to 64, while the second layer expands it to 128 dimensions.
The final expanded representation encodes both local neigh-
boring influences and global environmental information.

To effectively capture the order of nets, the embedding M
is then processed by a transformer encoder [Vaswani et al.,
2017] with three identical encoding blocks, each of which in-
cludes a multi-head self-attention layer and a full connected
feedforward layer. We employ a residual connection around

each of the two sub-layers, followed by layer normalization
to stabilize the training. The final output of the transformer
encoder is E = [e1, ..., en]

T ∈ Rn×d, which contains all en-
codings for n nets. The dimension of the encoding for each
net remains the same as d during the encoding process. Post-
encoding, the sequential context of neighboring nets is aggre-
gated to generate enhanced per-net representations.

Finally, we implement a pointer network decoder [Vinyals
et al., 2015] to process the encodingsE and sequentially gen-
erate an ordered series of net numbers net order. The de-
coder decides the subsequent net to route recurrently, that is,
the previously generated series of net numbers serve as an
additional input for computing the next net number. More
specifically, we use a query vector of size 360 to encode
the state that contains the previously generated series of net
numbers. The pointer network decoder takes the encodings
E = [e1, ..., en]

T and the query vector as inputs, and outputs
the probability P = [p1, ..., pn]

T of selecting each net to be
appended to the series. It first uses vector zero as the query
vector and selects a number of an unrouted net as the starting
number u1 and marks it as routed. In the following n − 1
time steps, the decoder computes the probabilities of select-
ing each net based on the encodings of these nets and a new
query vector which encodes the new state. The probabilities
of already-routed nets are set to 0 by a binary mask to avoid
being reselected. A new net number ut for t = 2, ..., n is
generated at each step, until all unrouted nets are ordered.

Critic Network
The critic network estimates the advantage value function
by predicting the expected routing cost reduction achieved
by the actor’s net ordering policy relative to TritonRoute’s
baseline strategy. This advantage signal tells us how much
the actor network performs better than expectation and
guides the actor’s policy updates through gradient ascent.
Let L(X,C, net order) denote the routing cost reduction
achieved by the actor’s policy, and b(X,C) represent the
critic’s predicted baseline. The advantage value calculated
by b(X,C) − L(X,C, net order) will quantify the relative
performance of the actor network for the generated order of
nets net order.

The critic network is also composed of three components:
a GCN embedder, a transformer encoder, and a glimpse net-
work predictor. The GCN embedder and transformer encoder
in the critic network share identical architectures with the ac-
tor network, but employ independent parameters. They en-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

code the features of each net and their overlapping relation-
ships into the critic encodings E′ = [e′1, ..., e

′
n]
T ∈ Rn×d.

Then the glimpse network [Mnih et al., 2014] takes the en-
codings E′ as input, computes a weighted sum of the encod-
ings, and outputs the predicted baseline scalar b(X,C).

Parameters Update
This section presents the parameter update mechanisms for
both the actor network (θ) and the critic network (ψ). For a
set of n unrouted netsN with net featuresX and connections
C in a routing environment, the expected advantage in routing
cost reduction achieved by the actor-generated net ordering is
defined as J(θ|X,C) in Equation (4):

J(θ|X,C) =
∑
o∈O

(b(X,C)− L(X,C, o))pθ(o|X,C) (4)

O is the set of all possible orders of N . We utilize the REIN-
FORCE algorithm [Williams, 1992] to compute the gradient
of Equation (4) and update θ using stochastic gradient ascent.

Unlike the training method used in the actor network, we
train the critic network to predict the routing cost reduction
for the ordered nets net order generated by the actor net-
work, and minimize the squared error as shown in Equation
(5):

Loss(ψ) = ||bψ(X,C)− L(X,C, net order)||22 (5)

We update ψ using stochastic gradient descent.

4 Experiment and Results
4.1 Routing Environment and Benchmarks
We design a comprehensive and adaptable routing environ-
ment, namely XRoute-Env, to facilitate the work of reinforce-
ment learning for researchers in the field of detailed routing.
It offers a suite of built-in features that streamline the process
of designing and evaluating routing strategies. The environ-
ment is built upon a highly customized version of TritonRoute
[Kahng et al., 2022]. It is designed to simulate the entire rout-
ing process of a chip, starting with the input of design files
and a routing guide. The routing engine iteratively applies
ripup-and-reroute optimization, progressively refining the so-
lution until converging to a DRC-clean detailed routing result.

To facilitate training and comparisons of different ap-
proaches in XRoute-Env, we experiment on the benchmarks
from ISPD-2018 [Mantik et al., 2018] and ISPD-2019 [Liu
et al., 2019] detailed routing contests. These two bench-
mark suites are established standards in detailed routing re-
search, extensively adopted in the literature [Li et al., 2019;
Kahng et al., 2020a; Lin et al., 2021; Kahng et al., 2022]
for performance benchmarking. The ISPD-2019 benchmark
suite enhances routing realism over ISPD-2018 by incorpo-
rating advanced design rules, resulting in test cases that better
emulate commercial chip routing challenges. The character-
istics of these benchmarks are summarized in Table 2. There
are totally 20 test cases in 65nm, 45nm, and 32nm technol-
ogy nodes derived from real chips. The largest one has up
to 899404 standard cells and 895253 nets, which makes it
very challenging to finish routing efficiently because of the
extremely large routing space.

BM #std #blk #net #layer Tech.

18t1 8879 0 3153 9 45nm
18t2 35913 0 36834 9 45nm
18t3 35973 4 36700 9 45nm
18t4 72094 0 72401 9 32nm
18t5 71954 0 72394 9 32nm
18t6 107919 0 107701 9 32nm
18t7 179865 16 179863 9 32nm
18t8 191987 16 179863 9 32nm
18t9 192911 0 178857 9 32nm
18t10 290386 0 182000 9 32nm

19t1 8879 0 3153 9 32nm
19t2 72094 4 72410 9 32nm
19t3 8283 4 8953 9 32nm
19t4 146442 7 151612 5 65nm
19t5 28920 6 29416 5 65nm
19t6 179881 16 179863 9 32nm
19t7 359746 16 358720 9 32nm
19t8 539611 16 537577 9 32nm
19t9 899341 16 895253 9 32nm
19t10 899404 16 895253 9 32nm

Table 2: Characteristics of the ISPD-2018 & ISPD-2019 detailed
routing benchmarks (BM).

We follow the ISPD-2019 detailed routing contest and a
lot of literature on detailed routing [Li et al., 2019; Lin et al.,
2021; Kahng et al., 2022] to evaluate the routing results from
different routers by DRV count, total wirelength, via count
and elapsed time.

4.2 Experiment Setup
We partition each benchmark into regions of size 7×7 GCells
as TritonRoute [Kahng et al., 2021]. We train our model
first in every routing region from 18t1 for 30,000 steps and
then in every routing region from 19t3 for 20,000 steps using
the learned parameters. This speeds up the training process,
since the experience learned from small regions can be used
to route large regions. The learning rates are set to 0.00005
and 0.00002, respectively. At inference time, we greedily
pick the net number with maximum probability at each step
to construct the final routing order. To accelerate the routing
process, we bypass regions with few overlapping nets. We
calculate the average overlapping rate of a region by sum-
ming all conflicts among nets, then dividing it by the number
of nets, and dividing the result by the number of nets again to
normalize the value. If the average overlapping rate is smaller
than a threshold (we use 0.3 in our experiments), the model
will just return the original order of nets provided by XRoute-
Env with the default strategy based on the number of pins and
the size of each net.

We compare our approach with another RL-based net or-
dering approach [Lin et al., 2021], namely “Lin’s approach”
in this paper, and the known-best academic detailed router
TritonRoute [Kahng et al., 2021]. Net ordering prioritiza-
tion in TritonRoute is determined by pins count, area of the
bounding box and net identity.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

We used the same routing settings in XRoute-Env for these
approaches. All routings run for 64 iterations at most, with
region shift for one GCell in alternate iterations. All experi-
ments run on a Linux server with a 40-core Intel Xeon CPU
E5-2650 at 2.3 GHz and 240 GB shared memory, equipped
with 2 NVIDIA GeForce Titan XP GPU with totally 24 GB
video memory.

4.3 Results
Comparison on Different Net Ordering Strategies
In this section, we compare the quality of the routing solution
between our routing approach, Lin’s approach, and Triton-
Route on the 20 benchmarks from ISPD-2018 and ISPD-2019
detailed routing contests, to evaluate the routing performance
of these net ordering approaches on different chips with vary-
ing sizes and complexities. In addition to elapsed time, DRV
count, wirelength and via count, we calculate the routing cost,
which is defined in Equation 1, to assess the overall perfor-
mance of the routing solution.

Table 3 and Table 4 demonstrate the routing results of the
20 benchmarks between our transformer-based RL approach,
Lin’s approach, and TritonRoute. The ’-’ symbol in the ta-
ble indicates routing failure due to unresolved connectivity
errors after the first iteration, caused by multi-pin nets with
unconnected pins.

BM
Elapsed time (hh:mm:ss)

Our Lin TR

18t1 00:01:49 00:03:57 00:00:25
18t2 00:12:52 00:27:38 00:02:22
18t3 00:26:48 01:06:15 00:13:11
18t4 00:32:26 01:09:27 00:13:35
18t5 00:21:49 00:50:54 00:04:05
18t6 00:40:13 01:22:43 00:09:33
18t7 01:40:33 - 00:18:00
18t8 01:44:43 - 00:19:35
18t9 01:14:51 02:27:45 00:15:34
18t10 02:25:42 - 01:07:06

19t1 00:04:26 00:07:45 00:01:12
19t2 01:02:14 - 00:15:25
19t3 00:09:24 00:14:18 00:04:03
19t4 01:16:49 - 00:53:28
19t5 00:03:54 00:07:09 00:01:13
19t6 02:34:19 - 00:28:32
19t7 06:08:27 09:22:46 00:39:19
19t8 12:09:42 14:13:15 00:51:14
19t9 13:39:43 22:31:57 01:27:14
19t10 16:15:52 - 02:27:33

Table 3: Comparison of elapsed time between our routing approach
(Our), Lin’s approach (Lin) and TritonRoute (TR) with queue-based
ripup-and-reroute on the ISPD-2018 & ISPD-2019 detailed routing
benchmarks (BM).

Table 3 shows that our approach and Lin’s approach cost
more time than TritonRoute to route each benchmark, al-
though the difference in elapsed time between these ap-
proaches is not large. This increased runtime is primarily due

to the time-intensive processes of feature encoding and net
order generation. These processes could potentially be opti-
mized using off-the-shelf representation learning techniques,
such as model compression and acceleration [Cheng et al.,
2017; Xu and McAuley, 2023].

However, the quality of the routing results is more impor-
tant than the time taken to complete the routing, especially for
a large chip. The routing results in Table 4 show that all three
approaches successfully route every benchmark with zero de-
sign rule violation except 19t10, which is the biggest bench-
mark. According to the routing cost, our approach performs
better than Lin’s approach in almost all benchmarks except
18t5, and better than TritonRoute for large test cases, includ-
ing 18t4 to 18t10, 19t4, 19t6, 19t8 to 19t10. It suggests that
our framework has learned the experience to route nets with
fewer wirelength and via count in complex routing environ-
ment with lots of overlapping nets. Reduced wirelength and
via count directly correlate with lower manufacturing costs,
making our net ordering approach effective for simultaneous
performance enhancement and cost reduction in post-routing
chips.

Routing Without Queue-Based Ripup-and-Reroute
Queue-based ripup-and-reroute scheme is a novel contribu-
tion in TritonRoute-WXL [Kahng et al., 2022], which de-
creases the design rule violations and runtime by switch-
ing the routing order of conflicting nets during one itera-
tion. In order to demonstrate the performance of net order-
ing, we disable the queue-based ripup-and-reroute scheme
so that all unrouted nets or nets with any violations in the
previous iteration will be ripped up and rerouted once and
only once at next iteration. In this section, we compare
our routing approach with Lin’s approach and TritonRoute to
route the 10 benchmarks from ISPD-2018 and first 6 bench-
marks from ISPD-2019 detailed routing contest without using
queue-based ripup-and-reroute flow. All routings run for 64
iterations at most. The benchmarks from 19t7 to 19t10 are
too large for these approaches to finish routing in 100 hours
for 64 iterations.

Table 5 demonstrates the routing results. The results show
that both two RL-based approaches produce less DRV than
TritonRoute in all experimental benchmarks except 19t2.
It suggests that these RL-based approaches have learned
the routing experience to avoid violations by ordering nets,
while TrionRoute relies on the queue-based ripup-and-reroute
scheme to reroute a net with violation over and over again.

We can also observe that our approach performs best in al-
most all benchmarks based on the routing cost metric, except
18t2, 19t2 and 19t3. The routing cost of our approach is better
than that of TritonRoute in 19t3 and very close to that of Tri-
tonRoute in 18t2. It suggests that RL-based algorithms can be
used for detailed routing in large-scale chips with fairly good
routing results. Although this experience is learned from the
regions in 18t1 and 19t3, it can be generalized to other bench-
marks with much larger routing space.

5 Conclusion and Future Work
This paper presents a transformer-based reinforcement learn-
ing framework for net ordering in detailed routing, which

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

BM
DRV count Wirelength (DBU) Via count Routing cost

Our Lin TR Our Lin TR Our Lin TR Our Lin TR

18t1 0 0 0 86747 87111 86753 35573 35720 35513 185665.5 186435.5 185428.5
18t2 0 0 0 1576242 1578576 1576206 363658 365681 363627 2242753.0 2252012.0 2242611.0
18t3 0 0 0 1756345 1759396 1756206 364486 366958 364460 2336116.5 2347530.0 2335943.0
18t4 0 0 0 2624698 2628327 2624715 730583 736029 730859 4234681.0 4258279.5 4235793.5
18t5 0 0 0 2767567 2770337 2767487 907371 906569 907409 5013267.5 5011444.5 5013379.5
18t6 0 0 0 3568829 3576404 3568835 1388624 1389074 1388924 7338910.5 7344498.0 7340113.5
18t7 0 - 0 6504482 - 6504609 2270710 - 2270704 12335081.0 - 12335120.5
18t8 0 - 0 6537218 - 6537202 2288881 - 2289026 12424133.0 - 12424705.0
18t9 0 0 0 5460824 5474072 5460970 2272300 2275228 2272577 11819612.0 11837948.0 11820793.0
18t10 0 - 0 6797185 - 6797456 2475983 - 2476292 13302524.5 - 13303896.0

19t1 0 0 0 63420 63546 63432 37136 37340 37177 180254.0 181133.0 180424.0
19t2 0 - 0 2485283 - 2485251 805972 - 805715 4466529.5 - 4465485.5
19t3 0 0 0 82941 83177 82874 63775 64438 63584 296570.5 299340.5 295773.0
19t4 0 - 0 6024472 - 6024711 1086714 - 1087234 7359092.0 - 7361291.5
19t5 0 0 0 951129 953089 951172 169243 170276 169178 1152536.5 1157648.5 1152298.0
19t6 0 - 0 6582348 - 6582467 1991724 - 1991825 11258070.0 - 11258533.5
19t7 0 0 0 12178450 12204275 12178615 4511050 4541503 4510697 24133425.0 24268149.5 24132095.5
19t8 0 0 0 18726776 18757337 18726739 6983678 6993049 6984292 37298100.0 37350864.5 37300537.5
19t9 0 0 0 28334694 28383299 28335064 11584500 11598176 11584493 60505347.0 60584353.5 60505504.0
19t10 20 - 20 28011370 - 28011623 11721823 - 11722960 60902977.0 - 60907651.5

Table 4: Comparison of DRV count, wirelength, via count and routing cost between our routing approach (Our), Lin’s approach (Lin) and
TritonRoute (TR) with queue-based ripup-and-reroute on the ISPD-2018 & ISPD-2019 detailed routing benchmarks (BM).

BM
DRV count Wirelength (DBU) Via count Routing cost

Our Lin TR Our Lin TR Our Lin TR Our Lin TR

18t1 0 0 0 86553 86708 86572 35576 35685 35601 185580.5 186094.0 185690.0
18t2 0 0 0 1574491 1576548 1574538 364130 366391 364124 2243765.5 2253838.0 2243765.0
18t3 14 3 22 1754029 1757038 1753984 364701 368026 364609 2342818.5 2352123.0 2346428.0
18t4 61 31 89 2621258 2624536 2621145 733092 740539 732761 4273497.0 4289924.0 4286116.5
18t5 8 5 10 2764065 2766600 2763972 892069 893066 892133 4954308.5 4958064.0 4955518.0
18t6 53 32 57 3559460 3566712 3559428 1355160 1356002 1355045 7226870.0 7223364.0 7228394.0
18t7 247 - 306 6487839 - 6487468 2220154 - 2219026 12248035.5 - 12272838.0
18t8 177 - 195 6520057 - 6519990 2237048 - 2236386 12296720.5 - 12303039.0
18t9 175 170 279 5445442 5457025 5445468 2221327 2223374 2221375 11695529.0 11707008.5 11747734.0
18t10 219 - 246 6778356 - 6778309 2417597 - 2417120 13169066.0 - 13180634.5

19t1 8 4 14 63172 63220 63148 36996 37185 37103 183570.0 182350.0 186986.0
19t2 470 - 173 2478050 - 2477779 803797 - 802809 4689213.5 - 4536625.5
19t3 61 54 66 82312 82534 82269 63606 63395 63401 326080.0 321847.0 327738.5
19t4 13 - 19 6012042 - 6012026 1084181 - 1084118 7349245.0 - 7351985.0
19t5 4 4 5 949142 950705 949156 168254 170471 168192 1149587.0 1159236.5 1149846.0
19t6 446 - 615 6564219 - 6563725 1976476 - 1973987 11411013.5 - 11485310.5

Table 5: Comparison of DRV count, wirelength, via count and routing cost between our routing approach (Our), Lin’s approach (Lin) and
TritonRoute (TR) without queue-based ripup-and-reroute on the ISPD-2018 & ISPD-2019 detailed routing benchmarks (BM).

demonstrates superior routing quality over conventional al-
gorithms. Nevertheless, our framework exhibits several limi-
tations that highlight promising directions for future research:

• Experimental results indicate that while our transformer-
based framework achieves significant improvements
in most benchmarks, it does not consistently surpass
TritonRoute’s heuristic-based approach across all test
cases. We will focus on two research directions: (1)
refining exploration precision via adaptive net selection
constraints during routing, and (2) improving solution

quality and routing convergence through scaled-up train-
ing with extended episode counts, prolonged duration
and extended region coverage.

• The inference module (learned offline) in TREND is
time-consuming for large benchmarks, which could be
optimized with novel representation learning approaches
in the future, such as action model learning [Zhuo et al.,
2011; Jin et al., 2022] in planning community for better
capturing the logical relations among routing actions.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Grant No. 62076263).

References
[Chen et al., 2019] Gengjie Chen, Chak-Wa Pui, Haocheng

Li, and Evangeline F. Y. Young. Dr. cu: Detailed rout-
ing by sparse grid graph and minimum-area-captured path
search. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(9):1902–1915, 2019.

[Chen et al., 2023] Hao Chen, Kai-Chieh Hsu, Walker J.
Turner, Po-Hsuan Wei, Keren Zhu, David Z. Pan, and
Haoxing Ren. Reinforcement learning guided detailed
routing for custom circuits. In David G. Chinnery and
Iris Hui-Ru Jiang, editors, Proceedings of the 2023 Inter-
national Symposium on Physical Design, ISPD 2023, Vir-
tual Event, USA, March 26-29, 2023, pages 26–34. ACM,
2023.

[Cheng et al., 2017] Yu Cheng, Duo Wang, Pan Zhou, and
Tao Zhang. A survey of model compression and acceler-
ation for deep neural networks. CoRR, abs/1710.09282,
2017.

[He et al., 2022] Youbiao He, Hebi Li, Tian Jin, and For-
rest Sheng Bao. Circuit routing using monte carlo tree
search and deep reinforcement learning. In 2022 Interna-
tional Symposium on VLSI Design, Automation and Test
(VLSI-DAT), pages 1–5, 2022.

[Jia et al., 2017] Xiaotao Jia, Yici Cai, Qiang Zhou, and Bei
Yu. A multicommodity flow-based detailed router with
efficient acceleration techniques. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 37(1):217–230, 2017.

[Jin et al., 2022] Mu Jin, Zhihao Ma, Kebing Jin,
Hankz Hankui Zhuo, Chen Chen, and Chao Yu. Creativity
of AI: automatic symbolic option discovery for facilitating
deep reinforcement learning. In AAAI, pages 7042–7050.
AAAI Press, 2022.

[Kahng et al., 2020a] Andrew B. Kahng, Lutong Wang, and
B. Xu. The tao of PAO: Anatomy of a pin access oracle
for detailed routing. In 2020 57th ACM/IEEE design au-
tomation conference (DAC), pages 1–6. IEEE, 2020.

[Kahng et al., 2020b] Andrew B. Kahng, Lutong Wang, and
Bangqi Xu. The tao of PAO: anatomy of a pin access
oracle for detailed routing. In 57th ACM/IEEE Design
Automation Conference, DAC 2020, San Francisco, CA,
USA, July 20-24, 2020, pages 1–6. IEEE, 2020.

[Kahng et al., 2021] Andrew B. Kahng, Lutong Wang, and
Bangqi Xu. Tritonroute: The open-source detailed router.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
40(3):547–559, 2021.

[Kahng et al., 2022] Andrew B. Kahng, Lutong Wang, and
Bangqi Xu. Tritonroute-WXL: The Open-Source Router
With Integrated DRC Engine. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 41(4):1076–1089, 4 2022.

[Li et al., 2019] Haocheng Li, Gengjie Chen, Bentian Jiang,
Jingsong Chen, and Evangeline FY Young. Dr. cu 2.0:
A scalable detailed routing framework with correct-by-
construction design rule satisfaction. In 2019 IEEE/ACM
International Conference on Computer-Aided Design (IC-
CAD), pages 1–7, Westminster, CO, USA, 2019. IEEE.

[Lin et al., 2021] Yibo Lin, Tong Qu, Zongqing Lu, Ya-
juan Su, and Yayi Wei. Asynchronous reinforcement
learning framework and knowledge transfer for net-order
exploration in detailed routing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 41(9):3132–3142, 2021.

[Lin et al., 2024] Zhenkun Lin, Genggeng Liu, Xing Huang,
Yibo Lin, Jixin Zhang, Wen-Hao Liu, and Ting-Chi Wang.
A unified deep reinforcement learning approach for con-
structing rectilinear and octilinear steiner minimum tree.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, pages 1–1, 2024.

[Liu et al., 2013] Wen-Hao Liu, Wei-Chun Kao, Yih-Lang
Li, and Kai-Yuan Chao. NCTU-GR 2.0: Multithreaded
collision-aware global routing with bounded-length maze
routing. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 32(5):709–722, 2013.

[Liu et al., 2019] Wen-Hao Liu, Stefanus Mantik, Wing-Kai
Chow, Yixiao Ding, Amin Farshidi, and Gracieli Posser.
Ispd 2019 initial detailed routing contest and benchmark
with advanced routing rules. In Proceedings of the 2019
International Symposium on Physical Design, ISPD ’19,
page 147151, New York, NY, USA, 2019. Association for
Computing Machinery.

[Mantik et al., 2018] Stefanus Mantik, Gracieli Posser,
Wing-Kai Chow, Yixiao Ding, and Wen-Hao Liu. Ispd
2018 initial detailed routing contest and benchmarks. In
Proceedings of the 2018 International Symposium on
Physical Design, ISPD ’18, page 140143, New York, NY,
USA, 2018. Association for Computing Machinery.

[Mnih et al., 2014] Volodymyr Mnih, Nicolas Heess, Alex
Graves, et al. Recurrent models of visual attention.
Advances in neural information processing systems, 27,
2014.

[Park et al., 2019] Dongwon Park, Ilgweon Kang, Yeseong
Kim, Sicun Gao, Bill Lin, and Chung-Kuan Cheng.
ROAD: routability analysis and diagnosis framework
based on SAT techniques. In Ismail Bustany and William
Swartz, editors, Proceedings of the 2019 International
Symposium on Physical Design, ISPD 2019, San Fran-
cisco, CA, USA, April 14-17, 2019, pages 65–72. ACM,
2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page
60006010, Red Hook, NY, USA, 2017. Curran Associates
Inc.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Vinyals et al., 2015] Oriol Vinyals, Meire Fortunato, and
Navdeep Jaitly. Pointer networks. In Proceedings of the
29th International Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS’15, page 26922700,
Cambridge, MA, USA, 2015. MIT Press.

[Williams, 1992] Ronald J. Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(34):229256, May 1992.

[Xu and McAuley, 2023] Canwen Xu and Julian J.
McAuley. A survey on model compression and ac-
celeration for pretrained language models. In Thirty-
Seventh AAAI Conference on Artificial Intelligence, pages
10566–10575, 2023.

[Zhou and Zhuo, 2024] Zhanwen Zhou and Hankz Hankui
Zhuo. Survey on intelligent routing approaches for chips.
Acta Automatica Sinica, 50(9):1671–1703, 2024.

[Zhuo et al., 2011] Hankz Hankui Zhuo, Qiang Yang, Rong
Pan, and Lei Li. Cross-domain action-model acquisition
for planning via web search. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, volume 21, pages 298–305, 2011.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

