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Abstract
Riemannian neural networks, which generalize the
deep learning paradigm to non-Euclidean geome-
tries, have garnered widespread attention across di-
verse applications in artificial intelligence. Among
these, the representative attention models have been
studied on various non-Euclidean spaces to ge-
ometrically capture the spatiotemporal dependen-
cies inherent in time series data, e.g., electroen-
cephalography (EEG). Recent studies have high-
lighted the full-rank correlation matrix as an advan-
tageous alternative to the covariance matrix for data
representation, owing to its invariance to the scale
of variables. Motivated by these advancements,
we propose the Correlation Attention Network
(CorAtt) tailored for full-rank correlation matrices
and implement it under the permutation-invariant
and computationally efficient Off-Log and Log-
Scaled geometries, respectively. Extensive evalua-
tions on three benchmarking EEG datasets provide
substantial evidence for the effectiveness of our in-
troduced CorAtt. The code and supplementary ma-
terial can be found at https://github.com/ChenHu-
ML/CorAtt.

1 Introduction
Deep neural networks (DNNs) have significantly progressed
across a broad range of applications [Simonyan and Zisser-
man, 2015; He et al., 2016; Vaswani et al., 2017; Zeng et
al., 2024; Tang et al., 2024]. However, most existing meth-
ods assume that the data adheres to a vector space structure,
whereas many of them emerge from latent spaces governed
by non-Euclidean geometries, such as Riemannian geome-
tries. Building on this insight, researchers have made no-
table strides in generalizing different types of DNNs to man-
ifolds, known as Riemannian neural networks [Huang and
Van Gool, 2017; Gulcehre et al., 2018; Chen et al., 2023;
Wang et al., 2024b; Wang et al., 2024a; Chen et al., 2024b;
Chen et al., 2024d; Chen et al., 2024a; Chen et al., 2024c;
Wang et al., 2025; Chen et al., 2025a; Chen et al., 2025b].

Drawing inspiration from the effectiveness of the attention
∗Corresponding author: Rui Wang

mechanism in capturing correlations between different fea-
ture regions [Vaswani et al., 2017; Hu et al., 2018; Doso-
vitskiy, 2020], the investigation of the Riemannian attention
mechanism has gained increasing interest. Notably, the hy-
perbolic attention network [Gulcehre et al., 2018] represents
a pioneering effort in this area, designed based on the Hyper-
boloid and Klein models. Building on this, [Pan et al., 2022]
extended the attention mechanism to Symmetric Positive Def-
inite (SPD) manifolds, implemented under the Log-Euclidean
geometry. Subsequently, [Wang et al., 2024a] adapted this
approach to Grassmannian manifolds, utilizing an extrinsic
mean within the Projection Metric.

The correlation matrix, which is scale-invariant [David and
Gu, 2019], serves as a compact and normalized alternative to
the covariance matrix for data representation. A slice of re-
search fields in artificial intelligence, such as Diffusion Ten-
sor Imaging (DTI) [Pennec et al., 2006], Brain-Computer
Interfaces (BCI) [Jalili and Knyazeva, 2011], and Gaussian
graphical models [Epskamp and Fried, 2018] have particu-
larly benefited from the utilization of correlation matrices in
place of covariance matrices. The basic reason is that elim-
inating the influence of variable scales is particularly effec-
tive for the handled problems where the scales are irrelevant
[Thanwerdas, 2024]. In particular, non-invasive BCI systems
rely heavily on effectively decoding EEG signals to enable di-
rect communication between the brain and external devices.
EEG records neural activity with high temporal resolution
by measuring electrical potentials on the scalp [Subha et al.,
2010], but the resulting signals are often noisy and lack speci-
ficity [Hine et al., 2017]. To address these challenges, cor-
relation matrices have emerged as a suitable representation
for EEG analysis, as they emphasize statistical dependencies
over absolute magnitudes. This is particularly advantageous
since strong inter-channel correlations could remain stable
despite substantial variations in electrode signal strengths.

Recently, several Riemannian metrics have been proposed
for the manifolds of full-rank correlation matrices, including
the Off-Log Metric (OLM) and Log-Scaled Metric (LSM)
[Thanwerdas, 2024]. The Riemannian operators associated
with them, such as geodesics, Fréchet Means, and exponen-
tial & logarithmic maps, are not only permutation-invariant
but also computationally efficient. This provides a theoretical
possibility for further exploration of attention mechanisms on
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full-rank correlation matrices.

Designing the attention mechanism for full-rank correlation
matrices presents a unique challenge, primarily due to the ab-
sence of corresponding transformation layers. The main diffi-
culties stem from the following two aspects. On the one hand,
the designed transformation function should preserve the
characteristics of full-rank correlation matrices, making the
traditional linear layers or their manifold counterparts, e.g.,
bilinear mapping (BiMap) function [Huang and Van Gool,
2017], for covariance matrices unsuitable. On the other hand,
to the best of our knowledge, there is no prior knowledge for
constructing neural networks on the manifolds of full-rank
correlation matrices, preventing the generation of manifold-
valued queries, keys, and values. Another important problem
to be solved is the lack of classification layers defined on the
Correlation manifolds. To address these challenges, we intro-
duce two novel transformation layers based on the Lie group
homomorphisms, explicitly tailored for the OLM and LSM
within the Riemannian geometry of Correlation manifolds.
Moreover, building upon [Thanwerdas, 2024], we derive the
Weighted Fréchet Mean (WFM) [Karcher, 1977], a more gen-
eral Fréchet Mean, for feature aggregation under OLM and
LSM. Additionally, we harness the Riemannian logarithm
function to develop two tangent mapping layers under the
framework of OLM and LSM to enable the classification of
the Correlation manifolds. With these preparations, we pro-
pose a Correlation Attention Network (CorAtt) for learning
effective spatiotemporal statistical information of EEG sig-
nals. In summary, our key contributions are as follows:

• Two novel transformation layers based on Lie group
homomorphisms. We design two transformation layers
explicitly tailored to preserve the geometric structure of
full-rank correlation matrices under the OLM and LSM.

• Two attention models are established on the Corre-
lation manifolds. This article proposes two attention
models for the full-rank correlation matrices based on
the permutation-invariant and computationally efficient
OLM and LSM, respectively.

• Two tangent mapping layers are proposed under the
Correlation geometry. Two tangent mapping layers are
induced by LSM and OLM to project the full-rank cor-
relation matrices into a flat space for classification.

• Empirical validations in three EEG decoding tasks.
Experimental results achieved on three benchmarking
EEG datasets validate the effectiveness of our proposed
CorAtt and each of the designed components.

2 Preliminary
This section briefly reviews the Lie group and the geometry of
full-rank correlation matrices. For more in-depth discussions,
please refer to [Do Carmo and Flaherty Francis, 1992; Tu,
2011; David and Gu, 2019; Thanwerdas, 2024].
Definition 2.1 (Lie Groups). A smooth manifold is a Lie
group if it is endowed with a group operation⊙ such that both
mappings, m(x, y) 7→ x ⊙ y and i(x) 7→ x−1

⊙ , are smooth.
Here, x−1

⊙ denotes the group inverse.

A Lie group is both a group and a manifold, which motivates
the study of smooth maps that preserve these structures.
Definition 2.2 (Lie Homomorphisms). Let {M,⊙M} and
{N ,⊙N } be two Lie groups. A smooth map f(·) :
{M,⊙M} → {N ,⊙N } forms a Lie group homomorphism
if it preserves the group structure:

f(x⊙M y) = f(x)⊙N f(y), ∀x, y ∈M. (1)

Next, we briefly review the manifolds of full-rank correla-
tion matrices. Any correlation matrix is derived by nor-
malizing the covariance matrix with its variances. Let X
be a random variable with an invertible covariance matrix
P = (Cov(Xi, Xj))1≤i,j≤n, the corresponding correlation
matrix C is defined as:

C = Cor(P ) = Diag(P )−
1
2P Diag(P )−

1
2 , (2)

where Diag(P ) is the diagonal matrix of P . The set of all
full-rank correlation matrices is denoted as Cn++.

Recent studies have discovered that Cn++ has a smooth struc-
ture and developed several different Riemannian metrics
[David and Gu, 2019; Thanwerdas, 2024] over it. This pa-
per focuses on two permutation-invariant and simple metrics,
which are the OLM and LSM [Thanwerdas, 2024]. Here, the
permutation-invariant property ensures that the analysis is un-
affected by arbitrary choices in ordering. In the following, we
first introduce four key maps (diffeomorphisms) used to con-
struct these metrics. Wherein, the OLM is associated with the
two maps given below:{

Logo : C ∈ Cn
++ 7→ Off (mlog(C)) ∈ Hol(n),

Expo : S ∈ Hol(n) 7→ mexp (S +Do(S)) ∈ Cn
++,

(3)

where mlog(·) and mexp(·) denote the matrix logarithm and
exponential, Hol(n) = {X ∈ Rn×n | X = X⊤,Diag(X) =
0}, while Off(X) denotes the off-diagonal part of X . As
demonstrated by [Archakov and Hansen, 2021][Sec. 3.3],
Do(S) is a diagonal matrix satisfying

mlog (Diag (mexp(S +Do(S)))) = 0. (4)
This can be solved via the fixed-point iteration.

The following two maps are associated with LSM:{
Log⋆ : C ∈ Cn

++ 7→ mlog (D⋆(C)CD⋆(C)) ∈ Row0(n),

Exp⋆ : S ∈ Row0(n) 7→ Cor (mexp(S)) ∈ Cn
++.

(5)
Here, Row0(n) = {X ∈ Rn×n | X = X⊤, X1 = 0} and
1 ∈ Rn is a vector of all ones. The diagonal matrix D⋆(C) is
the unique zero of

f : x ∈ Rn
++ 7→ Cx− 1

x
, (6)

where x represents a positive vector and 1
x =

(
1
x1
, . . . , 1

xn

)
.

Eq. (6) can be solved via the damped Newton’s method
[Thanwerdas, 2024][Sec. 3.5].

Actually, the OLM is induced from Hol(n) via the map
Logo(·), while LSM is induced from Row0(n) via the map
Log⋆(·). Additionally, as demonstrated by [Thanwerdas,
2024], both correlation manifolds form Lie groups under
OLM and LSM. The geodesic distances and group operations
for these two metrics are summarized in Tab. 1.
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Metric d(C1, C2) Group operation ⊙
OLM ∥Logo(C1)− Logo(C2)∥F Expo (Logo(C1) + Logo(C2))
LSM ∥Log⋆(C1)− Log⋆(C2)∥F Exp⋆ (Log⋆(C1) + Log⋆(C2))

Table 1: Summary of the geodesic distances and group operations
under OLM and LSM.

3 Proposed Method
In this section, we provide the technical details of the pro-
posed attention mechanism for full-rank correlation matrices.
To be specific, we first introduce the main framework of the
suggested correlation attention mechanism in Sec. 3.1. This
is followed by the specific implementations under OLM and
LSM in Secs. 3.2 and 3.3, respectively. Finally, the classifica-
tion method defined on the Correlation manifolds is detailed
in Sec. 3.4.

3.1 Correlation Attention Mechanism
This section showcases how to leverage the correlation matrix
geometry to generalize the core operations of transformation
mapping, attention computation, and feature aggregation.
Correlation Transformations. In the Euclidean attention
mechanism, the linear map Linear(·) : Rn → Rm is com-
monly employed to generate qi, ki, and vi. This transfor-
mation preserves the vector space structure, as shown by the
following property:

Linear(x1 + x2) = Linear(x1) + Linear(x2). (7)

This indicates that the transformation is a homomorphism
over vector spaces. Since correlation matrices lie in a man-
ifold with non-Euclidean geometry, directly applying lin-
ear transformations will compromise their inherent geometric
properties. However, the Lie group homomorphism (Def. 2.2)
generalizes this concept from vector spaces to Lie groups.
Therefore, it appears to be a possible and natural choice to
define transformation layer on the Correlation manifold us-
ing Lie homomorphism hom(·).
Correlation Attention. Let Xi, Qi,Ki, Vi, Ri be the input
correlation matrices, queries, keys, values, and output data,
respectively. One of the key ideas in attention is to compute
the similarity-based score between Qi and Kj for each pair
of {Vi, Vj}. In contrast to the commonly used dot product
for vectors, the most natural way to compute the similarity
between Correlation manifold-valued points is the utilization
of geodesic distance. However, a function is needed to map
the computed geodesic distance into a valid form, as higher
similarity corresponds to smaller distance. Specifically, given
that both Qi and Kj reside on the Correlation manifolds, the
attention weight is computed by:

Aij = Softmax
(
(1 + log(1 + d(Qi,Kj)))

−1
)
, (8)

where d(Qi,Kj) represents the geodesic distance between
the correlation matrices as shown in Tab. 1.
Correlation Aggregation. Corresponding to the weighted
average in Euclidean space, the WFM is a principled math-
ematical tool for feature aggregation in manifolds [Karcher,

Algorithm 1: Cor Attention (CorAtt) over full-rank cor-
relation matrix manifolds
Input : A set of correlation matrices {X1...N}
Output : A set of correlation matrices {R1...N}
for i← 1 to N do

Queries: Qi = hom(Xi)
Keys: Ki = hom(Xi)
Values: Vi = hom(Xi)

end
for i← 1 to N do

for j ← 1 to N do
Sij = (1 + log(1 + d(Qi,Kj)))

−1

end
Attention weight: Aij = Softmax(Sij)
Aggregation: Ri = WFM({Aij}Nj=1, {Vj}Nj=1)

end

1977; Ginestet et al., 2012]. It minimizes the weighted sum
of squared geodesic distances. Given the geodesic distance
d(·, ·) , a set of points Pi...N ∈M, and the correspond-
ing weights {w1...N} that satisfy the convexity constraint,
i.e.,∀i, wi > 0 and

∑
i wi = 1, the WFM is defined as:

WFM({wi}, {Pi}) = argmin
G∈M

∑N

i=1
wi d

2 (Pi, G) . (9)

With the computed attention matrix A and a set of values
{Vi...N ∈ Cn++}, the i-th aggregated output Ri ∈ Cn++ in the
built correlation attention model is formulated as:

Ri = WFM({Aij}j=1...N , {Vj}j=1...N ). (10)

With these basic components in place, we summarize the for-
ward pass of the proposed attention mechanism on the Corre-
lation manifolds in Alg. 1.

3.2 Correlation Attention Based on OLM
This section details the implementation of Alg. 1 under OLM.
While the geodesic distance for similarity computation is
summarized in Tab. 1, we focus here on deriving the expres-
sions for the Lie group homomorphism and the WFM. By
defining the group operation ⊙ol for OLM, we present the
expression for the Lie group homomorphism over the Corre-
lation manifolds as follows:
Theorem 3.1 (OLM Lie Homomorphism). For any C ∈
{Cn++,⊙ol}, and M ∈ Rn×m. The transformation mapping
homol(·) : {Cn++,⊙ol} → {Cm++,⊙ol} is defined as:

homol(C) = Expo
(
Off

(
M⊤ Logo(C)M

))
. (11)

It can be proved that homol(·) is a Lie group homomorphism.

Proof. The proof is presented in App. C.1

As discussed in [Thanwerdas, 2024], the Correlation man-
ifold enjoys closed-form expressions of Fréchet mean under
OLM. For attention computation, we present a more general
version, the WFM under OLM.
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Theorem 3.2 (The WFM under OLM). For C1...N ∈ Cn++,
w1...N > 0 satisfying

∑
i wi = 1, the expression of WFM has

a closed form shown below:

G = Expo
(∑N

i=1
wi Log

o(Ci)

)
. (12)

Proof. The proof is given in App. C.2.

It is evident that G corresponds to the OLM-based Fréchet
mean, when wi =

1
N for all i in Eq. (12).

3.3 Correlation Attention Based on LSM
Similarly, we derive the expressions for the Lie group ho-
momorphism and the WFM over the Correlation manifolds
under LSM.
Theorem 3.3 (LSM Lie Homomorphism). For any C ∈
{Cn++,⊙ls}, and M ∈ Rn×m, the transformation mapping
homls(·) : {Cn++,⊙ls} → {Cm++,⊙ls} is formulated as:

homls(C) = Exp⋆
(
ϕ
(
M⊤ Log⋆(C)M

))
, (13)

where⊙ls denotes the LSM-based group operation and ϕ(X)
is expressed as:

ϕ(X) = X − diag (X1) . (14)

Wherein, diag(·) creates a diagonal matrix from a vector. We
can prove that homls(·) is a Lie group homomorphism.

Proof. The proof is presented in App. C.3.

Under LSM, the WFM has a closed-form expression.
Theorem 3.4 (The WFM under LSM). For C1...N ∈ Cn++,
w1...N > 0 satisfying

∑
i wi = 1, the WFM under LSM can

be described as:

G = Exp⋆
(∑N

i=1
wi Log

⋆(Ci)

)
, (15)

Proof. The proof is presented in App. C.4

When ∀i, wi = 1
N in Eq. (15), G corresponds to the LSM-

based Fréchet mean, as indicated by [Thanwerdas, 2024].

3.4 Classification
This section presents the design of the classification layer on
the Correlation manifolds. Since the underlying space of the
correlation matrices is a non-Euclidean manifold, a manifold-
to-Euclidean embedding mapping is required to convert the
learned manifold data into the corresponding Euclidean rep-
resentation. To this end, the tangent mapping layer is de-
signed to project the refined correlation matrices onto the tan-
gent space of the Correlation manifold at the identity matrix
using the Riemannian logarithm function. With the follow-
ing two propositions, the tangent mapping operations under
OLM and LSM can be defined.

Proposition 3.5. For any C ∈ Cn++, the OLM-based Rie-
mannian logarithm at the identity matrix LogolIn(C) can be
formulated as:

LogolIn(C) = Off (mlog(C)) . (16)

Proof. The proof is detailed in App. C.5.

Proposition 3.6. For any C ∈ Cn++, the LSM-based Rieman-
nian logarithm at the identity matrix LoglsIn(C) can be ex-
pressed as:

LoglsIn(C) = Off (Log⋆(C)) . (17)

Proof. The proof is presented in App. C.6.

Now, the tangent mapping operations under OLM and LSM
are defined by Eqs. (16) and (17), respectively.

Since each output of the tangent mapping layer is a symmet-
ric matrix with all zeros on the main diagonal, we extract its
strictly lower triangular part, vectorize it, and concatenate all
vectors w.r.t the i-th input data. The obtained data points are
then passed through a fully connected (FC) layer, followed by
a Softmax function for the final classification.

4 Experiments
This section tests the proposed CorAtt in two specific forms,
called CorAtt-OLM and CorAtt-LSM. To ensure a compre-
hensive assessment, we apply the two models to three typical
BCI tasks, which are the Mental Imagery (MI) decoding on
the BCIC-IV-2a dataset [Brunner et al., 2008], Steady-State
Visual Evoked Potential (SSVEP) decoding on the MAMEM-
SSVEP-II dataset [Nikolopoulos, 2016], and Error-Related
Negativity (ERN) decoding on the BCI-ERN dataset [Mar-
gaux et al., 2012]. For comparison, the following state-of-
the-art (SOTA) deep learning methods are included: Shallow-
ConvNet [Schirrmeister et al., 2017], EEGNet [Lawhern et
al., 2018], SCCNet [Wei et al., 2019], MBEEGSE [Altuwai-
jri et al., 2022], TCNet-Fusion [Musallam et al., 2021], and
FBCNet [Mane et al., 2021]. In addition, we incorporate sev-
eral representative geometric deep learning models, such as
SPDNet [Huang and Van Gool, 2017], SPDNetBN [Brooks
et al., 2019], MAtt [Pan et al., 2022], and GDLNet [Wang
et al., 2024a], to provide a more convincing comparison. All
experiments were conducted on an i9-14900 CPU with 64GB
RAM and two NVIDIA RTX4080 Super GPUs.

Motor Imagery. The BCIC-IV-2a dataset [Brunner et al.,
2008] is a widely recognized public EEG resource, contain-
ing signals from 9 subjects performing a four-class motor im-
agery task. Each subject completed two sessions, with each
trial involving four seconds of imagined movement (right
hand, left hand, feet, or tongue). Following the protocol
in [Pan et al., 2022], the first session of BCIC-IV-2a is used
for training, reserving one-eighth of it for validation. Besides,
the performance indicator is based on classification accuracy.
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Figure 1: An overview of the proposed CorAtt architecture.

SSVEP. The MAMEM-SSVEP-II dataset [Nikolopoulos,
2016] includes EEG data from 11 subjects, each contributing
five sessions. In each session, subjects focused on a 5-second
visual stimulus oscillating at one of five frequencies: 6.66,
7.50, 8.57, 10.00, or 12.00 Hz. Each subject completed five
trials, one for each frequency, yielding 100 trials per session.
Each trial lasted between 1 to 5 seconds after the prompt, di-
vided into four one-second segments. Following the protocol
in [Pan et al., 2022], we train on the first four sessions, with
session 4 used for validation, and tested on the fifth session.

ERN. The BCI-ERN dataset [Margaux et al., 2012] origi-
nates from a Kaggle BCI Challenge and contains recordings
from 26 subjects who participated in a P300-based spelling
task. ERN was measured in response to mistakes made by
the BCI speller, leading to a binary, imbalanced classifica-
tion problem, as correct inputs significantly outnumber er-
roneous ones. Following the criterion in [Pan et al., 2022;
Wang et al., 2024a], we adopt the same dataset partitioning
as in the MAMEM-SSVEP-II dataset and employ the Area
Under the Curve (AUC) to measure the model performance.

4.1 Proposed Network

Block MI MAMEM ERN

Input data 1× 22× 438 1× 8× 125 1× 56× 160
SpatConv 22× 1× 438 125× 1× 125 14× 1× 160
SpatTempConv 20× 1× 439 15× 1× 126 42× 1× 161
Split & Correlation 3× 20× 20 7× 15× 15 3× 14× 14
Correlation Attention 3× 20× 20 7× 15× 15 3× 14× 14
Tangent mapping 3× 20× 20 7× 15× 15 3× 14× 14
Vectorization 570 735 273
FC + Softmax 4 5 2

Table 2: CorAtt architectures across three datasets. Where Spat-
Conv and SpatTempConv denote spatial and spatiotemporal convo-
lution layers. The attention block represents the Correlation Atten-
tion block under the corresponding metric.

Network Architecture. As shown in Fig. 1, the architec-
ture of the proposed CorAtt consists of four main compo-
nents: a Feature Extraction Module (FEM), a Manifold Mod-
eling Module (MMM), a Correlation Attention Module, and
a classification module. We follow [Wei et al., 2019] to make
the FEM contain two convolutional layers: one for apply-
ing spatial filtering to the multi-channel EEG signals and the
other for extracting spatiotemporal features. The MMM is
applied to split and transform data points onto the Correla-
tion manifold. We impose segmentation on the output data
of FEM, generating s non-overlapping subparts. Then, a cor-
relation matrix is computed for each subpart using Eq. (2).

Models MI SSVEP ERN
EEGNet 61.84 ± 6.39 53.72 ± 7.23 74.28 ± 2.47
ShallowCNet 57.43 ± 6.25 56.93 ± 6.97 71.86 ± 2.64
SCCNet 71.95 ± 5.05 62.11 ± 7.70 70.93 ± 2.31
FBCNet 56.52 ± 3.07 53.09 ± 5.67 60.47 ± 3.06
TCNet-Fusion 71.45 ± 4.45 45.00 ± 6.45 70.46 ± 2.94
MBEEGSE 64.58 ± 6.07 56.45 ± 7.27 75.46 ± 2.34

SPDNet 72.93 ± 4.33 62.30 ± 3.12 72.05 ± 4.43
SPDNetBN 73.02 ± 3.67 62.76 ± 3.01 72.34 ± 3.46
MAtt 74.71 ± 5.01 65.19 ± 3.14 75.68 ± 2.23
GDLNet 69.32 ± 2.89 65.52 ± 2.86 78.23 ± 2.52

CorAtt-OLM 75.01 ± 2.78 67.39 ± 3.22 78.78 ± 3.40
CorAtt-LSM 74.47 ± 2.43 67.74 ± 2.44 78.63 ± 3.31
CorAtt-MIX 75.56 ± 1.58 68.27 ± 2.50 79.04 ± 2.91

Table 3: Average performance (± standard deviation) over 10 runs,
comparing CorAtt with SOTA methods on three EEG datasets.
CorAtt-MIX indicates that the Attention Block and Tangent Map-
ping use different metrics. The best three results are highlighted
with red, blue, cyan.

This is followed by utilizing the correlation attention block, as
shown in Alg. 1, to capture the long-range dependencies be-
tween different features on the Correlation manifold. where-
after, the classification layer (introduced in Sec. 3.4), incor-
porated with FC & Softmax, to realize EEG classification.
Implementation Details. Considering that orthogonal con-
straint can serve as an implicit regularization to improve
the network’s generalization [Lezcano-Casado and Martınez-
Rubio, 2019], we impose orthogonality on M in both
homol(·) and homls(·). As orthogonal matrices lie in spe-
cial orthogonal groups, their optimization requires a Rieman-
nian optimizer, which we implement by generating a param-
eter A ∈ Rn×n and computing its skew-symmetric matrix as
S = A − A⊤. Under this parameterization, the orthogonal
matrix O can be obtained by:

O = (In − S) (In + S)
−1

. (18)

This approach optimizes all parameters within Euclidean
spaces. For the BCIC-IV-2a dataset, the number of subparts,
the size of the transformation matrix in CorAtt, the learning
rate, and the batch size are respectively set to 3, 25×25, 5e−4,
and 128, while those for the MAMEM-SSVEP-II dataset are
configured as 7, 15× 15, 5e−3, and 64, respectively. In com-
parison, these values are respectively set to 3, 14× 14, 1e−3,
and 32 on the BCI-ERN dataset. For convenience, we sum-
marize the specific network configurations of CorAtt across
all the used datasets in Tab. 2.

4.2 Performance Comparison
Tab. 3 lists the experimental results of CorAtts and the se-
lected competitors on the three used EEG datasets. Here,
CorAtt-OLM and -LSM represent a unified metric for both
the Attention Block and Tangent Mapping layers (OLM and
LSM, respectively), whereas CorAtt-MIX adopts different
metrics, specifically OLM for attention and LSM for classifi-
cation. Note that with identical parameter settings for CorAtt-
LSM, -OLM, and -MIX. Overall, standard deep-learning
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Figure 2: Heatmaps of CorAtt-OLM (a) and CorAtt-LSM (b) for the S11 subject across five different frequencies on the MAMEM-SSVEP-II
dataset. The x-axis and y-axis represent time and EEG channels, respectively.
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Figure 3: The diagram of electrode distribution (a) and the spatial topo-maps of CorAtt-OLM (b) and CorAtt-LSM (c) for the S11 subject
across five different frequencies on the SSVEP dataset. Strong gradient activations are marked in dark red.

Method MI SSVEP ERN
FEM 26.32 ± 0.92 20.33 ± 1.28 73.27 ± 2.87
Attention-OLM 56.67 ± 0.83 29.04 ± 2.51 58.77 ± 3.24
Attention-LSM 57.32 ± 0.97 29.63 ± 2.79 59.03 ± 3.76
FEM+ESA 49.32 ± 5.43 22.92 ± 2.13 64.32 ± 1.81

CorAtt-OLM 75.01 ± 2.78 67.39 ± 3.22 78.78 ± 3.40
CorAtt-LSM 74.47 ± 2.43 67.74 ± 2.44 78.63 ± 3.31

Table 4: Ablations of CorAtt components ( ten-fold mean ± std)
across all three datasets.

models (EEGNet, ShallowCNet) exhibit relatively lower ac-
curacy than geometry-based approaches (MAtt, GDLNet).
CorAtt-MIX achieves the highest performance across all
three tasks. This suggests that employing different metrics
between attention and classification layers can more effec-
tively adapt the geometric properties of correlation matrices,
further demonstrating the flexibility and effectiveness of the
proposed approach. Meanwhile, CorAtt-OLM and CorAtt-
LSM consistently outperform MAtt, showing gains of ap-
proximately 0.30% and 0.24% on the MI dataset, 2.20% and
2.55% on SSVEP, and 3.10% and 2.95% on ERN. We at-
tribute this performance gap between CorAtt and MAtt to two
key factors: (1) CorAtt focuses on correlation matrix model-
ing, inherently addressing scale-invariant features of signals;
(2) CorAtt transformation layer preserves the Lie group struc-
ture of Correlation manifolds, providing a more natural exten-
sion of attention mechanisms to non-Euclidean geometries.

TanMap Att Metric MI SSVEP ERN
w/o OLM 68.55 ± 2.85 63.75 ± 2.88 71.17 ± 4.41

OLM OLM 75.01 ± 2.78 67.39 ± 3.22 78.78 ± 3.40
LSM OLM 75.56 ± 1.58 68.27 ± 2.50 79.04 ± 2.91
w/o LSM 64.51 ± 2.89 62.49 ± 3.01 70.63 ± 4.76

OLM LSM 71.13 ± 1.78 67.37 ± 3.00 76.77 ± 2.63
LSM LSM 74.47 ± 2.43 67.74 ± 2.44 78.63 ± 3.31

Table 5: Ablations of Tangent Mapping ( ten-fold mean ± std)
across all three datasets, where TanMap denotes the tangent map-
ping, Att Metric is the metric of Attention block.

4.3 Ablations
Ablations of the main components. As shown in Tab. 4,
removing any module from the proposed CorAtts signifi-
cantly drops the classification accuracy, confirming that all
the components are essential. The fourth row in Tab. 4 reports
the performance of FEM combined with a Euclidean self-
attention (ESA) module. The comparison between CorAtts
and FEM+ESA highlights the necessity of incorporating Rie-
mannian computations into manifold attention design.
Ablations of the tangent mapping layers. In this subsec-
tion, we investigate the impact of the tangent mapping layer
on the classification performance of the proposed CorAtt.
From Tab. 5, it is evident that when the tangent mapping
layer is omitted, the learning ability of CorAtt significantly
drops. For example, the accuracy of CorAtt-LSM decreased
by 9.94%, 5.25%, and 8.00% on the MI, SSVEP, and ERN

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

0.0 0.3125 0.625 0.9375 1.25 0.0 0.3125 0.625 0.9375 1.25

0.0 0.3125 0.625 0.9375 1.25

Time Time

TimeTime

Correct

Correct

Error

Error

(a) (b)

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0.0 0.3125 0.625 0.9375 1.25

1

FCz

56

1

FCz

56

1

FCz

56

1

FCz

56

Figure 4: Heatmaps of CorAtt-OLM (a) and CorAtt-LSM (b) for
two classes on the BCI-ERN datasets. The x-axis represents time,
and the y-axis represents EEG channels.

Number Metric MI SSVEP ERN
1 OLM 75.01 ± 2.78 67.39 ± 3.22 78.78 ± 3.40
1 LSM 74.47 ± 2.43 67.74 ± 2.44 78.63 ± 3.31

2 OLM 75.12 ± 2.69 67.48 ± 2.95 78.94 ± 2.93
2 LSM 74.48 ± 1.76 67.76 ± 2.75 77.97 ± 2.71

3 OLM 74.40 ± 2.55 68.10 ± 2.55 78.76 ± 2.67
3 LSM 73.43 ± 2.64 67.00 ± 2.86 77.06 ± 3.09

Table 6: Ablations of Number of Attention Blocks. ( ten-fold mean
± std) across all three datasets.

datasets, respectively. Furthermore, when the attention block
is equipped with OLM and the classification layer is realized
by LSM, CorAtt consistently achieves the highest accuracy
on all the used datasets. This suggests that selecting appro-
priate Riemannian metrics for different layers is beneficial to
enhancing performance, further revealing the flexibility and
adaptability of our method.

Ablations for the number of attention blocks. We inves-
tigate the impact of using one, two, or three correlation atten-
tion blocks under both OLM and LSM. As shown in Tab. 6,
two blocks occasionally offer slight gains (e.g., OLM for MI
and ERN), but three blocks generally degrade performance
(e.g., OLM for MI and LSM for all tasks). Notably, three
blocks yield a marginal improvement in the SSVEP task un-
der OLM yet produce an overall decline in accuracy for MI
and ERN. This suggests that a single correlation attention
block is sufficient for low-dimensional EEG data.

4.4 EEG Model Interpretation
For the MAMEM-SSVEP-II dataset, as shown in Figs. 2
and 3, across five stimulus frequencies, both CorAtt-OLM
and CorAtt-LSM primarily exhibit heightened gradient re-

Correct

ErrorError

Correct

Electrodes

(a) (c)

(b)

Figure 5: (a) and (c) display the visualization results of CorAtt-OLM
and CorAtt-LSM on the BCI-ERN datasets S7 model, respectively,
while (b) presents a diagram of the electrode distribution.

sponses around the Oz electrode. These responses appear
most prominently between 0.25 and 0.75 seconds, indicat-
ing the crucial role of Oz in the visual cortex. Such findings
are highly consistent with existing literature on the correlation
between SSVEP and Oz in EEG recordings [Herrmann, 2001;
Han et al., 2018], likely due to the electrode’s central location
in the primary visual cortex, resulting in more pronounced in-
duced potentials and an improved signal-to-noise ratio.

As shown in Figs. 4 and 5, for the BCI-ERN dataset, gradient
responses for distinguishing ‘correct’ versus ‘error’ trials pre-
dominantly centre around the FCz. This observation aligns
with substantial empirical evidence that the anterior cingulate
cortex, a central medial prefrontal cortex region connected
to limbic and frontal areas, underlies ERN generation. The
consistent gradient responses for both feedback types around
the FCz electrode should be noted, particularly in the 0.1
to 0.4-second interval. These findings strongly corroborate
the differences in ERP waveforms between correct and incor-
rect stimuli reported by [Hajcak, 2012]. For the BCIC-IV-2a
dataset, please refer to our App. A.

5 Conclusion
This paper proposes the correlation attention mechanism,
which generalizes the Euclidean paradigm to the context of
Correlation manifolds. Besides, we define the tangent map-
ping operations for classification over the Correlation mani-
folds under two Riemannian metrics. Extensive experimental
results achieved on three EEG datasets certify the effective-
ness and versatility of the proposed CorAtt. In summary, this
is the first work to design a deep learning model (attention
model in this article) on the Correlation manifolds to the best
of our knowledge. The exploration of CorAtt is expected to
help the emergence of more geometric deep learning methods
for the correlation matrices in the future.
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Daligault Sébastien, Bertrand Olivier, and Mattout
Jérémie. Objective and subjective evaluation of online
error correction during P300-based spelling. Adv. Hum-
Comput. Interact., 2012.

[Müller et al., 2007] Meinard Müller, Tido Röder, Michael
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