
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

EFX Feasible Scheduling for Time-dependent Resources

Jiazhu Fang1 , Qizhi Fang1,2 , Minming Li3∗ and Wenjing Liu1,2

1 School of Mathematical Sciences, Ocean University of China, Qingdao, Shandong, China.
2 Laboratory of Marine Mathematics, Ocean University of China, Qingdao, Shandong, China.

3 Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
fjz@stu.ouc.edu.cn, qfang@ouc.edu.cn, minming.li@cityu.edu.hk, liuwj@ouc.edu.cn

Abstract
In this paper, we study a fair resource scheduling
problem involving the assignment of a set of inter-
val jobs among a group of heterogeneous machines.
Each job is associated with a release time, a dead-
line, and a processing time. A machine can process
a job if the entire processing period falls within the
release time and deadline of the job. Each machine
can process at most one job at any given time, and
different jobs yield different utilities for the ma-
chine. The goal is to find a fair and efficient sched-
ule of the jobs. We discuss the compatibility be-
tween envy-freeness up to any item (EFX) and var-
ious efficiency concepts. Additionally, we present
polynomial-time algorithms for various settings.

1 Introduction
The fair division problem aims to address how to allocate lim-
ited resources among multiple agents with individual pref-
erences in a manner that is both fair and efficient. Clas-
sical literature on fair division primarily focuses on divis-
ible resources [Deng et al., 2012; Aziz and Mackenzie,
2016]. Recently, the fair division of indivisible resources
has gained significant attention, where resources must be in-
tegrally allocated to agents. This has become an important
research area in economics, operations research, and com-
puter science [Brams and Taylor, 1996; Brandt et al., 2016;
Moulin, 2019]. It has numerous real-world applications, such
as the fair division of courses [Budish et al., 2017], public
housing [Benabbou et al., 2020], food donations [Aleksan-
drov et al., 2015], and inheritance [Goldman and Procaccia,
2015].

An important fairness concept in fair division is envy-
freeness (EF) [Varian, 1974], which requires that no agent
prefers another agent’s bundle over their own. However, EF
allocation does not always exist for indivisible resources. For
example, if there is only one resource and two agents, an
EF allocation cannot be achieved. A significant relaxation
of EF is the concept of envy-freeness up to one item (EF1)
[Richard et al., 2004], which allows for envy between two
agents as long as there exists an item in the envied agent’s

∗Corresponding Authors.

bundle that, when removed, can eliminate the envy. [Cara-
giannis et al., 2019b] proposed another notable fairness con-
cept, envy-freeness up to any good (EFX), which balances
between the stronger concept of EF and the weaker concept
of EF1. EFX assumes that removing any positive value item
from the envied agent’s bundle can eliminate the envy. Unlike
the universal existence of EF1, the existence of EFX alloca-
tions remains uncertain. Indeed, establishing the existence of
EFX allocations is widely regarded as one of the core open
problems in the fair division of indivisible resources.

In addition to fairness requirements, resource allocators
also seek efficient allocations. A commonly used efficiency
criterion is Pareto optimality (PO), where an allocation is
Pareto optimal if no other allocation can make someone bet-
ter off without making someone else worse off. [Caragian-
nis et al., 2019b] analyzed the properties of allocations that
maximize Nash social welfare (MaxNSW) and demonstrated
that for additive valuation functions, there exist MaxNSW
allocations that satisfy both EF1 and PO, where Nash so-
cial welfare is defined as the geometric mean of all agents’
valuations [Kaneko and Nakamura, 1979]. However, since
computing a MaxNSW allocation is NP-hard, this result only
establishes the existence of EF1+PO allocations. Conse-
quently, extensive research has aimed to design algorithms
that can simultaneously optimize both fairness and efficiency
[Barman et al., 2018a; Barman and Krishnamurthy, 2019;
Garg and Murhekar, 2023].

In most of the literature on fair division, any subset of items
can be feasibly allocated to any agent. However, this assump-
tion is not applicable in many scenarios. For example, in the
Student Affairs Office (SAO) problem, SAO staff needs to al-
locate jobs to students applying for work, where each job has
a release time, a deadline, and a consecutive processing time
and students earn compensation by getting jobs. A feasible
job allocation requires that the jobs assigned to a student can
be scheduled without overlapping in time. Motivated by this
scenario, [Li et al., 2021] introduced the fair interval schedul-
ing problem (FISP) where a set of interval jobs is allocated to
heterogeneous machines controlled by agents. Each job is
associated with a release time, a deadline, and a processing
time, and it can be processed if its processing period falls be-
tween its release time and deadline. Each machine can only
process one job at any given time, and different machines
may derive different utilities from processing the same job.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Additionally, all jobs assigned to the same machine must be
processed without overlapping in time. They investigated the
existence and computability of approximate maximin share
fairness (MMS) and EF1 schedules.

However, the fairness guarantee of EF1, limited to the most
valuable item, is often too weak. This paper continues the
study of FISP and explores a stronger fairness concept, EFX.
It aims to investigate the computability of schedules that sat-
isfy EFX and various efficiency concepts.

1.1 Our Contribution
We study the fair interval scheduling problem (FISP), where
fairness is captured by EFX. We also consider several effi-
ciency concepts: MaxNSW, PO, and Weakly Individual Op-
timal (WIO).

Our main contributions are summarized as follows.
EFX + MaxNSW + PO. We first consider binary valuation
functions, where agents’ valuations for jobs are restricted to
1 or 0. We explore the characteristics of MaxNSW sched-
ules, focusing on fairness guarantees (approximate EFX) and
efficiency guarantees (PO).

Main Result 1: For any instance of FISP with binary val-
uations, there exists a MaxNSW schedule that is 1

2 -EFX and
PO. Additionally, there exist instances where no MaxNSW
schedule can guarantee (12 + ε)-EFX for any ε > 0.

Main Result 2: For any instance of FISP with binary val-
uations and jobs with unit processing times, there exists a
MaxNSW schedule that is EFX and PO, and it can be com-
puted in polynomial time.

Next, we find that under general valuation functions, the
approximation guarantee of EFX is related to the non-zero
range parameter γ, defined as the ratio of the maximum valu-
ation to the minimum non-zero valuation among all agents.

Main Result 3: For any instance of FISP, there exists a
MaxNSW schedule that is 1

γ2 -EFX and PO. When all jobs
have unit processing times, there exists a MaxNSW schedule
that is 1

γ+1 -EFX and PO. Additionally, in both settings, there
exist instances where no MaxNSW schedule can guarantee
(1γ + ε)-EFX for any ε > 0.

EFX + WIO. [Li et al., 2021] proved the incompatibility
between Individual Optimal (IO) (no one envies the union of
their assigned jobs and the unassigned jobs) and EF1, even
for FISP with identical valuation functions. This implies
that IO is also incompatible with the stronger fairness con-
cept, EFX. Therefore, we consider the relaxed version of IO,
known as WIO, which means that no one envies the unas-
signed jobs. We first provide an algorithm framework demon-
strating the compatibility between WIO and EFX for all in-
stances of FISP. Then, we show that finding a WIO schedule
is NP-hard. Finally, we present a polynomial-time algorithm
that approximates both EFX and WIO.

Main Result 4: There exists an algorithm that can return
a feasible schedule that is both EFX and WIO for all FISP
instances.

Main Result 5: For any 0 < ε < 1, there exists a
polynomial-time algorithm that can return a feasible schedule
that is both 0.644(1 − ε)-EFX and 0.644-WIO for all FISP
instances. The running time is polynomial in |J |, |A|, and

1
ε , where |J | is the number of jobs and |A| is the number of
agents.

1.2 Related Work
The scheduling problem. [Johnson and Garey, 1979]
showed that computing the maximum feasible set of jobs is
NP-hard. Subsequently, various approximation algorithms
have been proposed [Chuzhoy et al., 2006; Berman and Das-
Gupta, 2000], with the currently best-known approximation
ratio being 0.644 [Im et al., 2020]. For instances with rigid
jobs, [Schrijver, 1998] provided a polynomial-time algorithm
to solve the problem. Various fairness criteria have also been
proposed, including minimizing the maximum deviation from
a desired load [Ajtai et al., 1998], minimizing the ℓp norm of
flow time [Im et al., 2020], and analyzing the welfare degra-
dation resulting from the imposition of fairness constraints
[Bilò et al., 2016].

EFX + MaxNSW/PO. We primarily review the literature
on the compatibility of EFX with various efficiency concepts.
For binary additive valuations, any MaxNSW allocation is
EFX [Amanatidis et al., 2021]. [Garg and Murhekar, 2023]
showed that for instances with binary additive valuations,
EFX and PO allocations can be computed in polynomial time,
but for instances with three distinct values, EFX and PO are
incompatible. [Babaioff et al., 2021] proved that under sub-
modular and dichotomous valuations, any MaxNSW alloca-
tion is EFX. [Caragiannis et al., 2019a] proved that under ad-
ditive valuation functions, there exist partial allocations that
are EFX and 1

2 -MaxNSW (where some items may remain un-
allocated). [Garg et al., 2023] showed that even under sub-
additive valuation functions, there exist complete allocations
that are 1

2 -EFX and 1
2 -MaxNSW. [Feldman et al., 2024] pro-

vided optimal trade-offs between EFX and MaxNSW for ad-
ditive and subadditive valuation functions. [Dai et al., 2024]
investigated the relationship between EFX and MaxNSW
under budget constraints, proving that for binary valuation
functions, MaxNSW can guarantee 1

4 -EFX and PO. How-
ever, even under unconstrained additive valuations, comput-
ing a MaxNSW allocation is NP-hard [Ramezani and En-
driss, 2010]. [Barman et al., 2018b] showed that for binary
additive valuations, a MaxNSW allocation that is both EFX
and PO can be found in polynomial time. [Benabbou et al.,
2021] proved that for matroid rank functions, MaxNSW can
be found in polynomial time.

The most relevant works to ours are [Li et al., 2021] and
[Kumar et al., 2024]. [Li et al., 2021] proposed the fair inter-
val scheduling problem, and investigated fairness concepts of
MMS and EF1. They showed that any MaxNSW schedule is
1
4 -EF1 and PO, and for jobs with unit processing times, it is
1
2 -EF1 and PO. They also introduced the efficiency concept of
individual optimality (IO), and considered the compatibility
of EF1 and IO. When switching EF1 to EFX, IO is difficult
to achieve. Therefore, we consider a relaxed version of IO,
known as weakly individual optimality (WIO), which is re-
ferred to as bounded charity in some literature [Barman et
al., 2023]. [Kumar et al., 2024] considered the fair interval
scheduling problem for indivisible chores by constructing in-
terval graphs and studying the existence and computability of

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

schedules that are both EF1 and maximal.

2 Preliminaries
2.1 Fair Interval Scheduling Problem
Problem instance. We follow the notation used by [Li
et al., 2021]. An instance I of the fair interval schedul-
ing problem (FISP) is given by a tuple (J,A,uA), where
J = {j1, . . . , jn} represents a set of n indivisible jobs and
A = {a1, . . . , am} is a set of m agents (machines). The
timeline consists of disjoint unit time slots [0, 1), [1, 2), [2, 3),
and so on. For any t ∈ N+, let [t, t + 1) denote the t-th time
slot. Each ji ∈ J is associated with release time ri ∈ N+,
deadline di ∈ N+, and processing time pi ∈ N+ such that
pi ≤ di − ri + 1. We refer to [ri, di] as a job interval, which
can be viewed as a set of contiguous time slots from ri to di,
denoted as {ri, . . . , di}. If pi contiguous time slots within
[ri, di] are allocated to job ji, then job ji can be successfully
processed. An agent can process at most one job in any given
time slot. A set of jobs J ′ ⊆ J is called feasible if all jobs in
J ′ can be processed on a single machine without overlapping.
Define ui : 2J → R≥0 as the valuation function of agent
ai ∈ A, and uA = {u1, . . . , um} as the valuation profile
of the m agents. We call these ui(·) interval scheduling (IS)
functions. For a job jk ∈ J , if jk is successfully processed by
agent ai, then agent ai receives a utility ui({jk}) ≥ 0. For
simplicity, denote ui({jk}) as ui(jk). For a feasible job set S,
the utility of agent ai is additive, i.e., ui(S) =

∑
jk∈S ui(jk).

For any infeasible job set S, the utility of agent ai is the max-
imum value obtainable by processing a feasible subset of S,
i.e.,

ui(S) = max
S′⊆S:S′ is feasible

∑
jk∈S′

ui(jk).

Non-zero range parameter. Part of our approximation
guarantees for the fairness concept is related to the non-
zero range parameter γ ≥ 1, which depends on the range
of non-zero valuations. Formally, for any given instance
I = (J,A,uA), the non-zero range parameter is defined as

γ :=
maxai∈A,jk∈J ui(jk)

minjk∈J,ai:ui(jk)>0 ui(jk)
.

Schedule (Allocation). A schedule X = (X1, · · · , Xm) is
defined as an ordered m-partition of a subset of J , where Xi

is the set of jobs (or bundle) assigned to agent ai. Thus, we
have X1 ∪ · · · ∪ Xm ⊆ J and Xi ∩ Xj = ∅ for every pair
of agents ai, aj ∈ A. Let X0 = J\

⋃
i∈[m] Xi denote all

unscheduled jobs, which can be considered as donated to a
charity. A schedule X is called feasible if Xi is feasible for
all ai ∈ A, i.e., all jobs in Xi can be successfully processed
by ai. A schedule X is called non-wasteful if jk ∈ Xi implies
ui(jk) > 0 for all jk ∈ J, ai ∈ A, and wasteful otherwise.

Special instance class. Regarding agents’ valuations, we
consider (1) Binary: ui(jk) ∈ {0, 1} for all ai ∈ A, jk ∈ J ;
(2) Identical: ui(jk) = ur(jk) for all ai, ar ∈ A, jk ∈ J ;
(3) General: ui(jk) ≥ 0 without any restrictions. Regarding
jobs, we consider (1) Unit: pi = 1, for all ji ∈ J , i.e., all
jobs have unit processing time; (2) Rigid: ri + pi − 1 =

di, for all ji ∈ J , i.e., each job needs to occupy the entire
time interval between release time and deadline; (3) Flexible:
ri + pi − 1 ≤ di, for all ji ∈ J . Note that unit jobs may not
be rigid and rigid jobs may not be unit either. We use “FISP
with <valuation type, job type>” to denote a special instance
class of FISP.

2.2 Solution Concepts
We define the fairness and efficiency concepts considered in
this paper as follows.

Fairness Concepts
Definition 1 (α-EF1 Schedule). For 0 < α ≤ 1, a feasible
schedule X = (X1, · · · , Xm) is called α-approximate envy-
free up to one item (α-EF1) if for any two agents ai, ak ∈ A,
we have

ui(Xi) ≥ α · ui(Xk\{j}) for some j ∈ Xk.

Definition 2 (α-EFX Schedule). For 0 < α ≤ 1, a feasible
schedule X = (X1, · · · , Xm) is called α-approximate envy-
free up to any item (α-EFX) if for any two agents ai, ak ∈ A,
we have

ui(Xi) ≥ α · ui(Xk\{j}) for any j ∈ Xk.

Definition 3 (α-EFX Envy). Given a feasible schedule X =
(X1, · · · , Xm), for any two agents ai, ak ∈ A and 0 < α ≤
1, we say ai α-EFX envies ak if

ui(Xi) < α · ui(Xk\{j}) for some j ∈ Xk.

Efficiency Concepts
Definition 4 (MaxNSW Schedule). A feasible schedule X =
(X1, · · · , Xm) is called MaxNSW schedule if and only if

X ∈ argmax
X′∈F

(
m∏
i=1

ui(X
′
i))

1
m

where F is the set of all feasible schedules and X′ =
(X ′

1, · · · , X ′
m).

Definition 5 (PO Schedule). A feasible schedule X =
(X1, · · · , Xm) is called Pareto optimal (PO) if there does not
exist an alternative feasible schedule X′ = (X ′

1, · · · , X ′
m)

such that ui(X
′
i) ≥ ui(Xi) for all ai ∈ A, and uk(X

′
k) >

uk(Xk) for some ak ∈ A.

Definition 6 (α-IO Schedule [Li et al., 2021]). For 0 <
α ≤ 1, a feasible schedule X = (X1, · · · , Xm) with X0 =
J\

⋃
i∈[m] Xi is called α-approximate individual optimal (α-

IO) if ui(Xi) ≥ α · ui(X0 ∪ Xi) for all ai ∈ A. When
α = 1,X is called an IO schedule.

[Li et al., 2021] proved the incompatibility between EF1
and IO even for FISP with <Identical, Rigid>. Therefore,
we consider the relaxed version of IO, called WIO.

Definition 7 (α-WIO Schedule). For 0 < α ≤ 1, a feasible
schedule X = (X1, · · · , Xm) with X0 = J\

⋃
i∈[m] Xi is

called α-approximate weakly individual optimal (α-WIO) if
ui(Xi) ≥ α ·ui(X0) for all ai ∈ A. When α = 1,X is called
a WIO schedule.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

3 Approximately EFX and MaxNSW
Scheduling

In this section, we establish interesting connections between
EFX and MaxNSW schedules by analyzing the performance
of the non-wasteful MaxNSW schedules. We also explore the
conditions under which a schedule can be both EFX and PO.

Clearly, if an agent’s valuation for a job is 0, a natural
idea is not to assign that job to him, as doing so would not
only waste machine resources but also fail to generate any
social welfare. Therefore, we primarily concentrate on the
non-wasteful MaxNSW schedules. It is noteworthy that for
an arbitrarily wasteful schedule, we can always transfer the
0-valued jobs assigned to agents to the charity, resulting in
a non-wasteful schedule with the same Nash social welfare.
This also implies that the non-wasteful MaxNSW schedules
must exist.

3.1 <Binary, Flexible>
We first consider the relationship between EFX and the non-
wasteful MaxNSW schedules in binary valuation instances.
Our main result shows that for any binary valuation instance
I , there exists a MaxNSW schedule that is both 1

2 -EFX and
PO. Moreover, the 1

2 -approximation is the best EFX guaran-
tee achievable among all MaxNSW schedules.

The following results provide the worst-case EFX approx-
imation guaranteed by the non-wasteful MaxNSW schedules
on any instance I with MaxNSW(I) > 0. All the omitted
proofs are presented in the full version of our paper.

Theorem 1. Given an arbitrary instance I of FISP with
<Binary, Flexible>, if MaxNSW(I) > 0, then any non-
wasteful MaxNSW schedule is 1

4 -EFX and PO.

However, for an instance I with MaxNSW(I) = 0, it is
possible for a non-wasteful MaxNSW schedule to have an un-
bounded EFX approximation. We now consider the best pos-
sible EFX approximation guarantee achievable by the non-
wasteful MaxNSW schedules.

We first establish the relationship between instances where
the maximum Nash social welfare is greater than 0 and those
where the maximum Nash social welfare equals 0, allow-
ing us to focus solely on instances where MaxNSW(I) > 0
when analyzing the relationship between EFX and MaxNSW
schedules.

Lemma 1. For any FISP with <valuation type, job type>,
if for all instances I with MaxNSW(I) > 0, there exists a
non-wasteful MaxNSW schedule that is α-EFX and PO, then
for any instance I ′ with MaxNSW(I ′) = 0, there must ex-
ist a non-wasteful MaxNSW schedule that is α-EFX and PO,
where 0 < α ≤ 1.

Then, before presenting the main results of this subsection,
we provide a key lemma that guarantees the elimination of 1

2 -
EFX envy between agents for any binary valuation instance.

Lemma 2. For an arbitrary instance I with MaxNSW(I) >
0 of FISP with <Binary, Flexible> and any non-wasteful
MaxNSW schedule X = (X1, . . . , Xm), if there exist i, k ∈
[m] such that ai

1
2 -EFX envies ak, then there exist a set

T ⊂ Xi containing |Xi| − 1 jobs and a set S ⊂ Xk con-
taining 2 jobs that ai values non-zero, such that T ∪ S is
feasible.
Theorem 2. Given an arbitrary instance I of FISP with
<Binary, Flexible>, there exists a non-wasteful MaxNSW
schedule which is 1

2 -EFX and PO.

Proof. By Lemma 1, we only need to show that the conclu-
sion holds for all instances I with MaxNSW(I) > 0. The-
orem 1 has already proven that any non-wasteful MaxNSW
schedule is PO. Below, we present the procedure to find a
non-wasteful MaxNSW schedule that satisfies 1

2 -EFX.
For any non-wasteful MaxNSW schedule X =

(X1, . . . , Xm) with X0 = J\ ∪i∈[m] Xi, if X is 1
2 -

EFX, then the proof is complete. Otherwise, there must exist
i, k ∈ [m] such that ai 1

2 -EFX envies ak, i.e.,

ui(Xi) <
1

2
· ui(Xk \ {jp}), ∃jp ∈ Xk. (1)

By Lemma 2, there exist a set T ⊂ Xi containing |Xi| − 1
jobs and a set S ⊂ Xk containing 2 jobs that ai values non-
zero, such that T ∪ S is feasible for ai.

Now we construct a new schedule X′ = (X ′
1, . . . , X

′
m),

where X ′
r = Xr, ∀r ∈ [m], r ̸= i, k; X ′

i = T ∪ S; X ′
k =

Xk \S; and X ′
0 = J \

⋃
i∈[m] X

′
i . We can observe that in the

new schedule X′, the utility of ai increases by 1, the utility
of ak decreases by 2, and the utilities of other agents remain
unchanged. Specifically, ui(X

′
i) = ui(Xi) + 1, uk(X

′
k) =

uk(Xk) − 2, ur(X
′
r) = ur(Xr), ∀r ∈ [m], r ̸= i, k. Also,

since

uk(Xk) = uk(Xk \ {jp}) + 1 ≥ ui(Xk \ {jp}) + 1

≥ 2 · ui(Xi) + 2,

where the first equality and the first inequality hold due to
X being non-wasteful, and the last inequality holds due to
inequality (1) and the fact that ui(Xi \{jp}) is an integer, we
have

ui(X
′
i) · uk(X

′
k) = (ui(Xi) + 1) · (uk(Xk)− 2)

= ui(Xi) · uk(Xk) + uk(Xk)

− (2 · ui(Xi) + 2)

≥ ui(Xi) · uk(Xk).

Thus, by iterating this process, we can eliminate the 1
2 -

EFX envy between ai and ak without losing Nash social wel-
fare. In the same manner, we can eliminate 1

2 -EFX envy be-
tween any pair of agents, thereby obtaining a non-wasteful
MaxNSW schedule that satisfies 1

2 -EFX.

Remark 1. In fact, Theorem 2 provides a conversion pro-
cedure from any MaxNSW schedule to a 1

2 -EFX MaxNSW
schedule. Each step that eliminates 1

2 -EFX envy results in an
increase in the number of jobs allocated to charity, implying
that a non-wasteful MaxNSW with the maximum number of
charity jobs must be 1

2 -EFX. However, finding a MaxNSW
schedule is NP-hard, and thus, we cannot implement this pro-
cedure efficiently.

We now provide an example to show that the 1
2 -

approximation of EFX is optimal.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Theorem 3. There exists an instance I of FISP with <Binary,
Rigid> such that no MaxNSW schedule of I is (12 + ε)-EFX,
where ε > 0.

3.2 <Binary, Unit>
[Li et al., 2021] showed that EF1 and PO are incompatible
even if jobs are rigid and valuations are unary, i.e., ui(jk) =
1, ∀ai ∈ A, ∀jk ∈ J . This implies that no algorithm can
return a feasible schedule that is both EFX and PO for all
instances of FISP with <Binary, Rigid>. Fortunately, we
find that for any instance of FISP with <Binary, Unit>, there
exists a non-wasteful MaxNSW schedule that is both EFX
and PO and it can be found in polynomial time.
Theorem 4. Given an arbitrary instance I of FISP with
<Binary, Unit>, if MaxNSW(I) > 0, then any non-wasteful
MaxNSW schedule is EFX and PO; if MaxNSW(I) = 0, then
there exists a non-wasteful MaxNSW schedule that is EFX
and PO.

For any instance I of FISP with <Binary, Unit>,
we present below a polynomial-time algorithm to find a
MaxNSW schedule that is both EFX and PO. Algorithm 1
is based on the proof of Lemma 1. Specifically, it first max-
imizes the number of agents with non-zero utility by finding
the maximum matching. Subsequently, agents not matched in
the maximum matching are assigned empty bundles. For the
sub-instance I ′ formed by removing the unmatched agents
from I , it is clear that MaxNSW(I ′) > 0. According to the
proof of Lemma 1 and Theorem 4, it suffices to find a non-
wasteful MaxNSW schedule for I ′ in polynomial time.

For I ′, starting with any feasible schedule, the algorithm
adopts the simplest schedule update method, where in each
update, each agent can add at most one job and remove at
most one job, represented by constructing a directed graph.
At each update step, the algorithm selects the update that
maximizes the Nash social welfare increment among all fea-
sible updates following this method. Lemma 4 quantifies the
Nash social welfare increment achieved by each such sched-
ule update. Theorem 5 proves that by performing at most
(2m − 1) · n · ln 4n2

m scheduling updates, we can obtain a
MaxNSW schedule that satisfies both EFX and PO. Lemma
3 guarantees that our algorithm can be completed in polyno-
mial time.
A polynomial-time algorithm. The detailed description of
the algorithm is as follows: Firstly, construct a bipartite graph
G(A ∪ J,E), where an edge (ai, jk) exists if and only if
ui(jk) = 1. Then, compute a maximum matching M =
AM ∪ JM of G. If agent ai is not matched, an empty bun-
dle is assigned, i.e., Xi = ∅. Thus, we obtain a sub-instance
I ′ = (J,AM , uAM

) with MaxNSW(I ′) > 0. Finally, find a
non-wasteful MaxNSW schedule for instance I ′. To simplify
notation, in the following, we still let AM = A.

For the sub-instance I ′, each agent initially receives the
job in the maximum matching M . In each subsequent it-
eration, the algorithm greedily finds a feasible schedule up-
date that increases Nash social welfare (NSW). Specifically,
for any iteration t, the algorithm construct a directed graph
G′(Xt−1) based on the current schedule Xt−1 and Xt−1

0 =
J\ ∪i∈[m] X

t−1
i , where the vertex set is V = V1 ∪ V2.

Here, V1 = {v0, v1, . . . , vm} represents charity and all
agents, and vertices in V1 are referred to as agent vertices.
V2 = {j0,1 . . . j0,d0

, j1,1 . . . j1,d1
. . . jm,1 . . . jm,dm

}, where
∀jk,i ∈ V2 represents the i-th job in bundle Xt−1

k of agent ak
(job indices in Xt−1

k are arbitrary). Specifically, j0,i repre-
sents the i-th job in charity bundle Xt−1

0 . Vertices in V2 are
referred to as job vertices.

• A directed edge (jk,i, ad), where d ̸= 0, k ̸= d exists if
and only if ud(jk,i) = 1 and Xt−1

d ∪ {jk,i} is feasible.

• A directed edge (jk,i, a0) exists if and only if jk,i /∈
Xt−1

0 , i.e. k ̸= 0.

• A directed edge (ad, jk,i) exists if and only if jk,i ∈
Xt−1

d , i.e. k = d.

• A directed edge (jk,i, jk′,i′), where k′ ̸= 0 exists if and
only if uk′(jk,i) = 1 and Xt−1

k′ ∪ {jk,i} is not feasible
and Xt−1

k′ \{jk′,i′} ∪ {jk,i} is feasible.

Remark 2. Note that in determining the feasibility of a job
set, we utilize the definition of the condensed instance [Li et
al., 2021] to improve the running time.

Lemma 3. For any iteration 1 ≤ t ≤ (2m−1)·n·ln 4n2

m , the
directed graph G′(Xt−1) can be constructed in polynomial
time.

Below, we define a feasible schedule update method for
each type of directed edge:

• A directed edge (jk,i, ad) represents moving job jk,i
from bundle Xt−1

k to bundle Xt−1
d . i.e., Xt−1

k =

Xt−1
k \{jk,i} and Xt−1

d = Xt−1
d ∪ {jk,i}.

• A directed edge (ad, jk,i) represents no change in
scheduling. i.e., Xt−1

k = Xt−1
k and Xt−1

d = Xt−1
d .

• A directed edge (jk,i, jk′,i′) represents moving job jk,i
from bundle Xt−1

k to bundle Xt−1
k′ . i.e., Xt−1

k =

Xt−1
k \{jk,i} and Xt−1

k′ = Xt−1
k′ \{jk′,i′} ∪ {jk,i}.

For the directed graph G′(Xt−1), we can find all feasible
pairs (Definition 8) in polynomial time, and denote the set of
these pairs as S. For any feasible pair (ak, ad) ∈ S, it is not
difficult to compute the Nash social welfare after updating
the schedule according to the paths between them (Observa-
tion 1). Therefore, the algorithm greedily find the feasible
pair (ak∗ , ad∗) that maximizes the Nash social welfare after
updating the schedule. If the Nash social welfare does not in-
crease after the update, we determine that the current sched-
ule is a MaxNSW schedule, and output the schedule Xt−1.
Otherwise, we update the schedule along any directed path
from ak∗ to ad∗ , obtaining a new schedule Xt, and continue
the iteration. It turns out that the algorithm terminates after
running at most (2m− 1) · n · ln 4n2

m iterations.

Definition 8. A pair of agent vertices (ak, ad) is called a
feasible pair if it is reachable from ak to ad, that is, there
exists at least one directed path from ak to ad.

Observation 1. For directed graph G′(Xt−1), we have the
following results:

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 Greedy Algorithm

Input: An arbitrary instance I = (J,A,uA) of FISP with
<Binary, Unit>.

Output: A non-wasteful MaxNSW schedule X =
(X1, . . . , Xm) that is both EFX and PO.

1: Initialize X1 = . . . = Xm = ∅, X0 = J .
2: Constructing the bipartite graph G(A ∪ J,E) and com-

pute a maximum (weighted) matching M = AM ∪ JM .
3: for each (ai, jk) ∈M do
4: Xi = Xi ∪ {jk}
5: end for
6: Let Xc = (Xi)ai∈A\AM

, X0 = (Xi)ai∈AM
.

7: for t = 1 to (2m− 1) · n · ln 4n2

m do
8: Constructing the directed graph G′(Xt−1) corre-

sponding to the current schedule Xt−1.
9: Let S = {(ak, ad) ∈ AM ∪ {a0} ×AM ∪ {a0} :

(ak, ad) is a feasible pair}.
10: for each (ak, ad) ∈ S do
11: NSW(Xt−1((ak, ad))) ← Calculate the updated

NSW according to (ak, ad).
12: end for
13: if max(ak,ad)∈S NSW(Xt−1(ak, ad)) > NSW(Xt−1)

then
14: Let (ak∗ , ad∗) ∈ argmax

(ak,ad)∈S

NSW(Xt−1(ak, ad))

15: Find a path P = {ak∗ , . . . ad∗}.
16: Update Xt = Xt−1(P), where Xt−1(P) is the

schedule update according to path P .
17: else
18: return X = (Xc,Xt−1)
19: end if
20: end for

(1) If a directed path P ends at some agent vertex, then the
schedule after updating along P is feasible.

(2) If (ak, ad) is a feasible pair and there exist multiple
paths from ak to ad, updating the schedule along dif-
ferent paths results in different schedules with the same
Nash social welfare.

(3) If C is a directed cycle, the NSW of the schedule remains
unchanged after updating along it.

We prove below that in each iteration before reaching
MaxNSW, there must exist a feasible pair such that updat-
ing along any path between them guarantees a lower bound
on the increase of NSW.

Lemma 4. For any iteration 1 ≤ t ≤ (2m− 1) ·n · ln 4n2

m , if
NSW(Xt−1) < MaxNSW(I ′), then there must exist a feasible
pair (ak, ad) in the directed graph G′(Xt−1), and adjusting
along any directed path P from ak to ad results in a schedule
Xt−1(P) that satisfies

ln(MaxNSW(I ′))− ln(NSW(Xt−1(P))) ≤

(1− 1

n
)(ln(MaxNSW(I ′))− ln(NSW(Xt−1))).

Theorem 5. Given an arbitrary instance I of FISP with
<Binary, Unit>, a non-wasteful MaxNSW schedule which is
both EFX and PO can be found in polynomial time.

3.3 General Valuation
We consider the general instances of FISP and find that the
EFX approximation guarantee achieved by the non-wasteful
MaxNSW schedules is related to the non-zero range parame-
ter γ.

Theorem 6. Given an arbitrary instance I of FISP, when γ ≥√
6, if MaxNSW(I) > 0, then any non-wasteful MaxNSW

schedule is 1
γ2 -EFX and PO; if MaxNSW(I) = 0, then there

exists a non-wasteful MaxNSW schedule that is 1
γ2 -EFX and

PO.

The results show that the EFX approximation guarantee
achievable by the non-wasteful MaxNSW schedules is in-
versely related to the non-zero range parameter γ. This
implies that the larger the disparity in agents’ valuations
of items, the worse the fairness guarantee provided by the
MaxNSW schedules.

Theorem 7. Given an arbitrary instance I of FISP, when γ <√
6, if MaxNSW(I) > 0, then any non-wasteful MaxNSW

schedule is 1
6 -EFX and PO; if MaxNSW(I) = 0, then there

exists a non-wasteful MaxNSW schedule that is a 1
6 -EFX and

PO.

Theorem 8. There exists an instance I of FISP with
<Identical, Unit> such that no MaxNSW schedule of I is
(1γ + ε)-EFX, where ε > 0.

If we restrict the job types to unit jobs, we can obtain a
nearly tight EFX approximation guarantee.

Theorem 9. Given an arbitrary instance I of FISP with
<General, Unit>, if MaxNSW(I) > 0, then any non-wasteful
MaxNSW schedule is 1

γ+1 -EFX and PO; if MaxNSW(I) = 0,
then there exists a non-wasteful MaxNSW schedule that is
1

γ+1 -EFX and PO.

4 Approximately EFX and WIO Scheduling
[Li et al., 2021] proved the incompatibility between IO and
EF1 even for FISP with <Identical, Rigid>. This implies that
the stronger fairness concept EFX is also incompatible with
IO. Therefore, we consider a relaxed concept WIO. [Barman
et al., 2023] proved the existence of EFX with bounded char-
ity under generalized assignment constraints. Utilizing their
idea framework, we first provide an algorithm demonstrat-
ing compatibility between WIO and EFX for all instances of
FISP. The high-level idea of the algorithm is as follows: if
there exist agents who envy the charity, we identify “the most
envious” agent among them and find a bundle in the charity
that this agent envies but no other agent EFX envies. Then
“the most envious” agent selects the most valuable feasible
subset from this bundle, and the remaining jobs, along with
the bundle previously owned by the agent, are returned to the
charity. This process is repeated until no agent envies the
charity.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 2 Envy-Bundle Elimination

Input: An arbitrary FISP instance I = (J,A,uA).
Output: An EFX and WIO schedule.

1: Initialize: Schedule X = (X1, · · · , Xm) = (∅, · · · , ∅)
and charity X0 = J .

2: while there is an agent ai ∈ A with ui(Xi) < ui(X0)
do

3: Set B = X0 and s = i.
4: while there exists an agent ak ∈ A and a job jt ∈ B

such that uk(Xk) < uk(B\{jt}) do
5: Set B = B\{jt} and s = k.
6: end while
7: Let C ⊆ B be a feasible subset such that∑

jl∈C us(jl) = us(B).
8: Set Xs = C and X0 = J\ ∪i∈[m] Xi.
9: end while

10: return X = (X1, · · · , Xm) and X0 = J\ ∪i∈[m] Xi

Then, we show that computing a WIO schedule is NP-hard.
Finally, we present a polynomial-time algorithm that approx-
imates both EFX and WIO.

4.1 Compatibility of EFX and WIO
In the following, we present the specific algorithm: the initial-
ization of the algorithm begins by assigning an empty bundle
X = (∅, · · · , ∅) to each agent, while the charity holds all the
jobs, i.e., X0 = J . Whenever there exists an agent who en-
vies the charity, we perform the following operations on the
charity’s bundle X0: continuously remove jobs jt from X0

that still leave some agent envious after their removal, until
we find a bundle B such that only one agent as envies B, and
no other agents EFX envies B. Then as gets a feasible subset
C ⊆ B with

∑
jl∈C us(jl) = us(B), and the bundle pre-

viously owned by as, and the jobs removed from the charity
and B\C are returned to the charity. The algorithm continues
until no agents envy the charity, as illustrated by Algorithm
2.

Note that we update the schedule only after each iteration
of the outer while loop. We denote by X l = (X l

1, . . . , X
l
m)

and X l
0 the schedule and charity updated after the l-th itera-

tion of the outer while loop in Algorithm 2, respectively. Let
X0 = {∅, . . . , ∅} and X0

0 = J .

Lemma 5. After any l-th (l ≥ 0) iteration of the outer while
loop in Algorithm 2, X l = (X l

1, . . . , X
l
m) is feasible and

EFX.

Theorem 10. EFX + WIO are compatible for FISP, i.e., there
exists an algorithm that can return a feasible schedule that is
simultaneously EFX and WIO for all FISP instances.

4.2 Computational Hardness of the Problem
We now provide a proof showing that computing WIO sched-
ule alone is NP-hard.

Theorem 11. Given an arbitrary instance I of FISP, comput-
ing a WIO schedule is NP-hard.

Algorithm 3 Efficient Implementation

Input: An arbitrary FISP instance I = (J,A,uA); β-
approximation polynomial-time algorithm for IS func-
tions, a parameter ε ∈ (0, 1).

Output: An β(1− ε)-EFX and β-WIO schedule.
1: Initialize: Schedule X = (X1, · · · , Xm) = (∅, · · · , ∅)

and charity X0 = J .
2: while there is an agent ai ∈ A with ui(Xi) < u′

i(X0)
do

3: Set B = X0 and s = i.
4: while there exists an agent ak ∈ A and a job jt ∈ B

such that uk(Xk) < (1− ε)u′
k(B\{jt}) do

5: Set B = B\{jt} and s = k.
6: end while
7: Let C ⊆ B be a feasible subset such that∑

jl∈C us(jl) = u′
s(B).

8: Set Xs = C and X0 = J\ ∪i∈[m] Xi.
9: end while

10: return X = (X1, · · · , Xm) and X0 = J\ ∪i∈[m] Xi

4.3 Polynomial-time Implementation
Note that Algorithm 2 is inefficient, because if P ̸= NP , the
exact value of the IS function cannot be computed in poly-
nomial time. For special case of rigid or unit jobs, the IS
function can be computed in polynomial time. Therefore, in
this subsection, we present a polynomial-time algorithm for
computing approximate EFX and WIO schedule. For the IS
function, we can directly use a β-approximation algorithm,
with the most well-known approximation ratio being 0.644
[Im et al., 2020]. For each ai ∈ A, we use u′

i : 2
J → R+ to

denote the approximate valuation, and thus u′
i(S) ≥ β ·ui(S)

for any S ⊆ J . Thus, we directly obtain Algorithm 3 and the
following theorem.
Theorem 12. For any 0 < ε < 1, Algorithm 3 returns a
β(1 − ε)-EFX and β-WIO schedule for arbitrary FISP in-
stance with a β-approximation algorithm for IS functions.
The running time is polynomial with |J |, |A| and 1

ε .

Corollary 1. For any 0 < ε < 1, given a instance I of FISP,
an 0.644(1− ε)-EFX and 0.644-WIO schedule can be found
in polynomial time; when jobs are either rigid or unit, an
(1 − ε)-EFX and WIO schedule can be found in polynomial
time.

5 Conclusion and Future Work
This paper studied the fair scheduling problem with time-
dependent resources, considering the compatibility between
the concepts of fairness, mainly EFX, and efficiency, mainly
MaxNSW, WIO and PO. Moreover, we designed polynomial-
time algorithms that satisfy various fairness and efficiency
concepts. Despite some progress, several important issues
remain unresolved. A direct question is whether the relation-
ship between MaxNSW and approximate EFX can be made
tight. An interesting direction is to consider the relationship
between approximate MaxNSW and approximate EFX. Can
we design polynomial-time algorithms that provide strong ap-
proximation guarantees for both EF and MaxNSW?

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Ethical Statement
There are no ethical issues.

Acknowledgments
This research was supported in part by the National Nat-
ural Science Foundation of China (12201590, 12171444)
and Natural Science Foundation of Shandong Province
(ZR2024MA031).

References
[Ajtai et al., 1998] Miklos Ajtai, James Aspnes, Moni Naor,

Yuval Rabani, Leonard J Schulman, and Orli Waarts. Fair-
ness in scheduling. Journal of Algorithms, 29(2):306–357,
1998.

[Aleksandrov et al., 2015] Martin Aleksandrov, Haris Aziz,
Serge Gaspers, and Toby Walsh. Online fair division:
analysing a food bank problem. In Proceedings of the
24th International Conference on Artificial Intelligence,
IJCAI’15, page 2540–2546, Buenos Aires, Argentina,
2015. AAAI Press.

[Amanatidis et al., 2021] Georgios Amanatidis, Georgios
Birmpas, Aris Filos-Ratsikas, Alexandros Hollender, and
Alexandros A Voudouris. Maximum nash welfare and
other stories about efx. Theoretical Computer Science,
863:69–85, 2021.

[Aziz and Mackenzie, 2016] Haris Aziz and Simon Macken-
zie. A discrete and bounded envy-free cake cutting proto-
col for any number of agents. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS),
pages 416–427, Los Alamitos, CA, USA, 2016. IEEE
Computer Society.

[Babaioff et al., 2021] Moshe Babaioff, Tomer Ezra, and
Uriel Feige. Fair and truthful mechanisms for dichoto-
mous valuations. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(6):5119–5126, 2021.

[Barman and Krishnamurthy, 2019] Siddharth Barman and
Sanath Kumar Krishnamurthy. On the proximity of mar-
kets with integral equilibria. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01):1748–1755,
2019.

[Barman et al., 2018a] Siddharth Barman, Sanath Kumar
Krishnamurthy, and Rohit Vaish. Finding fair and effi-
cient allocations. In Proceedings of the 2018 ACM Con-
ference on Economics and Computation, page 557–574,
Ithaca, NY, USA, 2018. Association for Computing Ma-
chinery.

[Barman et al., 2018b] Siddharth Barman, Sanath Kumar
Krishnamurthy, and Rohit Vaish. Greedy algorithms
for maximizing nash social welfare. In Proceedings of
the 17th International Conference on Autonomous Agents
and MultiAgent Systems, page 7–13, Stockholm, Sweden,
2018. International Foundation for Autonomous Agents
and Multiagent Systems.

[Barman et al., 2023] Siddharth Barman, Arindam Khan,
Sudarshan Shyam, and K. V. N. Sreenivas. Guaranteeing
envy-freeness under generalized assignment constraints.
In Proceedings of the 24th ACM Conference on Economics
and Computation, page 242–269, , London, United King-
dom,, 2023. Association for Computing Machinery.

[Benabbou et al., 2020] Nawal Benabbou, Mithun
Chakraborty, Xuan-Vinh Ho, Jakub Sliwinski, and
Yair Zick. The price of quota-based diversity in as-
signment problems. ACM Trans. Econ. Comput., 8(3),
2020.

[Benabbou et al., 2021] Nawal Benabbou, Mithun
Chakraborty, Ayumi Igarashi, and Yair Zick. Finding fair
and efficient allocations for matroid rank valuations. ACM
Trans. Econ. Comput., 9(4), 2021.

[Berman and DasGupta, 2000] Piotr Berman and Bhaskar
DasGupta. Multi-phase algorithms for throughput maxi-
mization for real-time scheduling. Journal of Combinato-
rial Optimization, 4:307–323, 2000.

[Bilò et al., 2016] Vittorio Bilò, Angelo Fanelli, Michele
Flammini, Gianpiero Monaco, and Luca Moscardelli. The
price of envy-freeness in machine scheduling. Theoretical
Computer Science, 613:65–78, 2016.

[Brams and Taylor, 1996] Steven J Brams and Alan D Tay-
lor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, Cambridge, UK, 1996.

[Brandt et al., 2016] Felix Brandt, Vincent Conitzer, Ulle
Endriss, Jérôme Lang, and Ariel D Procaccia. Handbook
of computational social choice. Cambridge University
Press, Cambridge, UK, 2016.

[Budish et al., 2017] Eric Budish, Gérard P Cachon, Judd B
Kessler, and Abraham Othman. Course match: A large-
scale implementation of approximate competitive equilib-
rium from equal incomes for combinatorial allocation. Op-
erations Research, 65(2):314–336, 2017.

[Caragiannis et al., 2019a] Ioannis Caragiannis, Nick
Gravin, and Xin Huang. Envy-freeness up to any item
with high nash welfare: The virtue of donating items. In
Proceedings of the 2019 ACM Conference on Economics
and Computation, page 527–545, Phoenix, AZ, USA,
2019. Association for Computing Machinery.

[Caragiannis et al., 2019b] Ioannis Caragiannis, David
Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg
Shah, and Junxing Wang. The unreasonable fairness of
maximum nash welfare. ACM Trans. Econ. Comput.,
7(3), 2019.

[Chuzhoy et al., 2006] Julia Chuzhoy, Rafail Ostrovsky, and
Yuval Rabani. Approximation algorithms for the job
interval selection problem and related scheduling prob-
lems. Mathematics of Operations Research, 31(4):730–
738, 2006.

[Dai et al., 2024] Sijia Dai, Guichen Gao, Shengxin Liu,
Boon Han Lim, Li Ning, Yicheng Xu, and Yong Zhang.
Maximum nash social welfare under budget-feasible efx.
IEEE Transactions on Network Science and Engineering,
11(2):1810–1820, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Deng et al., 2012] Xiaotie Deng, Qi Qi, and Amin Saberi.
Algorithmic solutions for envy-free cake cutting. Opera-
tions Research, 60(6):1461–1476, 2012.

[Feldman et al., 2024] Michal Feldman, Simon Mauras, and
Tomasz Ponitka. On optimal tradeoffs between efx and
nash welfare. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 38(9):9688–9695, 2024.

[Garg and Murhekar, 2023] Jugal Garg and Aniket
Murhekar. Computing fair and efficient allocations
with few utility values. Theoretical Computer Science,
962:113932, 2023.

[Garg et al., 2023] Jugal Garg, Edin Husić, Wenzheng Li,
László A. Végh, and Jan Vondrák. Approximating nash
social welfare by matching and local search. In Proceed-
ings of the 55th Annual ACM Symposium on Theory of
Computing, page 1298–1310, Orlando, FL, USA, 2023.
Association for Computing Machinery.

[Goldman and Procaccia, 2015] Jonathan Goldman and
Ariel D. Procaccia. Spliddit: unleashing fair division
algorithms. SIGecom Exch., 13(2):41–46, 2015.

[Im et al., 2020] Sungjin Im, Shi Li, and Benjamin Mose-
ley. Breaking 1 - 1/e barrier for nonpreemptive throughput
maximization. SIAM Journal on Discrete Mathematics,
34(3):1649–1669, 2020.

[Johnson and Garey, 1979] David S Johnson and Michael R
Garey. Computers and intractability: A guide to the theory
of NP-completeness. WH Freeman, New York, NY, USA,
1979.

[Kaneko and Nakamura, 1979] Mamoru Kaneko and Ken-
jiro Nakamura. The nash social welfare function. Econo-
metrica, 47(2):423–435, 1979.

[Kumar et al., 2024] Yatharth Kumar, Sarfaraz Equbal, Ro-
hit Gurjar, Swaprava Nath, and Rohit Vaish. Fair schedul-
ing of indivisible chores. In Proceedings of the 23rd Inter-
national Conference on Autonomous Agents and Multia-
gent Systems, page 2345–2347, , Auckland, New Zealand,
2024. International Foundation for Autonomous Agents
and Multiagent Systems.

[Li et al., 2021] Bo Li, Minming Li, and Ruilong Zhang.
Fair scheduling for time-dependent resources. In Advances
in Neural Information Processing Systems, volume 34,
pages 21744–21756, , NY, USA, 2021. Curran Associates,
Inc.

[Moulin, 2019] Hervé Moulin. Fair division in the internet
age. Annual Review of Economics, 11:407–441, 2019.

[Ramezani and Endriss, 2010] Sara Ramezani and Ulle En-
driss. Nash social welfare in multiagent resource alloca-
tion. In Agent-Mediated Electronic Commerce. Designing
Trading Strategies and Mechanisms for Electronic Mar-
kets, pages 117–131, Berlin, Heidelberg, Germany, 2010.
Springer Berlin Heidelberg.

[Richard et al., 2004] Lipton Richard, Markakis Evangelos,
Mossel Elchanan, and Saberi Amin. On approximately fair
allocations of indivisible goods. In Proceedings of the 5th
ACM Conference on Electronic Commerce, page 125–131,

New York, NY, USA, 2004. Association for Computing
Machinery.

[Schrijver, 1998] Alexander Schrijver. Theory of linear and
integer programming. John Wiley & Sons, Hoboken, NJ,
USA, 1998.

[Varian, 1974] Hal R. Varian. Equity, envy, and efficiency.
Journal of Economic Theory, 9(1):63–91, 1974.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

