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Abstract

The goal of document-level relation extraction
(DocRE) is to identify relations between entities
from multiple sentences. As a multi-label clas-
sification task, a common approach is to deter-
mine whether there are relations for an entity pair
by selecting a multi-label classification threshold,
with scores of relations above the threshold pre-
dicted as positive and the rest as negative. How-
ever, we find that predicting multiple relations for
entity pairs causes the decrease of predicted scores
in positive classes. This could lead to many pos-
itive classes being incorrectly predicted as nega-
tive. Additionally, our analysis suggests that fit-
ting the distribution of predicted relations to the
prior distribution of relations can help improve pre-
diction performance. However, previous studies
have not explored or leveraged the prior distribu-
tion of relations. To address these issues and find-
ings, we for the first time propose the idea of in-
corporating the relational prior distribution into the
loss calculation in DocRE tasks. We innovatively
propose an Adaptive Relational Prior Distribution
Loss (ARPDL), which can adaptively adjust rela-
tion prediction scores based on the relational prior
distribution. Our designed relational prior distribu-
tion component can also be integrated as an adapter
into other threshold-based losses to improve pre-
diction performance. Experimental results demon-
strate that ARPDL consistently improves the per-
formance of existing DocRE models, achieving
new state-of-the-art results. Furthermore, integrat-
ing our relational prior distribution adapter into
other losses significantly enhances their perfor-
mance in DocRE tasks, validating the effectiveness
and generality of our approach. Code is available
at https://github.com/xhm-code/ARPDL.

1 Introduction

Document-level relation extraction (DocRE), which is an in-
formation extraction task developed based on sentence-level
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Figure 1: A threshold (TH) class is introduced to distinguish be-
tween positive and negative classes: during the training phase, the
ATL is designed to ensure that the scores of positive classes are sig-
nificantly higher than TH, while the scores of negative classes are
significantly lower than TH.

relation extraction, aims to extract one or more relations for
an entity pair from sentences in a document. This task has
garnered increasing attention due to its alignment with real-
world applications, where a large number of relational facts
are expressed in multiple sentences [Yao et al., 2019].

As a multi-label classification task, the complexity of
DocRE grows exponentially with the number of entities.
When a document contains n entities, relations need to be
extracted for n(n — 1) entity pairs. Moreover, DocRE ex-
hibits a severe class imbalance [Yao et al., 2019; Tan et al.,
2022b] between the positive and negative classes'. Addition-
ally, even among positive classes, various relation types are
highly imbalanced, forming a long-tail problem. To address
these issues, an adaptive thresholding loss (ATL)-based se-
lection approach [Zhou et al., 2021] is commonly used. As
illustrated in Figure 1, for each entity pair (es,e,), classes
with scores exceeding the threshold are predicted as positive,
while the remaining classes are predicted as negative.

The subsequent losses such as adaptive focal loss (AFL)
[Tan er al., 2022a], none class ranking loss (NCRL) [Zhou
and Lee, 2022], and adaptive hinge balance loss (HingeABL)
[Wang er al., 2023] are all improvements based on the ATL.
NCRL and HingeABL reveal that too many negative classes

'Given a pre-defined set R of relations of interest, Positive
classes Pr C R are the relations that exist for an entity pair, while
Negative classes N7 C R are the relations that do not exist for an
entity pair. That is, R = Pr U Nr. Moreover, ‘NA’ (no relation)
denotes the absence of any relation between an entity pair and is
considered a distinct category, separate from the Negative classes.
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Figure 2: (a) Flow of the loss used in the traditional method. (b) Loss
based on relational prior distribution of entity pairs. (c) Loss based
on relational prior distribution of entity-type pairs. Logit denotes
the score output by the model, s and o represent the subject and
object of an entity pair. In (b), the same relational prior distribution
is introduced for different entity pairs. In (c), for an entity pair, a
relational prior distribution corresponding to the entity-type pair is
introduced. Different colors indicate different entity-type pairs.

raise the learned threshold, causing this threshold to exceed
the scores of positive classes. This may lead to numerous
false-negative predictions, thus they improve the ATL by re-
ducing the proportion of negative classes. AFL mitigates the
impact of head classes (frequent relation types) in long-tail
distributions, thereby allowing tail classes (infrequent rela-
tion types) to receive more attention. However, these strate-
gies, which either reduce the proportion of negative classes
or focus on tail classes, struggle to effectively address both
class imbalance and long-tail issues simultaneously, thereby
limiting their performance.

Further, our findings reveal two new issues in ATL and its
improved losses, which are crucial to improving the perfor-
mance of DocRE and may also help address the class im-
balance and long-tail issues: (1) As the number of relations
between entities increases, the prediction scores of these rela-
tions decrease and tend to be close. This could lead to many
positive classes being incorrectly predicted as negative, as
shown in our theoretical proof (Section 3.3) and experiments
(Section 6.1). (2) Our analysis indicates that the prior distri-
bution of relations may guide the models to adjust the predic-
tion scores. And if the distribution of predicted relations fits
the prior distribution of relations, it intuitively enhances the
prediction performance. However, previous studies have not
explored or leveraged the prior distribution of relations.

To address these issues, we propose a novel idea of lever-
aging and incorporating relational prior distribution into loss

as shown in Figure 2. Firstly, we introduce relational prior
distribution to dynamically adjust relation prediction scores
during training, tackling the issue of decrease in the scores
of positive classes when predicting multiple relations. Sec-
ondly, in order to address the false-negative problem caused
by the class-imbalance, we for the first time propose to solve
this problem by increasing the contribution of positive classes
to loss. Additionally, introducing relational prior distribution
can also expand the training knowledge for tail classes with
few relation types in the long-tail problem, significantly en-
hancing the prediction performance of these tail classes.

Based on the above findings and analysis, we propose
an Adaptive Relational Prior Distribution Loss (ARPDL),
which introduces relational prior distribution from two differ-
ent granularities: One at the entity pair level, as illustrated in
Figure 2(b), which treats each entity pair as having the same
relational prior distribution; The other at the entity-type pair
level, as shown in Figure 2(c), which more finely considers
the relational prior distribution corresponding to the types of
entity pairs. Our contributions are as follows:

* We, for the first time, propose the idea of incorporat-
ing relational prior distribution into loss in DocRE tasks.
ARPDL can adaptively adjust and improve relation pre-
diction scores based on the relational prior distribution.

* We propose a strategy in ARPDL to address the class-
imbalance problem by increasing the contribution of
positive classes to loss, while also effectively mitigating
the long-tail problem. This is different from the previous
methods of reducing the proportion of negative classes.

* Our relational prior distribution component can be in-
tegrated as an adapter into ATL-based losses, which can
significantly enhance their performance in DocRE tasks.

Experimental results on DocRE datasets demonstrate that
our loss ARPDL consistently improves the performance of
different backbones, achieving new state-of-the-art (SOTA)
results. In addition, integrating our relational prior distribu-
tion adapter into other losses significantly enhances their per-
formance, validating the effectiveness and generality of our
idea based on the relational prior distribution.

2 Related Work

2.1 Document-Level Relation Extraction

Existing DocRE methods are mainly divided into two cate-
gories: Transformer-based and graph-based models. The for-
mer [Zhou et al., 2021; Xie et al., 2022; Xiao et al., 2022;
Ma et al, 2023; Lu et al, 2023; Zhang et al., 2024;
Gao et al., 2024] uses pre-trained language models to encode
documents to obtain contextual information, which can cap-
ture relations between entities. The latter [Xu et al., 2021;
Peng et al., 2022; Sun et al., 2023; Jain et al., 2024] uses
graph neural networks to integrate and reason about relations
between entities by constructing a graph structure of different
text information (e.g., entities and sentences).

2.2 Loss Functions in DocRE

In DocRE multi-label classification tasks, the adaptive thresh-
olding loss (ATL) is the most commonly used loss [Zhou et
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al., 2021]. In ATL, a threshold class (TH class) is introduced.
If there is a relation for an entity pair, the score of the rela-
tion is higher than the threshold, otherwise it is lower than
the threshold. Subsequently, many losses for DocRE are im-
proved based on ATL, such as AFL [Tan et al., 2022a], adap-
tive margin loss (AML) [Wei and Li, 2022], NCRL [Zhou
and Lee, 2022], PEMSCL [Guo et al., 2023], separate adap-
tive thresholding (SAT) [Wang er al., 2023], and HingeABL
[Wang et al., 2023]. These losses mainly solve the problem of
imbalance between positive and negative classes or the long-
tail problem in the positive class.

3 Methodology

In this section, we first give the definition of DocRE. Then,
we analyze the classic loss ATL in DocRE. Finally, we pro-
pose the loss ARPDL we designed.

3.1 Problem Formulation

DocRE is a multi-label classification task. Given a docu-
ment D that contains a known set of entities {e; }?_; and their
corresponding types, these entities form multiple entity pairs
(es,e,), Where ey is the subject and e, is the object. The
model will determine which of the pre-defined relation set
RU{NA} each entity pair (e, e,) belongs to. R represents a
pre-defined set of relations of interest, and NA indicates that
there is no relation for an entity pair.

3.2 Adaptive Thresholding Loss

Adaptive Thresholding Loss (ATL) [Zhou ef al., 2021] is a
loss widely used in DocRE tasks. Compared to binary cross-
entropy (BCE) loss, ATL can adaptively set thresholds for
each entity pair (BCE uses a global threshold). As shown
in Eq.(1), ATL is composed of two parts, £; and Lo. L3
includes positive classes Pr and the threshold (TH) class,
which needs to be learned during training. £, includes neg-
ative classes N7 and the TH class. The optimization goal of
ATL is to ensure positive class scores are significantly higher
than the TH class score, and negative class scores are signifi-
cantly lower. In the testing phase, if an entity pair is predicted
to have one or more relations, the scores for these relations
must be above the threshold. When all scores are below the
threshold, the entity pair is predicted as NA.

Ly=— Z log <Z exp(logit,) )

wepru{Th) €XP (logit,)

exp(logitTy) (0
<ZT’GNTU{TH} exp (logit,) )
Lary = L1+ Lo
3.3 Our Empirical Analysis of ATL

For £, let Z = . cp iy €xP(logit,). Then £y can
be decomposed into Eq.(2):
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Figure 3: (a) The £1 problem in ATL: the output of ATLOP [Zhou
et al., 2021] on the Re-DocRED [Tan et al., 2022b] dataset, utiliz-
ing BERTyqsc as the encoder and employing ATL as the loss. The
horizontal axis represents the number of relations in positive classes
corresponding to entity pairs, and the vertical axis represents the
average predicted score of positive classes. (b) The L2 problem
in ATL. The threshold (TH) learned by ATL is much higher than
the candidate score, resulting in an increase in the number of false-
negative predictions.

Taking the derivative of logit, of L1, we get:

oL 07
Ly [Pl 07 3
dlogit, Z  0Ologit,
0Z 0
= logit,
dlogit, _ dlogit, <Zwe7>Tu{TH} exp(logi )) @)
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Further, substituting Eq.(4) into Eq.(3), we obtain Eq.(5):
0Ly [Pr| )
=—-14—= logit, 5
Ologit, + A expllogity) )
We set the derivative to zero and find the extreme point:
Z
exp(logit,) exp(logit,) 1 )
Z > repruirmy exp(logit,)  |Pr

Finally, according to Eq.(7), we deduce that each logit,
(where r € Pr) is close.

For L5, according to the deduction in [Wang et al., 2023],
we can obtain Eq.(8). If L5 — 0,then )~ , . exp(logit,, —
logityy) ~ 0, meaning logit,, < logityy. This indicates that
the threshold is significantly higher than the predicted scores
of relations, leading to numerous false-negative predictions.

exp(logitTn) )

Lo = —log -
? (ZT’ENTU{TH} exp(logit,) )

1
=—1lo
& (1 + Zr'eNT exp(logit, — logitTH)>

Through the above deduction, we draw the following con-
clusions:
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* When there are n relations for an entity pair (n > 1),
according to Eq.(7), we deduce the scores of relations
r € Pr for the entity pair tend to be close. Therefore, in
L1, as the number of relations existing for an entity pair
increases, this may lead to the decrease in the scores of
positive classes, as shown in Figure 3(a);

 For L5, since the number of relations in negative classes
is greater than that of positive classes, the contribution of
negative classes to the loss is greater than that of positive
classes, which will increase the threshold (as shown in
Figure 3(b)) and make the model more inclined to pre-
dict the NA label for entity pairs, resulting in a large
number of false-negative predictions.

3.4 Adaptive Relational Prior Distribution Loss

To address the issues above, we propose a new adaptive rela-
tional prior distribution loss, ARPDL, by leveraging and in-
corporating relational prior distribution into loss. Consider-
ing that there are two types of relational prior distributions
associated with entity pairs, namely, relational prior distribu-
tions of entity pairs and entity-type pairs. The latter refers
to the relational prior distribution related to the types of enti-
ties in entity pairs. Therefore, we propose our loss from two
granularities: entity pair level and entity-type pair level.

ARPDL based on Relational Prior Distribution of Entity
Pairs

We introduce the relational prior distribution at the entity pair
level into the loss, which treats each entity pair as having the
same relational prior distribution, as illustrated in Figure 2(b).
We first count the frequency of occurrence of each relation in
the training set as the prior probability of this relation, and
then form prior distribution of the relations. Then, we calcu-
late the predicted probability of a relation r for a given entity
pair as follows:

exp(logit,) exp(rd,)
P(r) =1 _
) =los S>> exp(logit,)  |RU{NA}| )
r’€ RU{NA} Z GXp(T‘di)

i=1

where rd; is the prior probability of the i-th relation.

Moreover, in order to address the issues of the decrease in
the scores of positive classes and the class-imbalance, we pro-
pose the idea of increasing the contribution of positive classes
to loss. This is different from the previous methods of reduc-
ing the proportion of negative classes. To achieve this, we
propose two strategies: one is to calculate P(r) only on pos-
itive classes, i.e., r € Pr, and the other is to set the total
number of NA label occurrences to 1 before obtaining the re-
lational prior distribution, thereby ignoring the contribution
of a large number of NA labels to the loss. Finally, we obtain
the loss that fuses the relational prior distribution of entity
pairs as follows.

L3=— Zrem P(r) (10)

ARPDL based on Relational Prior Distribution of
Entity-Type Pairs

The loss at the entity pair level above considers each entity
pair as having the same relational prior distribution for calcu-

Dataset Split  #Doc. Avg. #Ents  Avg. #Facts
Re-DocRED  Train 3053 19.4 28.1
Dev 500 19.4 34.6
Test 500 19.6 349
DWIE Train 602 274 239
Dev 98 28.4 26.8
Test 99 26.5 24.8

Table 1: Dataset statistics.

lation, without considering the potential connection between
entity-type pairs and pre-defined relations. For example, the
P175 (“performer”) and P569 (“date of birth”) relations will
not appear in the entity pairs corresponding to the type ORG
— NUM. Therefore, we consider computing the loss at the
entity-type pair level, which incorporates the relational prior
distribution corresponding to the entity-type pairs.

exp(logit,) exp(etd, ;)
P(r) =1 - :
(r) =log = plogity,) ~ TROmAN (an
r’€ RU{NA} > exp(etd;;)

i=1

where j € M, M denotes the total number of entity-type
pairs. etd; ; is the prior probability of the i-th relation for the
j-th entity-type pair, and the distribution of each entity-type
pair is different.

Our final loss is represented as Eq.(12). Here, o serves as
a hyperparameter that adjusts the weighting of the relational
prior distribution within the overall loss.

Larppr = L1+ Lo+ aLs (12)

4 Experimental Settings

Datasets. Re-DocRED [Tan er al., 2022b] is a widely-
adopted DocRE dataset. It is the scientifically revised version
of the original DocRED [Yao et al., 2019] dataset, aiming to
address the problem of missing annotations in DocRED. Re-
DocRED includes 4053 documents and 96 pre-defined rela-
tions. DWIE [Zaporojets et al., 2021] dataset contains 799
documents and 65 relations. In Table 1, “Avg. Ents” and
“Avg. Facts” represent the average number of entities and
relation facts in each document, respectively.

Implementation Details. All experiments are implemented
based on Transformers [Wolf et al., 2020]. We use BERT}4 5
[Devlin et al., 2019] and RoOBERTa,,,¢ [Liu et al., 2019] as
the encoder of DocRE backbones. We employ AdamW as
optimizer with learning rates set to {le-5, 2e-5, 3e-5, 4e-5,
5e-5} and {6, 8, 10, 20, 30} epochs. The optimal « is 1.2 for
BERT encoder and 1.5 for RoOBERTa. We use F1 and Ign-F1
metrics for evaluation. Ign-F1 measures F1 while disregard-
ing triples that are present in training set. For each experi-
ment, we run 5 times and report the average score. All exper-
iments are conducted on a GeForce RTX 3090 GPU, and use
the loss based on entity-type pair level.

With the exception of Table 2, all other experiments are
conducted on the Re-DocRED test set, and for a fair com-
parison with other loss methods, we use ATLOP as the rep-
resentation module and BERT,,, . as the encoder.
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Model Dev Test

F1 Fl with Ay,  Ign-F1 Ign-Fl with Ay F1 F1 with Ay,  Ign-F1 Ign-Fl with Ay,
Re-DocRED with RoBERTa;4;.¢¢
ATLOP [Zhou et al., 2021] * 77.63 79.40(+1.77) 76.88 78.54(+1.66) 7773 79.90(+2.17) 76.94 79.10(+2.16)
DocuNet [Zhang et al., 2021] * 78.16  79.70(+1.54) 77.53 78.83(+1.30) 7792 79.52(+1.60) 77.27 78.69(+1.42)
KD-DocRE [Tan et al., 2022a] ©  78.65 79.18(+0.53)  77.92 78.42(+0.50) 78.35 78.95(+0.60) 77.63 78.20(+0.57)
Dreeam [Ma et al., 2023] * - 81.05 - 80.38 80.73  81.28(+0.55) 79.66 80.66(+1.00)
AA [Lu et al., 2023] * 81.15 81.48(+0.33) 80.04 80.83(+0.79) 81.20 81.66(+0.46) 80.12 81.06(+0.94)
TTM-RE [Gao et al., 2024] © 78.13  80.98(+2.85) 78.05 80.27(+2.22) 79.95 80.96(+1.01) 78.20 80.27(+2.07)
DWIE with BERT s
ATLOP [Zhou et al., 2021] * 64.82  65.30(+0.48) 59.03 58.77(-0.26) 69.94 71.20(+1.26) 62.09 63.27(+1.18)
DocuNet [Zhang et al., 2021] 67.27 68.41(+1.14) 61.03 61.40(+0.37) 73.74 73.98(+0.24)  66.57 66.07(-0.50)
KD-DocRE [Tan et al., 2022a] ©* 67.90 68.47(+0.57) 61.88 62.23(+0.35) 73.46 73.97(+0.51) 66.83 67.03(+0.20)
Dreeam [Ma et al., 2023] 67.86 68.43(+0.57) 62.00 61.96 (-0.04) 70.10 71.47(+1.37) 63.72 64.89(+1.17)
AA-NoFusion [Lu ef al., 20231 T 67.54 68.32(+0.78) 61.82 62.00(+0.18) 70.37  70.90(+0.53) 64.22 64.27(+0.05)
DWIE with RoBERTa;,,.g¢
ATLOP [Zhou et al., 2021] * 76.65 76.97(+0.32) 72.47 72.50(+0.03) 81.39 81.45(+0.06) 76.83 76.51(-0.32)
DocuNet [Zhang et al., 2021] 76.46 76.99(+0.53) 72.69 72.86(+0.17) 81.32 81.47(+0.15) 77.20 76.75(-0.45)
KD-DocRE [Tan et al., 2022al T 76.55 77.77(+1.22) 72.01 73.30(+1.29) 80.92 81.48(+0.56) 75.67 76.51(+0.84)

Table 2: Performance of different DocRE models with ARPDL replacing their losses. A, denotes ARPDL. Results of F1 and Ign-F1 marked
with § are from our reproduction, ¥ from [Ru et al., 2021], * from [Lu et al., 2023], and ¢ from the original paper.

Loss Function F1 Ign-F1
ATL [Zhou et al., 20211 " 7329 7246
Balanced-Softmax [Zhang et al., 20211 * 73.68  72.85
AML [Wei and Li, 2022] * 72.60  71.78
AFL [Tan et al., 2022a] * 74.15  73.20
NCRL [Zhou and Lee, 2022] 73.87  72.79
PEMSCL [Guo et al., 2023] 73.98  73.06
HingeABLg o7 [Wang et al., 20231 * 73.46 7261
HingeABL jeansar [Wang ef al., 20231%  74.68  72.90
HingeABL [Wang et al., 2023] * 75.15  73.84
ARPDL 7590 74.81

Table 3: Comparison of losses on the Re-DocRED test set. Results
with t are from our reproduction, and * from [Wang et al., 2023].

S Main Results and Analysis

5.1 Different Loss Methods

To compare performance with different losses, we conduct
experiments to compare our method with the ATL [Zhou et
al., 2021] loss and its extended methods. The results are
shown in Table 3. To ensure a fair comparison with other
ATL-based extended losses, our ARPDL is also implemented
based on the ATL [Zhou et al., 2021]. The results show
that our ARPDL outperforms all ATL-based loss methods and
achieves the highest F1 and Ign-F1 of 75.90 and 74.81.

5.2 Different DocRE Models with ARPDL

To evaluate the effectiveness and generality of our loss on
different DocRE models, we select several recently compet-
itive DocRE models and replace their native losses with our
ARPDL. As depicted in Table 2, the original methods of these
models, ATLOP, Dreeam, and AA employ ATL loss; Do-
cuNet employs Balanced-Softmax loss; KD-DocRE employs
AFL loss; and TTM-RE employs a non-ATL positive unla-
beled loss [Wang erf al., 2022].

Table 2 shows the performance of our loss on differ-
ent backbones. The results show that using our proposed
ARPDL as loss demonstrates significant improvements, par-
ticularly on the Re-DocRED dataset. On the ATLOP, using
our ARPDL loss shows an improvement of 2.17 in F1 and
2.16 in Ign-F1 on the Re-DocRED test set. Similarly, on the
dev set, it boosts the recent TTM-RE by 2.85 F1 and 2.22
Ign-F1. Results show that ARPDL improves the performance
of different baseline models, demonstrating that our loss is
effective and general.

5.3 Analyzing Generalizability of Our Relational
Prior Distribution Adapter

To demonstrate the applicability of our proposed relational
prior distribution adapter in the ATL-based family loss, we di-
rectly add the adapter (i.e., L3 in Eq.(12)) to different losses.
The results are shown in Table 4.

After adding our adapter into the ATL loss, the F1 is in-
creased by 2.61 and the Ign-F1 is increased by 2.35; for the
AML loss, the F1 is increased by 1.85 and the Ign-F1 is in-
creased by 1.69. The results indicate that our adapter is ap-
plicable to the ATL-based losses and effectively improves the
performance of these original losses.

Loss F1 F1 with RPD  Ign-F1 Ign-F1 with RPD
ATL" 7329 75.90(+2.61) 72.46 74.81(+2.35)
AML" 72.60 74.45(+1.85) 71.78 73.47(+1.69)
AFL" 74.15 75.30(+1.15)  73.20 74.12(+0.92)
NCRL' 73.87 74.80(+0.93) 72.79 73.81(+1.02)
PEMSCL' 7398 75.10(+1.12) 73.06 73.92(+0.86)
HingeABLgar" 73.46 74.96(+1.50) 72.61 73.88(+1.27)
HingeABL" 75.15  75.77(+0.62)  73.84 74.42(+0.58)

Table 4: Integrating relation prior distribution (RPD) adapter into
ATL-based losses on Re-DocRED. Results of F1 and Ign-F1 marked
with § are from our reproduction, and * from [Wang et al., 2023].
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6 Further Analysis

6.1 Analyzing the Decrease of Scores

To assess whether incorporating relational prior distribution
into the loss function can address the new issue we discov-
ered: the decrease in predicted scores for positive classes
when predicting multiple relations. In Figure 4(a), we ob-
serve that the scores of both ATL and ARPDL decrease as the
number of relations increases. However, the scores of ATL’s
positive classes gradually fall below the threshold, whereas
our ARPDL’s are mostly higher than it.

Moreover, since the scores are relative to different thresh-
olds, we cannot directly compare the scores of ARPDL and
ATL. Therefore, in order to eliminate the impact of different
thresholds, we use relative difference to represent the distance
between the score and the threshold, which we call the rela-
tive score, as shown in Eq.(13).

logit, — TH

e 100%  (13)
2

Relative_Score =

Figure 4(b) shows that the relative score of ARPDL is
higher than ATL’s. This indicates that the loss after integrat-
ing the relational prior distribution can make the boundary
between the relation scores and the threshold more obvious,
which relatively improves the scores of relations in positive
classes, thus achieving better prediction performance.

6.2 Analysis of Class-Imbalance Problem

To illustrate the effectiveness of our relational prior distribu-
tion adapter in alleviating the false-negative problem caused
by class-imbalance, we add the adapter to several different
losses and count the number of four prediction patterns.

The results in Table 5 show that the values of both FN
and FN/(FP+FN) decrease after integrating our adapter, indi-
cating that the false-negative problem has been significantly
mitigated. Also, for the NA problem in false-negative, the
values of both FN_NA and FN_NA/(FP+FN) also decrease,
indicating that the problem of false-negative samples being
predicted with NA labels is mitigated. In addition, we ob-
serve an increase in the number of false positive (FP) sam-
ples. We speculate that this is due to the adapter increasing
the contribution of positive classes to the loss, thereby raising
the predicted scores of relations and consequently increasing
the number of false positive samples.

6.3 Analysis of Long-Tail Problem

In order to analyze the impact of relational prior distribution
on long-tail problems, we first rank in descending order all
pre-defined relations by the number of entity pairs that are la-
beled with them. Next, we classify them into four categories:
head-10 relations (the top 10 relations, accounting for 64.02%
of Re-DocRED’s training data), mid-76 relations (the 10th to
86th relations, accounting for 35.47%), tail-20 relations (the
bottom 20 relations, accounting for 1.93%), tail-10 relations
(the bottom 10 relations, accounting for 0.51%).

The results in Table 6 show that the relational prior dis-
tribution can effectively alleviate the long-tail problem, es-
pecially in the Tail-20 and Tail-10, where the improvement
is particularly significant. For example, AML’s performance
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Figure 4: Scores in positive classes using ATL and ARPDL. For all
sub-graphs, the horizontal axis represents the number of relations in
positive classes corresponding to entity pairs, and the vertical axis
represents the average predicted score of the relations in positive
classes. In Figure 4(a), the scores are the logit output of the model;
in Figure 4(b), the scores are relative scores obtained by Eq.(13).

. FN, FN, FN.NA EN
Loss — FPL FNJ ad Rt /EpeeNyt /EP4EN)
ATL 1887 6253 5498 755  67.54  76.82
with RPD 2781 5076 4426 650 56.33 64.60
AML 2032 6363 5515 848 65.69 75.80
with RPD 2272 5699 4919 780 61.71 71.50
AFL 2300 5744 4898 846 60.89 71.41
with RPD 2975 4933 4241 692 53.63 62.38
NCRL 2770 5603 4872 731 58.19 66.92
withRPD 2157 5666 5039 627  64.41 72.43
PEMSCL 2264 5746 4926 820  61.50  71.74
with RPD 3060 4978 4283 695 53.28 61.93
SAT 1749 6241 5363 878 67.12 78.11
with RPD 2647 5389 4604 785 57.29 67.06
HingeABL 2935 5083 4306 777 5370 6339
with RPD 3510 4590 3903 687 48.19 56.67

Table 5: Statistics of false prediction patterns before and after in-
tegrating the relational prior distribution (RPD) adapter. FP (False-
Positive): predicts a negative example as a positive example. FN
(False-Negative): predicts a positive example as a negative example.
FN_NA: predicts a positive example as a negative example, and the
predicted label is NA. FN_Rel: predicts a positive example as a neg-
ative example, and the predicted label is a label in negative classes.
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Loss Head-10 Mid-761 Tail-207 Tail-101
ATL 77.40 66.63 4149 3896
withRPD  79.11 68.54 47.87 4199
AML 76.68 65.72 4364 40.00
withRPD 7852 68.47 51.09  47.40
AFL 78.22 68.33 46.15 4217
withRPD 7973 70.06 5189 48.17
NCRL 77.61 67.72 4418 3774
withRPD 7853 69.64 4834 4121
PEMSCL 78.16 68.82 4846 4278
withRPD 7917 70.15 49.82  44.09
SAT 77.48 67.64 4895 4121
withRPD 7879 69.02 4991 46.93
HingeABL  79.04 69.92 5256 43.93
withRPD  79.86 70.13 5186 4550

Table 6: F1 results on different proportions of long-tail distribution.
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Figure 5: Results of distribution fitting. When calculating the distri-
bution of predicted relations, we first perform softmax on the scores
of 97 classes (including TH class) for each entity pair, and then ob-
tain relation scores of all entity pairs. Finally, we average the scores
for each class to obtain the distribution of predicted relations (ex-
cluding the TH class).

on Tail-20 improves from 43.64% to 51.09%, and on Tail-10
improves from 40.00% to 47.40%. This trend is also sig-
nificant on other losses, further verifying the effectiveness of
integrating relational prior distribution in processing long-tail
distribution data.

6.4 Analysis of the Fit Between Relation Prediction
Distribution and Relation Prior Distribution

To verify whether the distribution of predicted relations fits
the prior distribution of relations, we use Kullback-Leibler
(KL) divergence to compare the fitting degree of two distribu-
tions. As shown in Figure 5, when using ARPDL, the KL di-
vergence between the relation prediction distribution and the
relation prior distribution is 4.75%, while the KL divergence
when using ATL is 5.66%. This shows that the predicted re-
lations after using ARPDL better fit the prior distribution.

In our experiments, we cannot ensure that the training
and test relational distributions are similar. Thus, we fur-
ther assess ARPDL’s robustness under distribution shifts by
comparing its performance using the train set’s prior distri-
bution and a randomly generated distribution. As shown in
Table 7, ATLOP achieves an F1 score of 73.29, which im-
proves to 75.90 with ARPDL. Even with a random distribu-

Method on Re-DocRED test set F1 Ign-F1
ATLOP 7329 7246
ATLOP with ARPDL (Our original) 7590 74.81

ATLOP with ARPDL (randomly generated distribution) 7549  74.42

Table 7: Results under different relation prior distributions.

Model Dev Test

F1 Ign-F1 F1 Ign-F1
on Re-DocRED
Entity-Type Pairs 7578  74.65 7590 74.81
Entity Pairs 75.78  74.65 75.90 74.81
on DWIE
Entity-Type Pairs  65.28  58.26 7124  63.27
Entity Pairs 65.55 58.79 71.48 63.46

Table 8: Results of ARPDL with different granularities.

tion, ARPDL maintains F1 score of 75.49, demonstrating its
adaptability to distribution variations. Our analysis suggests
that the main reasons for this improvement are the incorpora-
tion of prior distribution and the optimization of model per-
formance by ignoring the NA label and increasing the contri-
bution of positive classes to loss.

6.5 Entity Pairs vs Entity-Type Pairs

To compare the performance of our loss ARPDL based on
different granularities of entity pairs and entity-type pairs, we
conduct experiments on Re-DocRED and DWIE datasets as
shown in Table 8. Experimental results show that both gran-
ularities perform equally well on the Re-DocRED, with only
slight differences observed on DWIE. We attribute this to the
following main factors: first, the relational prior distribution
of entity pairs in each of the two datasets is highly consistent
with the distribution of entity-type pairs; second, the nega-
tive classes contain more relations than the positive classes,
which are relatively sparse. Our prior distribution loss fo-
cuses exclusively on the positive classes (Eq.(9)-(11)), which
may lead to negligible differences in the outcomes between
the two granularities. This results in Table 8§ also further im-
plicitly demonstrate the stability of our relational prior distri-
bution loss.

7 Conclusion

We propose ARPDL, a new multi-label classification loss
that can guide the DocRE models to adaptively adjust re-
lation prediction scores using prior distribution of relations.
Moreover, we propose a novel strategy in ARPDL to address
the class-imbalance and long-tail problems by increasing the
contribution of positive classes to loss. In addition, our de-
signed relational prior distribution component can also be ap-
plied as a plug-in adapter to the other multi-label threshold
losses to further improve their performance on DocRE. Ex-
periments show that ARPDL consistently improves DocRE
models, achieving SOTA results and enhancing performance
when integrated into other losses, validating our approach’s
effectiveness and generality. Since our method is indepen-
dent of a specific model, it has the potential to be widely used
in other multi-label classification scenarios.
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