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Abstract

Segment Anything Model 2 (SAM2) is a new-
generation, high-precision model for image and
video segmentation, offering extensive application
prospects across numerous computer vision fields.
However, as a large-scale model, its huge mem-
ory demands and expansive computing costs pose
challenges for practical deployment. This paper
presents Q-MiniSAM2, an efficient Quantization-
based segmentation benchmark tailored to optimize
SAM2 by Minimizing memory consumption and
accelerating computations. We begin with apply-
ing Post-Training Quantization (PTQ) to SAM2,
requiring only a relatively small dataset for network
calibration, thereby eliminating the need for re-
training. Building upon PTQ, we further introduce
a Hierarchy-based Video Quantization method to
enhance the model’s capacity to capture video se-
mantics and temporal correlations across different
time scales. Furthermore, we observe that SAM2’s
memory overhead is predominantly concentrated
on processing historical frames, and the redundant
cross-attention computations significantly increase
memory and computational costs due to the im-
perceptible change of the short time intervals be-
tween these frames. To tackle this issue, an Adap-
tive Mutual-KV mechanism is proposed to mitigate
excessive cross-attention by leveraging inter-frame
similarities. Comprehensive experiments demon-
strate that the proposed approach achieves superior
performance compared to state-of-the-art methods,
underscoring its potential for efficient and scalable
video segmentation.

1 Introduction
Large pre-trained models [Bi et al., 2024; Xu et al., 2024a]
are capable of learning complex patterns from vast datasets,
driving significant advances in natural language processing,
computer vision, and computational biology. Their ability
to generalize across domains enables adaptation to various

*Corresponding author.

Figure 1: The existing edge quantization model can only perform
image segmentation tasks. We proposed a new benchmark for the
quantization segmentation model, which can be used for edge image
and video segmentation tasks. At the same time, it has a lightweight
design to address the timing challenges of videos.

downstream tasks directly or with minimal fine-tuning, with-
out extensive retraining. As a prominent example, the Seg-
ment Anything Model (SAM) [Kirillov et al., 2023], lever-
ages large amounts of labeled and unlabeled data to learn
generalized features, achieving high-precision segmentation
across diverse image types, including previously unseen ob-
jects. Building on its predecessor, SAM2 [Ravi et al., 2024]
enhances image and video segmentation capabilities by in-
tegrating advanced techniques in adaptive prompt handling,
multi-stage distillation, and optimized model architecture.
Despite SAM’s success, deploying it on the edge at scale
presents challenges, such as managing computational costs
and ensuring robustness across varied environments.

Recent efforts have concentrated on advancing the deploy-
ment and application of SAM on edge devices. Mobile-
SAM [Zhang et al., 2023a] aims to reduce the computational
load of the image encoder by adopting a lightweight TinyViT
[Wu et al., 2022] architecture, whereas FastSAM [Zhao et
al., 2023] reframes the segmentation task as an instance seg-
mentation task with a single foreground category, utilizing
the YOLOv8 [Jocher et al., 2023] model. TinySAM [Shu
et al., 2023] introduces a comprehensive knowledge distilla-
tion approach that employs hard prompt sampling and a hard
mask weighting strategy to train a lightweight student model.
In PTQ4SAM [Lv et al., 2024], Post-Training Quantization
(PTQ) [Nagel et al., 2020] is introduced to quantize SAM.
Quantization aims to convert the floating-point parameters of
the model into low-bit representation, which is a quantization
method that requires only a small unlabeled dataset to cali-
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brate the network without retraining [Xu et al., 2024b]. Un-
fortunately, all these methodologies are circumscribed within
the ambit of the image domain, with scant incursion into the
far more intricate expanse of the video domain.

As an innovative augmentation of SAM within the video
realm, SAM2 integrates intricate real-time encoding and
mask-generation faculties. Endowed with such character-
istics, SAM2 manifests extraordinary suitability in applica-
tions of video and streaming data. It is not only capable
of exquisitely segmenting objects but also exhibits remark-
able resilience in accommodating diverse input modalities.
Nonetheless, the prodigious quantity of parameters and the
innate intricacy of video data present arduous challenges to
the model’s efficient inferential processes and edge-based de-
ployment endeavors.

In the pursuit of mitigating the computational resource
demands of SAM2 during edge deployment and video in-
ference, we have devised an innovative approach: Q-
MiniSAM2, a highly efficient quantization-based segmenta-
tion benchmark scheme, as graphically illustrated in Figure
1. This novel solution represents a significant step forward in
optimizing the resource-intensive operations associated with
SAM2. Specifically, we have been the first to proactively ap-
ply Post-Training Quantization (PTQ) technology to SAM2.
In parallel, we have harnessed the power of hierarchy-based
contrastive learning methods [Guo et al., 2024; Li et al.,
2022a; Zhao et al., 2021] to extract temporal information
from relatively recent historical frames and semantic infor-
mation from relatively distant historical frames. This dual-
extraction mechanism ensures that the quantized model is
exquisitely attuned to both the temporal coherence and se-
mantic consistency between frames, which is crucial for ac-
curate video segmentation.

Moreover, an in-depth analysis of video data reveals its
pronounced redundancy in the temporal dimension. The
changes between adjacent frames are trivial, leading to the
unnecessary occupation of memory and the profligate waste
of computational resources. To counteract this issue, we in-
troduce the Adaptive Mutual-KV mechanism. During cross-
attention, this mechanism enables the sharing of key-value
(KV) pairs between similar historical frames and the cur-
rent frame. This innovative approach effectively mitigates
the high redundancy of video data in the temporal dimension,
thereby enhancing the overall efficiency of the segmentation
process. Our comprehensive approach has yielded remark-
able results. It has successfully reduced the number of pa-
rameters of the original model by a staggering 80%, all while
maintaining an impressive 93% of the original model’s per-
formance. This achievement represents a significant leap in
the field of video segmentation, offering a more resource-
efficient and cost-effective solution. In summary, our main
contributions are as follows:

1. To the best of our knowledge, our work is the first to
present a model quantization solution meticulously tai-
lored for video segmentation models. By applying an
adaptive quantization technology to SAM2, we have
not only streamlined the computational process but also
opened up new possibilities for optimizing video-based
deep-learning models. This approach sets a new prece-

dent in the domain, offering a novel paradigm for future
research in resource-efficient video segmentation.

2. We introduce an innovative Hierarchy-based Video
Quantization method to capture both the temporal co-
herence and semantic diversity from historical frames by
leveraging contrastive learning. To address the redun-
dancy in the representation of historical frames within
the video segmentation model, we employ the adaptive
mutual-KV mechanism, which can significantly reduce
computational costs while maintaining the integrity of
the segmentation process.

3. Extensive experimental results demonstrate that our pro-
posed method consistently outperforms existing state-
of-the-art PTQ approaches. Remarkably, our method
maintains 93% of the original model’s performance
when compressed to 6-bit precision, and achieves state-
of-the-art results even under aggressive 4-bit quantiza-
tion.

2 Related Work
2.1 Video Object Segmentation
Video Object Segmentation (VOS) [Ding et al., 2023; Yang
et al., 2021; Zhao et al., 2025] is intended to segment a
target foreground object from the video background at the
pixel level across a video sequence. In Semi-Supervised VOS
[Wang et al., 2018; Wei et al., 2019; Xu et al., 2025], the
process starts with an initial object mask in the first frame
and requires accurate tracking and segmentation of the ob-
ject throughout the video. Early neural network-based meth-
ods [Perazzi et al., 2016; Xu et al., 2018] typically employ
online fine-tuning on the first frame of a video to adapt the
model to the target object. Recent approaches [Wu et al.,
2023; Zhang et al., 2023b] have extended single vision trans-
formers to jointly process the current frame along with all
previous frames and their associated predictions, achieving a
simpler architecture but at the cost of significantly increased
inference overhead.

For Interactive Video Object Segmentation (iVOS), the
iVOS model segments objects (referred to as masklets) in
the video based on user guidance, such as clicks or bound-
ing boxes. Several early approaches [Wang et al., 2005;
Bai and Sapiro, 2007; Tao et al., 2022] employ graph-
based optimization techniques to guide the segmentation an-
notation process. More recent methods [Heo et al., 2020;
Cheng et al., 2021; Delatolas et al., 2024] often adopt a mod-
ular design, converting user input into a mask representation
on a single frame and then propagating it to other frames.
In SAM2, Semi-Supervised VOS and iVOS are unified into
Promptable Visual Segmentation (PVS), enabling interactive
segmentation and tracking of objects using inputs such as
clicks, boxes, or masks on any video frame.

2.2 Model Quantization
Model quantization [Jacob et al., 2018; Nagel et al., 2021;
Lyu et al., 2020] reduces the numerical precision of model
parameters, typically by converting floating-point values to
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fixed-point ones. The aim is to reduce memory usage, compu-
tational complexity, and energy consumption while maintain-
ing acceptable accuracy [Bi et al., 2025]. Current research is
predominantly categorized into Quantization-Aware Training
(QAT) and Post-Training Quantization (PTQ).

Quantization-Aware Training (QAT) [Lee et al., 2021; Li et
al., 2022b; Zhu et al., 2023] integrates quantization into the
training process through back-propagation, where a straight-
through estimator [Bengio et al., 2013] is commonly used
to approximate the gradients of non-differentiable rounding
functions. QAT involves retraining the model using the entire
labeled dataset to optimize quantization parameters. How-
ever, given the massive scale of the original dataset, this
approach would be highly time-consuming and computa-
tionally expensive. In contrast, PTQ [Frantar et al., 2022;
Li et al., 2023; Dettmers et al., 2024; Huang et al., 2024]
presents a more efficient alternative, as it only requires a small
unlabeled dataset to calibrate the network. Adaround [Nagel
et al., 2020] proposes an adaptive weight rounding mecha-
nism. Brecq [Li et al., 2021] quantizes the model block by
block and introduces the Fisher Information Matrix to guide
the reconstruction process. Qdrop [Wei et al., 2022] ran-
domly discards activation quantization during the quantiza-
tion process to improve the robustness of the quantization
model.

3 Method
We first introduce the workflow of SAM2. In SAM2, videos
are processed in a streaming manner, where each frame is se-
quentially processed by the image encoder and cross-attended
with memory representations of the target object from prior
frames by the memory attention. The mask decoder can op-
tionally incorporate prompt inputs to predict the segmenta-
tion mask for the current frame. Lastly, the memory encoder
transforms both the predictions and embeddings from the im-
age encoder, preparing them for use in subsequent frames. In
the following sections, we will elaborate on our method.

3.1 Video Segmentation Quantization Benchmark
Model quantization has become a crucial technique for ac-
celerating and compressing deep learning models, as it al-
lows for a reduction in the bit-level representation of parame-
ters while maintaining model accuracy. In the most common
quantization methods, quantization and de-quantization oper-
ations can be defined as follows:

int =clamp
(⌊

fp
s

⌉
+ z, 0, 2k − 1

)
,

f̂p = s · (int − z) ≈ fp,
(1)

where s and z denote the scaling factor and zero point, re-
spectively. ⌊·⌉ is the round-to-nearest operator. fp and f̂p are
floating-point and de-quantized values, and int is mapped in-
teger. clamp function clips the values fall outside the range
of a k-bit integer.

In our analysis of the SAM2, we observed that the param-
eters of the image encoder, memory attention, and mask de-
coder modules collectively account for over 97% of the total
model parameters. Given the substantial footprint of these

Algorithm 1 Post-Training Quantization
Input: Full-precision SAM2 MF , Calibration Set Calib
Output: Quantized model MQ

Variables: Qlayer: layer in MQ, layer: layer in MF ,s:
Scale factor for quantization, z: Zero-point for quantiza-
tion

1: Copy and insert fake quantization factors into MF to ob-
tain MQ

2: Enable the observer for the fake quantization factors
3: Calib is passed to MQ for calibration, and the observer

collects activation distribution
4: Enable the fake-quant for the fake quantization factors
5: for Qlayer in MQ, layer in MF do
6: Update the parameters s and z by Eq. 2 and Eq. 3
7: end for
8: return MQ

three modules, we focus our quantization efforts on them to
achieve the greatest impact in terms of memory and compu-
tational savings. To this end, we employ Post-Training Quan-
tization, a strategy that requires significantly less computa-
tional effort compared to Quantization-Aware Training, as it
bypasses the need for end-to-end model retraining.

Our post-training quantization method introduces fake
quantization factors into the full-precision SAM2 model, de-
noted as MF , to obtain the quantized model MQ. We then en-
able the observer for the fake quantization factors, and a small
calibration dataset, Calib, is used to evaluate and record
the activation distributions within each layer under simulated
quantization conditions. This calibration phase is crucial, as it
allows precise capture of each layer’s output statistics, such as
activation range and distribution, which are used to initialize
the quantization scaling factors. The calibration data, Calib,
then guides a layer-by-layer reconstruction of the quantized
model, aiming to closely align the quantized outputs with
those of the original floating-point model. During reconstruc-
tion, loss functions are applied to minimize the gap between
the outputs of the quantized and original models. Similar to
AdaRound [Nagel et al., 2020], We define the reconstruction
loss as:

Lrec =
∥∥∥Wx− W̃x

∥∥∥2
F
+ αR(V), (2)

where the first term represents the MSE loss, W is the
weights of the reconstruction layer. x is the input of the re-
construction layer, α is a trade-off parameter and W̃ are the
quantized weights:

W̃ = clamp(⌊W
s
⌋+ h(V) + z, 0, 2k − 1). (3)

The other term R(V) is a differentiable regularizer that is
encouraged the optimization variables h(Vi,j) to converge
towards either 0 or 1. The overall process is shown in Algo-
rithm 1.

3.2 Hierarchy-based Video Quantization
In our Video Segmentation Quantization Benchmark, to min-
imize the accuracy loss between the quantized model and the
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Figure 2: Illustration of our proposed Q-MiniSAM2. The Adaptive Mutual-KV selectively shares the computation of Key (K) and Value (V)
matrix representations to reduce computational costs without sacrificing accuracy. The Hierarchy-based Video Quantization (HVQ) constructs
multi-scale representations by leveraging temporal variability and semantic consistency, ensuring high-quality quantization through multi-
scale reconstruction.

floating-point model, we utilize Eq. 2 to optimize the quanti-
zation parameters, ensuring that the outputs of the floating-
point model and the quantized model for the same frame
are closely aligned. However, Eq. 2 only considers output
alignment. To fully account for the variations in both short-
term and long-term frames in videos, we propose a novel
Hierarchy-based Video Quantization framework. For the cur-
rent frame, nearby historical frames are typically semanti-
cally similar and contain the temporal information we aim to
capture; thus, we refer to these frames as temporal frames.
On the other hand, more distant historical frames may ex-
perience significant semantic changes due to the longer time
interval. In order to make more full use of the potential in-
formation of these frames, we hope to extract richer semantic
features from them, which we call semantic frames.

Firstly, We use the output of the floating-point model
for the current frame as an anchor point. We then mini-
mize the distance between the anchor and the output of the
quantized model for the current frame, while simultaneously
maximizing the distances between the anchor and the out-
puts of the quantized models for both temporal frames and
semantic frames. This approach enables us to effectively
capture the temporal information from nearby frames and the
semantic information from distant frames.

Specifically, in each iteration, we select a frame t from the
video as the current frame and choose a temporal frame
ttem from the interval (t − lshort, t) and a semantic frame
tsem from the interval (t − llong, t − lshort). lshort and llong de-
note the lengths of the short-term and long-term time win-
dows, respectively. The current frame feature ft is then passed
through both the reconstructed floating-point module and the
quantized module to obtain their respective outputs denoted
as f fp out

t and f q out
t . Similarly, the temporal frame fea-

ture ftem and the semantic frame feature fsem are passed
through the reconstructed quantized module to generate their
outputs, f q out

tem and f q out
sem . Using f fp out

t as the anchor, we em-
ploy two triplet losses to minimize the distance between f fp out

t

and f q out
t , while simultaneously maximizing the distances

between f fp out
t and the outputs of the quantized module for

the temporal frame and semantic frame, f q out
tem and f q out

sem .
The formula is as follows:

LHiera = Ltriplet

(
f fp out
t , fq out

t , fq out
tem

)
+

β · Ltriplet

(
f fp out
t , fq out

t , fq out
sem

)
,

(4)

where β is a trade-off parameter. This approach ensures that
the quantized model not only aligns closely with the floating-
point model for the current frame but also captures the tempo-
ral consistency from nearby frames and the semantic diversity
from distant frames.

Eventually, the total loss of our proposed framework is for-
mulated as:

Ltotal = LHiera + γ · Lrec, (5)
where γ is a trade-off parameter.

3.3 Adaptive Mutual-KV
To address the computational complexity and memory con-
sumption challenges in video segmentation models for video
sequence processing, we propose a novel Adaptive Mutual-
KV method based on the similarity of historical frames.
In traditional Cross-Attention mechanisms, each historical
frame independently generates a distinct Key-Value pair,
leading to substantial increases in memory usage and com-
putational overhead. Our method innovatively calculates the
similarity between frames and shares the same Key-Value
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Methods
Model-S Model-B Model-L

FP W6A6 W4A4 FP W6A6 W4A4 FP W6A6 W4A4

MinMax [Jacob et al., 2018]

40.3

10.9 -

41.1

35.5 -

41.4

35.1 -
Percentile [Wu et al., 2020] 12.2 - 36.0 - 35.4 -
OMSE [Choukroun et al., 2019] 13.3 - 36.4 5.9 36.5 7.6
AdaRound [Nagel et al., 2020] 26.2 - 37.8 10.6 36.8 12.7
BRECQ [Li et al., 2021] 25.9 - 37.8 12.0 36.7 12.3
Qdrop [Wei et al., 2022] 33.3 13.0 39.3 25.1 37.1 29.4
PTQ4SAM [Lv et al., 2024] 34.2 18.4 38.5 31.6 37.9 30.2
Ours 39.0 34.7 40.0 33.9 38.8 31.8

Table 1: Results of image instance segmentation on COCO dataset among different methods. FP represents the original floating point model,
W6A6 represents quantizing weights and activations to 6-bit, and W4A4 represents quantizing weights and activations to 4-bit. - indicates
the final result (mAP) is below 1.

pair among similar historical frames, rather than generating
a new Key-Value pair for each individual frame.

The core principle of this approach is to group historical
frames based on their similarity, thereby enabling the sharing
of Key-Value pairs within each group. This strategy not only
reduces memory consumption but also ensures the retention
of critical information across historical frames. By striking
a balance between computational efficiency and information
retention, our method becomes particularly advantageous for
real-time video processing tasks, where both computational
resources and memory are often constrained.

Our method begins by calculating the similarity between
the historical frames. This similarity score is used to identify
frames that are most similar to each other, and those with
similarity scores above a dynamic threshold ϵ are grouped
together. The formula is as follows:

Gt = {i | ft · fi
∥ft∥ ∥fi∥

> ϵ; i, t ∈ G}, (6)

where ft and fi are the feature of frames t and i, respectively.
G is the set of all historical frames, Gt is the frame group ob-
tained by frame t, ϵ is a dynamic threshold. In the early stages
of training, a larger ϵ is used to prevent low-similarity frames
from sharing the same Key-Value pair, ensuring information
independence and avoiding loss. As training progresses and
the model learns temporal dependencies, ϵ is gradually re-
duced to decrease computational cost.

Once the historical frames have been grouped based on
similarity, we proceed to generate shared Key-Value pairs.
For a group of similar frames, we calculate a collective
KeyGt

and a collective ValueGt , which will be shared
among all frames in the group Gt. Specifically, for a frames
group Gt the shared KeyGt

and ValueGt can be computed
as the average of the individual Keys and Values:

KeyGt
=

1

|Gt|
∑
j∈Gt

Keyj ,ValueGt =
1

|Gt|
∑
j∈Gt

Valuej ,

(7)
where Keyj and Valuej are the Key and Value for each
frame j in the group Gt. Then, we use the obtained shared

key-value in cross attention:

Attention(Q,Kj , Vj) = softmax

(
Q ·KeyT

Gt√
dk

)
ValueGt ,

(8)
where Q is the query obtained from the current frame, Kj , Vj

are the key and value obtained from a certain historical frame
j, and j ∈ Gt. This aggregation not only reduces the number
of unique Key-Value pairs used in the Cross-Attention mech-
anism, but also ensures that the historical frame information
is effectively preserved. By sharing the same Key-Value pair
among similar frames, we retain the relevant contextual infor-
mation of the historical frames while significantly improving
computational efficiency.

4 Experiments
4.1 Experimental Setups
Datasets. We conduct experiments on two object segmen-
tation datasets: MS-COCO [Lin et al., 2014] and SA-V [Ravi
et al., 2024]. MS-COCO contains 123,000 images across 91
object categories, of which the training set contains 118,000
images and the validation set containing 5,000 images. The
SA-V dataset comprises approximately 51,000 real-world
videos and over 600,000 spatiotemporal masks (referred to
as masklets), establishing it as the largest video segmenta-
tion dataset to date. Specifically, the training split consists
of 505,83 videos and 642,036 masklets, while the validation
split includes 155 videos and 293 masklets. Additionally, the
test split contains 150 videos and 278 masklets.

Tasks and metrics. We conduct experiments on two seg-
mentation tasks. For Promptable Visual Segmentation (PVS),
we obtain accurate object masks by manually annotating box
prompts and use J&F (Jaccard and F-measure) to evaluate
its effectiveness on the SA-V dataset. J&F combines the
Jaccard Index (J ) and F-measure (F) to evaluate the over-
lap area and boundary accuracy of the segmentation results,
respectively. For the image instance segmentation task, we
leverage the predicted bounding boxes generated by the de-
tector as box prompts for the SAM2 to obtain precise binary
masks. To evaluate the effectiveness of this approach, we
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Methods

Model-B Model-L

FP W6A6 W4A4 FP W6A6 W4A4

J&F J F J&F J F J&F J F J&F J F J&F J F J&F J F
Adaround [Nagel et al., 2020]

72.7 69.0 76.3

47.2 43.5 50.9 25.6 23.8 27.5

73.7 70.3 77.2

48.1 44.5 51.7 27.3 25.7 28.9
Qdrop [Wei et al., 2022] 61.4 57.7 65.0 33.4 30.7 36.1 63.1 59.3 66.8 35.8 33.7 37.9
PTQ4SAM [Lv et al., 2024] 66.5 63.0 69.9 37.8 35.6 40.0 67.1 63.6 70.5 39.5 37.4 41.6
Ours 67.9 64.2 71.5 39.1 36.5 41.6 68.8 65.1 72.4 40.7 38.5 42.9

Table 2: Results of promptable visual segmentation on SA-V dataset among different methods.

Methods Model-B

FP W6A6 W4A4

Base

72.7

66.6 38.0
Base+MKV 67.3 38.5
Base+HVQ 67.1 38.7
Ours 67.9 39.1

Table 3: Ablation Sdudies of promptable visual segmentation on
SA-V dataset (J&F ).

employ the mean Average Precision (mAP) as the primary
evaluation metric.

Implementation details. In the image instance segmenta-
tion task, YOLOX [Ge, 2021] is employed as the detector to
generate predicted bounding boxes, which serve as the box
prompt inputs for the SAM2 model. For quantization train-
ing, a set of 32 unannotated training images is randomly se-
lected to form the training dataset. In the prompt-based visual
segmentation task, to obtain accurate target masks through
manually annotated box prompts, 8 videos are randomly cho-
sen from the SA-V validation set, with 20 frames extracted
from each video to construct the training dataset. Follow-
ing conventional methodologies, the implemented quantiza-
tion strategy includes per-channel asymmetric quantization
for weights and per-tensor asymmetric quantization for acti-
vation values. Each module undergoes 20,000 iterations dur-
ing the reconstruction phase. Additionally, to ensure the sta-
bility and robustness of the model’s performance, the first and
last layers (or modules) of the network are exempted from the
quantization process. The hyperparameters α, β, and γ are set
to 1, 0.5 and 0.4 respectively.

Figure 3: SAM2 performance at different scales and compression
levels

4.2 Image Instance Segmentation Results
We compare Q-MiniSAM2 with statistical-based methods
(e.g., MinMax [Jacob et al., 2018], Percentile [Wu et al.,
2020], OMSE [Choukroun et al., 2019]) and learning-based
methods (e.g., AdaRound [Nagel et al., 2020], BRECQ [Li et
al., 2021], QDrop [Wei et al., 2022]) under the same setting.
As shown in Table 1, our method consistently achieves supe-
rior performance compared to the other approaches, demon-
strating a significant improvement in evaluated metrics. Our
4-bit Q-MiniSAM2 is 16.3% mAP higher than the current
best method PTQ4SAM on SAM-S and achieves the best re-
sults on SAM-B and SAM-L. As the model size increases
from SAM2-B to SAM2-L, the segmentation performance of
the quantized model degrades. We attribute this phenomenon
to the fact that the error accumulation caused by the increased
number of layers outweighs the performance gains from the
larger model capacity. Notably, even for the full-precision
(FP) model, the performance improvement from SAM2-B
to SAM2-L is marginal, with only a 0.3% increase in mAP.
Specifically, as the depth of the model increases, quantization
errors will gradually propagate and accumulate in the net-
work. This phenomenon will appear when the performance
improvement of the model cannot make up for the error in-
troduced by quantization.

4.3 Promptable Visual Segmentation Results
We apply AdaRound, QDrop and PTQ4SAM to SAM2 and
compare their performance with our proposed method, Q-
MiniSAM2. The experimental results are summarized in Ta-
ble 2. Our method maintains 93% of the original model’s
performance even when compressed to 6-bit precision. For
instance, on SAM2-B, the performance drop is only 4.8%
in terms of J&F . Compared to the state-of-the-art image
quantization segmentation method, PTQ4SAM, our method
achieves a significant improvement, outperforming it by 1.4%
in J&F at 6-bit precision. In the case of 4-bit quantization
for SAM2-B, where the parameter precision is significantly
reduced, our method still achieves 39.1% in J&F , making it
the best-performing video segmentation quantization method
to date.

4.4 Ablation Studies
We conduct an ablation study to evaluate the effective-
ness of the proposed Adaptive Mutual-KV (MKV) and
Hierarchy-based Video Quantization (HVQ). Using the quan-
tized SAM2 framework described in Section 3.2 as the base-
line (Base), we introduce two variants by integrating Adap-
tive Mutual-KV and Hierarchy-based Video Quantization
separately. Experiments are conducted on the SA-V dataset,
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Figure 4: Qualitative results of promptable visual segmentation on the SA-V dataset.

Figure 5: Qualitative results of image instance segmentation

and the results are summarized in Table 3. As shown in
Table 3, each variant outperforms the baseline, demonstrat-
ing the individual contributions of Adaptive Mutual-KV and
Hierarchy-based Video Quantization. Furthermore, the com-
bination of both components achieves the best performance,
indicating that these components complement each other and
work synergistically to significantly enhance performance.
Specifically, our proposed the Hierarchy based Video Quanti-
zation successfully captures both temporal variability and se-
mantic consistency in video data, enabling high-quality quan-
tization. The Adaptive Mutual-KV enhances model perfor-
mance while reducing computational costs.

4.5 Storage Saving
We evaluated the performance of SAM2 models of varying
sizes when compressed to different bit precisions using Q-
MiniSAM2, as illustrated in Figure 3. At W6A6 precision,
our method reduces storage by over 80%, while retaining
93% of the original performance. On specialized hardware,
with W4A4 precision, the inference speed can theoretically

increase by a factor of 8 compared to the original model. This
is because the computation of a 32-bit multiplication can now
be replaced by performing 8 parallel 4-bit multiplications.
While factors such as quantization parameters may influence
the actual results, the expected inference speed is at least 5
times faster than that of the full-precision model.

4.6 Qualitative Results
In Figure 4, we present the qualitative results of promptable
visual segmentation. From the figure, it is evident that our
method not only generates fine-grained object masks from the
video (e.g., the body and tail of the bird in the first row), but
also maintains continuous tracking of occluded objects (e.g.,
the person occluded in the third row). This is made possible
by the improvements we have specifically designed for video
processing. In Figure 5, we present the qualitative results of
image instance segmentation. Compared to existing methods,
it is evident that most approaches fail to produce clear object
boundaries (as seen in the ”person” in the fourth row) and suf-
fer mask omissions (such as the ”monitor” in the first row).
Furthermore, many methods struggle to segment objects in
complex scenes (e.g., the ”laptop” in the first row). In con-
trast, our method clearly outperforms others, demonstrating
superior mask completeness and boundary clarity.

5 Conclusion
In this paper, we propose a novel post-training quantization
framework, Q-MiniSAM2, for video segmentation. First, we
establish a post-training quantization benchmark for SAM2.
Second, we observe redundancy in the interaction between
the current frame and historical frames in SAM2, and we
introduce Adaptive Mutual-KV to reduce redundancy across
historical frames. Then, to capture the temporal variability
and semantic consistency in videos, we propose Hierarchy-
based Video Quantization, which simultaneously considers
the temporal relationships of nearby frames and the semantic
information of distant frames to ensure high-quality quanti-
zation. Extensive experimental results demonstrate the effec-
tiveness and practicality of our method. However, we note
that performance degradation at 4-bit quantization remains
significant, and this will be a focus of our future work.
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Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432, 2013.

[Bi et al., 2024] Jinhe Bi, Yujun Wang, Haokun Chen, Xun
Xiao, Artur Hecker, Volker Tresp, and Yunpu Ma. Visual
instruction tuning with 500x fewer parameters through
modality linear representation-steering. arXiv preprint
arXiv:2412.12359, 2024.

[Bi et al., 2025] Jinhe Bi, Yifan Wang, Danqi Yan, Xun
Xiao, Artur Hecker, Volker Tresp, and Yunpu Ma.
Prism: Self-pruning intrinsic selection method for
training-free multimodal data selection. arXiv preprint
arXiv:2502.12119, 2025.

[Cheng et al., 2021] Ho Kei Cheng, Yu-Wing Tai, and Chi-
Keung Tang. Modular interactive video object segmen-
tation: Interaction-to-mask, propagation and difference-
aware fusion. In CVPR, pages 5559–5568, 2021.

[Choukroun et al., 2019] Yoni Choukroun, Eli Kravchik,
Fan Yang, and Pavel Kisilev. Low-bit quantization of
neural networks for efficient inference. In ICCVW, pages
3009–3018. IEEE, 2019.

[Delatolas et al., 2024] Thanos Delatolas, Vicky Kalogeiton,
and Dim P Papadopoulos. Learning the what and how of
annotation in video object segmentation. In WACV, pages
6951–6961, 2024.

[Dettmers et al., 2024] Tim Dettmers, Artidoro Pagnoni, Ari
Holtzman, and Luke Zettlemoyer. Qlora: Efficient fine-
tuning of quantized llms. NeurIPS, 36, 2024.

[Ding et al., 2023] Henghui Ding, Chang Liu, Shuting He,
Xudong Jiang, Philip HS Torr, and Song Bai. Mose: A new
dataset for video object segmentation in complex scenes.
In ICCV, pages 20224–20234, 2023.

[Frantar et al., 2022] Elias Frantar, Saleh Ashkboos, Torsten
Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv
preprint arXiv:2210.17323, 2022.

[Ge, 2021] Z Ge. Yolox: Exceeding yolo series in 2021.
arXiv preprint arXiv:2107.08430, 2021.

[Guo et al., 2024] Ruiming Guo, Mouxing Yang, Yijie Lin,
Xi Peng, and Peng Hu. Robust contrastive multi-view
clustering against dual noisy correspondence. NeurIPS,
37:121401–121421, 2024.

[Heo et al., 2020] Yuk Heo, Yeong Jun Koh, and Chang-Su
Kim. Interactive video object segmentation using global
and local transfer modules. In ECCV, pages 297–313.
Springer, 2020.

[Huang et al., 2024] Wei Huang, Yangdong Liu, Haotong
Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele
Magno, and Xiaojuan Qi. Billm: Pushing the limit
of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024.

[Jacob et al., 2018] Benoit Jacob, Skirmantas Kligys,
Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for effi-
cient integer-arithmetic-only inference. In CVPR, pages
2704–2713, 2018.

[Jocher et al., 2023] Glenn Jocher, Ayush Chaurasia, and
Jing Qiu. Yolo by ultralytics. 2023.

[Kirillov et al., 2023] Alexander Kirillov, Eric Mintun,
Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C
Berg, Wan-Yen Lo, et al. Segment anything. In ICCV,
pages 4015–4026, 2023.

[Lee et al., 2021] Junghyup Lee, Dohyung Kim, and Bum-
sub Ham. Network quantization with element-wise gradi-
ent scaling. In CVPR, pages 6448–6457, 2021.

[Li et al., 2021] Yuhang Li, Ruihao Gong, Xu Tan, Yang
Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang,
and Shi Gu. Brecq: Pushing the limit of post-training
quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

[Li et al., 2022a] Xiangyu Li, Xu Yang, Kun Wei, Cheng
Deng, and Muli Yang. Siamese contrastive embedding
network for compositional zero-shot learning. In CVPR,
pages 9326–9335, 2022.

[Li et al., 2022b] Yanjing Li, Sheng Xu, Baochang Zhang,
Xianbin Cao, Peng Gao, and Guodong Guo. Q-vit:
Accurate and fully quantized low-bit vision transformer.
NeurIPS, 35:34451–34463, 2022.

[Li et al., 2023] Zhikai Li, Junrui Xiao, Lianwei Yang, and
Qingyi Gu. Repq-vit: Scale reparameterization for post-
training quantization of vision transformers. In ICCV,
pages 17227–17236, 2023.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dollár, and C Lawrence Zitnick. Microsoft coco:

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Common objects in context. In ECCV, pages 740–755.
Springer, 2014.

[Lv et al., 2024] Chengtao Lv, Hong Chen, Jinyang Guo,
Yifu Ding, and Xianglong Liu. Ptq4sam: Post-training
quantization for segment anything. In CVPR, pages
15941–15951, 2024.

[Lyu et al., 2020] Gengyu Lyu, Songhe Feng, Yidong Li,
Yi Jin, Guojun Dai, and Congyan Lang. Hera: partial label
learning by combining heterogeneous loss with sparse and
low-rank regularization. TIST, 11(3):1–19, 2020.

[Nagel et al., 2020] Markus Nagel, Rana Ali Amjad, Mart
Van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? adaptive rounding for post-training quanti-
zation. In ICML, pages 7197–7206. PMLR, 2020.

[Nagel et al., 2021] Markus Nagel, Marios Fournarakis,
Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,
and Tijmen Blankevoort. A white paper on neural network
quantization. arXiv preprint arXiv:2106.08295, 2021.

[Perazzi et al., 2016] Federico Perazzi, Jordi Pont-Tuset,
Brian McWilliams, Luc Van Gool, Markus Gross, and
Alexander Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
CVPR, pages 724–732, 2016.

[Ravi et al., 2024] Nikhila Ravi, Valentin Gabeur, Yuan-
Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma,
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