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Abstract

Continual ultra-fine-grained visual recognition (C-
UFG) aims to continuously learn to categorize the
increasing number of cultivates (VC-UFG) and
consistently recognize crops across reproductive
stages (HC-UFG), which is a fundamental goal of
intelligent agriculture. Despite the progress made
in general continual learning, C-UFG remains an
underexplored issue. This work establishes the
first comprehensive C-UFG benchmark using mas-
sive soy leaf data. By analyzing recent pre-trained
model (PTM) based continual learning methods on
the proposed benchmark, we propose two simple
yet effective PTM-based methods to boost the per-
formance of VC-UFG and HC-UFG, respectively.
On top of those, we integrate the two methods into
one unified framework and propose the first uni-
fied model, Unic, that is capable of tackling the
C-UFG problem where VC-UFG and HC-UFG co-
exist in a single continual learning sequence. To un-
derstand the effectiveness of the proposed methods,
we first evaluate the models on VC-UFG and HC-
UFG challenges and then test the proposed Unic on
a unified C-UFG challenge. Experimental results
demonstrate the proposed methods achieve supe-
rior performance for C-UFG. The code is available
at https://github.com/PatrickZad/unicufg.

1 Introduction

Recent years have witnessed the great success of deep learn-
ing for general [Deng et al., 2009; Ridnik ez al., 2021] and
fine-grained [Wah er al., 2011; Van Horn er al., 2018] vi-
sual recognition problems. Differently in agricultural pro-
duction, crops of the same species are only identifiable at
an ultra-fine granularity [Yu er al., 2021b], which brings a
more challenging goal, ultra-fine-grained visual recognition
(UFG), to develop Al techniques for agriculture. Existing
works [Yu er al., 2023b; Wang er al., 2021; Yu ef al., 2023a;
Yu et al., 2022] have largely promoted the development of
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Figure 1: Illustration of (a) existing typical continual learning prob-
lems and (b) the proposed continual ultra-fine-grained problem.

UFG on a fixed set of categories. However, these techniques
are not applicable to handle either the increasing number of
new cultivars or the various reproductive stages of the same
category.

To this end, we propose to formulate the continual ultra-
fine-grained visual recognition (C-UFG) problem, a two-
dimensional challenge as in Figure 1(b), which involves both
continually learning to recognize new crop cultivars and con-
sistently adapting to new reproductive stages of seen cate-
gories. Formally, we refer to continual learning of increasing
cultivars as vertical C-UFG (VC-UFQG), and continual learn-
ing of growing crops as horizontal C-UFG (HC-UFG). As
discussed by [Wang et al., 2024], the former can be viewed
as a class-incremental learning (CIL) problem where the in-
creasing tasks have disjoint label spaces, and the latter is
an instance of domain-incremental learning (DIL) where all
tasks share the same label space. While most previous contin-
ual learning methods focus only on one of the two scenarios
(Figure 1(a)), a realistic C-UFG problem is a unified contin-
ual learning challenge that requires tackling both the increas-
ing crop cultivars and reproductive stages of seen cultivars in
a single learning sequence.
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While sequentially training the model on multiple tasks,
both CIL and DIL assume that the task ID is unknown dur-
ing inference. Thus the key challenge in continual learn-
ing is to effectively adapt to a new task (plasticity) without
catastrophic forgetting of seen tasks (stability) [De Lange et
al., 2021]. To tackle this problem, early works mainly ex-
plored Regularization-based methods [Li and Hoiem, 2017;
Kirkpatrick et al., 2017] that introduce learning regularization
to constrain the disruption of learned knowledge when train-
ing on new data, and replay-based methods [Lopez-Paz and
Ranzato, 2017; Rolnick et al., 2019] that memorize a sub-
set of previous raw images or embedded features to jointly
learn with new data. Despite their effectiveness on general
continual learning problems, these methods struggle on ultra-
fine-grained data as UFG requires substantial optimization of
parameters to adapt to each task [Zhang et al., 2023]. In
contrast, recent continual learning methods with pre-trained
models (PTMs) [Cha et al., 2021; Wang et al., 2022c;
Wang et al., 2022b; Smith et al., 2023] are shown to be su-
perior given the stable pre-trained features and highly plas-
tic parameter-efficient tuning mechanism [Jia et al., 2022;
Li and Liang, 2021]. This motivates us to first conduct a com-
prehensive analysis of existing PTM-based continual learning
methods and then explore more effective Al models for C-
UFG with PTMs.

Specifically, we establish a benchmark of C-UFG con-
sisting of challenging VC-UFG, HC-UFG and unified C-
UFG tasks. By evaluating existing open-sourced PTM-based
continual learning methods on the VC-UFG and HC-UFG
tasks, we observe significant performance decay of the meth-
ods compared to their results on general objects while two
co-exist designs, task-aware prompt learning and selective
prompt reuse, still benefit C-UFG. We further discover that
the key challenges that limit the final performance are the
inter-task prompts in VC-UFG and the classifier bias in HC-
UFG. Based on the preliminary analysis, we first propose two
simple yet effective PTM-based methods for VC-UFG and
HC-UFG, respectively. For VC-UFG, we employ deep and
dense keys to reduce the use of inter-task prompts. Adaptive
Classifier Adaptation is proposed to improve the robustness
of classifiers to inter-task prompts. For HC-UFG, we propose
to learn task-shared momentum prompts to alleviate the bias
of classifiers on more recent domains. On top of those, we
propose a unified C-UFG model, Unic, to integrate the two
methods into a unified framework to tackle realistic hybrid
C-UFG problems where VC-UFG and HC-UFG tasks exist
in a single continual learning sequence.

In summary, this work makes the following contributions:

* We formulate a realistic continual ultra-fine-grained
recognition problem for agriculture production. Com-
prehensive C-UFG datasets are established to facilitate
future development of advanced techniques.

* By analyzing existing PTM-based continual learning
methods on the proposed C-UFG datasets, we design
two simple yet effective PTM-based methods for VC-
UFG and HC-UFG, respectively. On top of those, we
propose a unified model, Unic, to effectively tackle the
more realistic hybrid C-UFG problems.

* We evaluate the proposed method on VC-UFG, HC-
UFG and unified C-UFG datasets. The evaluation re-
sults demonstrate that our proposed method boosts the
PTM-based continual learning performance on the three
challenging problems.

2 Related Work

Ultra-fine-grained Visual Recogntion. With the advance-
ment of deep learning, fine-grained visual recognition (FG)
[Wah et al., 2011; Van Horn et al., 2018; Liu et al., 2022] has
greatly developed in the last decade. However, identifying
objects at a very fine granularity, i.e. UFG [Yu et al., 2021b],
is still a challenging task. Compared with FG, UFG relies on
genetic source banks rather than human experts to obtain ac-
curate data labels. It promotes the classification granularity
from the species level to a subordinate level where even hu-
man experts can hardly identify the visual difference between
two categories. For UFG,, [Yu et al., 2021b] established the
first comprehensive benchmark of ultra-fine-grained cultivar
leaf data and verified the performance of modern neural net-
works. A key challenge in UFG is the over-fitting of train-
ing data. For this, MaskCov [Yu er al., 2021a] proposed a
random mask covariance network for representation learning.
Spare [Yu er al., 2022] proposed part representation learning
and erasing in a self-supervised framework. Benefiting from
the superiority of vision transformers [Dosovitskiy et al.,
2021], transformer-based models for UFG [Yu et al., 2023b;
Yu et al., 2023a] further boost the overall performance.

Continual Learning with PTMs. PTMs enable effective
replay-free continual learning. L2P [Wang et al., 2022c] for
the first time proposed to introduce a prompt pool with paired
prompts and keys with adaptive selection of the prompts
for inference. DualPrompt [Wang er al., 2022b] further
improved the prompt learning and introduced task-shared
prompts. CODA-P [Smith et al., 2023] designed an atten-
tion mechanism to learn weights for merging the task-specific
prompts. S-Prompts [Wang et al., 2022a] proposed a sim-
ple yet effective clustering-based prompt select mechanism
for domain-incremental scenarios. LAE [Gao et al., 2023]
proposes a unified PTM-based continual learning frameworks
for different parameter-efficient fine-tuning [Jia e al., 2022;
Houlsby er al., 2019; Hu et al., 2022] methods. HiDE [Wang
et al., 2023] mainly analyzes the effect of supervised and
self-supervised PTMs and decompose the PTM-base contin-
ual learning problem to improve the continual learning per-
formance of self-supervised PTMs. VQ-Prompt [Jiao et al.,
2024] proposes a vector-quantization framework for prompt
learning to further enhance the continual learning capability
of discrete task-specific prompts.

We also note that a previous work [Zhang er al., 2023]
made an attempt in C-UFG. However, the previous C-UFG
challenge takes cultivates at different reproductive stages as
different categories and regards that a VC-UFG problem,
which neither considers the inherent invariance between the
reproductive stages nor the existence of HC-UFG problems.
Moreover, the more realistic unified C-UFG problem is also
ignored. In contrast, this work presents a more comprehen-
sive C-UFG benchmark that establishes VC-UFG, HC-UFG
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Figure 2: Model classification accuracies on SoyGene-C.

and unified C-UFG challenges to better mitigate the gap be-
tween research and real-world agriculture demands.

3 Preliminary Analysis

3.1 Problem Definition

Formally, we denote by 7' the total number of UFG tasks
that sequentially arrive in a C-UFG learning sequence. For
each task t € {1,2,...,T}, we refer to D; = {X;,);} as
its data where A&; stands for the images and ), is the cor-
responding labels, respectively. During continual learning,
a C-UFG model learns on the training sets of the 7' tasks
one by one. Afterward, the model is evaluated on all T test
sets. In VC-UFG, the labels spaces of any two different tasks
are disjoint, i.e. Y; NY; = 0 given i # j. While in HC-
UFG, all tasks share the same label space, i.e. V; = Y; for
i,j7€{1,2,...,T}.

Similar to previous continual learning datasets [De Lange
et al., 2021; Wang et al., 2024], we construct the following
C-UFG datasets the data released by [Yu et al., 2021b]:

* SoyGene-C where we evenly separate the original
1,110-class SoyGene dataset into five 222-class UFG
tasks. This formulates a typical VC-UFG challenge.

* SoyAgeing-C where we treat the data at five reproduc-
tive stages in the original SoyAgeing dataset as an HC-
UFG challenge.

* SoyGlobal-C where we separate the original 1,938
classes of SoyGlobal into eight 216-class sets and one
210-class set. This presents a more difficult VC-UFG
challenge with a long task sequence and limited training
samples.

e UniUFG-C where we alternately arrange the first three
tasks in SoyGene-C and SoyAgeing-C to form a con-
tinual learning sequence containing both VC-UFG and
HC-UFG scenarios. This presents a more realistic and
challenging unified C-UFG problem.

3.2 Evaluation and Discussion

For analysis, we include recent PTM-based continual learn-
ing methods L2P [Wang et al., 2022c], DualPrompt [Wang et
al., 2022bl, S-Prompts [Wang et al., 2022a], CODA-P [Smith
et al., 2023], LAE [Gao er al., 2023], HiDE [Wang et al.,
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Figure 3: Model classification accuracies on SoyAgeing-C
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Figure 4: Prompt tuning on tasks in SoyGene-C, CIFAR-100-5 and
SoyAgeing-C.

2023], VQ-Prompt [Jiao et al., 2024], for comparisons. For
L2P, we empirically found that introducing deep and task-
aware prompt tuning as in DualPrompt, which we refer to
as L2P++, largely improves the results. Although S-Prompts
is designed for DIL, it is also suitable for VC-UFG. While
the CIL models are also applicable in HC-UFG when sim-
ply treating the same cultivar at different reproductive stages
as different categories, they ignore the intrinsic invariance of
crops during growing and introduce extra computation com-
plexity. For this, we replace the expandable classifiers with
fix-sized ones in those methods in HC-UFG. HiDE is ex-
cluded for HC-UFG as its task identity prediction requires
expandable classifiers.

We mainly test the methods on SoyGene-C and
SoyAgeing-C as in Figure 2 and Figure 3, respectively. The
immediate (light colors) and final (dark colors) classifica-
tion accuracies on each task are grouped together for illustra-
tion. The former is the best accuracy obtained during contin-
ual learning and the latter gives the model performance after
training.

On SoyGene-C, while most methods show similar immedi-
ate results, L2P++ and DualPrompt achieve superior overall
final accuracy. By comparing the two methods with the oth-
ers, we observe two co-exist key designs shared by L2P++
and DualPrompt that make them different from their coun-
terparts, i.e. task-aware prompt learning and selective
prompt reuse. Specifically, L2P++ and DualPrompt assign
nonoverlapping task-oriented prompts for each task and op-
timize only the correlated prompts when learning a specific
task. During inference, a subset of learned prompts is adap-
tively selected for reuse. S-Prompts also shares the two de-
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Figure 5: The overall architecture of the proposed Unic for unified C-UFG. For the convenience of illustration, we show only a single
prompted layer and the associated prompts. We show a unified C-UFG learning sequence where task m is a VC-UFG task and task n is a
HC-UFG task. The left part illustrates how Unic learns on a VC-UFG task and the right part shows that on an HC-UFG task.

signs except that its prompt selection is less compatible with
UFG tasks, which explains its overall performance. Dif-
ferently, L2P, VQ-Prompt optimize the prompts in a task-
agnostic manner, and CODA-P, LAE, HiDE design different
ways to fuse the learned prompts for reuse.

For VC-UFG, task-aware prompt learning guarantees
disjoint optimization of prompts across tasks while the task-
agnostic mechanism may change the already learned prompts
in a new task as the semantic boundary between UFG cate-
gories is extremely ambiguous. For selective prompt reuse,
we hypothesize that it alleviates the impact of involving inter-
task prompts for inference compared with the prompt fusing
methods. To verify the impact of inter-task prompts, we con-
duct a comparison between two prompt tuning models, PT*
and PT, on SoyGene-C and a 5-split version of CIFAR-100
pacman-key —populate archlinux[Krizhevsky et al., 2009].
PT is trained independently on the tasks to show the effec-
tiveness of inner-task prompts, while PT* learns the prompts
only on the first task and reuses them as inter-task prompts
in the subsequent tasks where only the classifiers are learn-
able. As in Figure 4(a), inter-task prompts do not largely
hinder the model performance on general data, while Figure
4(b) suggests that inter-task prompts cause significant decay
of recognizing UFG objects. This is mainly due to that learn-
ing to recognize UFG categories requires substantially fitting
the prompts in the data and limits the generalizability. As
fusing learned prompts always injects inter-task prompts for
inference, it limits the continual learning performance.

Differently on SoyAgeing-C, we observe that the com-
pared methods show similar overall performance where the
early learned knowledge is largely forgotten. By further eval-
vating PT and PT* on SoyAgeing-C tasks as in Figure 4(c),
we surprisingly find that using inter-task prompts is clearly
less harmful than on SoyGene-C tasks. This suggests that
learning a single generalizable group of prompts for HC-UFG
tasks is possible, and a key challenge in HC-UFG is to tackle
the bias of the fix-sized classifiers on recently seen data.

Despite the effectiveness of existing methods on VC-UFG
or HC-UFG, a more realistic yet underexplored C-UFG prob-
lem is a mixture of VC-UFG and HC-UFG where a new UFG
task can either introduce new cultivates or present a new re-
productive stage of seen cultivates. This motivates us to fur-
ther develop a unified model that tackles the two C-UFG chal-
lenges in a single continual learning procedure.

4 Method

Based on the discussion in Section 3.2, we propose a unified
C-UFG model, Unic, that is capable of tackling VC-UFG and
HC-UFG in a single continual learning procedure. In this
section, we first present our effective solutions for VC-UFG
and HC-UFG in Section 4.1 and Section 4.2, respectively. We
then explain how the two methods can be integrated into a
unified model for C-UFG in Section 4.3.

4.1 Continual Learning for VC-UFG

Baseline. For VC-UFG, we employ L2P++ as the baseline
model for its simple yet effective design. When learning on
the m-th VC-UFG task, L2P++ introduces a set of task-aware
prompts P, = {pﬁn}lL:l, where p!,, € RMXNxD 7f g
the number of prompted layers. By performing deep visual
prompt tuning [Jia er al., 2022] with a cross-entropy loss £,
a local classifier f,, and the prompts and jointly learned for
the m-th task. Meanwhile, plm is associated with a learnable
key k!, € RP. For a training image I, the pre-trained ViT
[Dosovitskiy ef al., 2021] is employed to extract a global pre-
trained feature x; € R”. A matching loss

MWLLZ< Hm)

is then introduced to optimize the cosine similarity between
kﬁn and x{. For inference, the model concatenates all learned
local classifiers as the global classifier. By measuring the sim-
ilarity between x;; of a test image and all learned keys, the

)
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prompts associated with the fop-k similar keys, where k = L,
are adaptively selected for reuse.

Deep and dense keys. As in Figure 4(b), reusing the inter-
task prompt can largely hinder the VC-UFG results. To re-
duce the inter-task prompts for inference, we introduce deep
and dense keys for adaptive selection. Different from that in
L2P++, we assign a learnable key k!, € RP for each task-
aware prompt p’,, € RV*P at each prompted layer, resulting
in deep keys similar to deep prompts. We then proportionally
increase the number of prompts L and decrease the prompt
length N. This makes the keys more dense without changing
the total prompt length LN

Adaptive Classifier Adaptation. Without knowing the
task identity, inter-task prompts are inevitably involved dur-
ing L2P++ inference. For this, we propose to learn a train-
ing sample with both task-agnostic and task-aware prompts,
where the task-agnostic prompts are selected as in inference.
Learning with task-agnostic prompts involves two learnable
modules, i.e. the selected prompts and the local classifier.
However, optimizing the task-agnostic prompts limits the fi-
nal VC-UFG performance as discussed in Section 3.2. This
inspires us to perform Adaptive Classifier Adaptation (ACA)
where only the classifier is optimized to adapt to the task-
agnostic prompts.

As in the left part of Figure 5, we show only a sin-
gle prompted layer and the prompts for illustration purpose.
Learning on the m-th task, which is a VC-UFG task, is super-
vised by a classification loss

L7 = L(fm(h([Pm;X])), ) + Ao L(fin (h([Prn, X])), y()z)
where L is the softmax cross-entropy loss and y is the label
of the training image. A\, € (0,1]) is a constant factor of
ACA. P,,,.P,, € RENXD are the concatenated task-aware
and task-agnostic prompts. The gradient propagated to P,
is stopped to avoid changing the prompts. Meanwhile, the
prompt keys are optimized as in L2P++. Thus the overall
VC-UFQG training loss is given by

7\;} - ‘C?cz + BU match (3)

where [ is the weight of the matching loss.

4.2 Continual Learning for HC-UFG

Based on the observation in Figure 3, we assume that a single
shared group of prompts is sufficient to tackle a series of HC-
UFG tasks that share the same label space. This also helps to
alleviate the bias of the shared classifier to more recent data.
For this, we introduce the momentum prompts to encode the
common HC-UFG knowledge during continual learning. We
also make the classifier adapt to the momentum prompts sim-
ilar to ACA.

Specifically, we start with standard deep prompt tuning on
the first HC-UFG task, resulting in learned prompts P, =

{pl1 }1L=1 for each prompt layer and the classifier f;. We also
initialize the momentum prompts P,,; = {pﬁnt}le using
P;. Then for the n-th task (n > 1), we initialize the prompts
P, = {pln }lel by P,,—1 and perform deep prompt tuning to

update P,,. After each update of P,,, we also update P,,; as
Pt = Pt + (1= )Pyl =1, L “

where p € (0, 1) is the momentum factor. The overall train-
ing loss for HC-UFG is thus given by

Lo = LU (AP, X)), y) + A L1 ([P, X1)), ) (5)

where L is the softmax cross-entropy loss and y is the label
of the training image. A, € (0,1]) is a constant factor. We
also stop the gradient propagated to P,,;. For inference, the
momentum prompts P,,,; are used for recognizing any ultra-
fine-grained object.

4.3 A Unified Model for C-UFG

Based on the continual learning methods for VC-UFG and
HC-UFG introduced in Section 4.1 and Section 4.2, we fur-
ther propose a unified model Unic to tackle a more realistic
C-UFG problem where VC-UFG and HC-UFG co-exist. As
illustrated in Figure 5, suppose task m in the C-UFG learn-
ing sequence introduces a set of new categories and task n
shares the same label space ), with task s where s < n and
Y, NY; = P fori < s. Learning on task m is thus a VC-UFG
problem and task n introduces an HC-UFG problem.

For task m, Unic keeps the design of keys and prompts
as in Section 4.1. For task n, while we employ the shared
momentum prompts in Unic as in Section 4.2, we also in-
troduce learnable keys similar to that in VC-UFG to adap-
tively select learned prompts during inference. Note that
this makes each momentum prompt p!,,, associated with the
keys learned on all HC-UFG tasks sharing the same label
space, i.e. {kl|s <c¢<n,V.=Y,=Yn}. To avoid dupli-
cate selection of the same momentum prompt, we calculate
the matching score of p!,, for the top-k selection as

KL - x}
max o 2
c€ls,n],Ve=Ys=Vn |k |XO|

(6)

where x{ is the global feature of the test image given by the
pre-trained model.

We also employ ACA in Unic. This differs from that in
vanilla VC-UFG and HC-UFG as the momentum prompts
learned on HC-UFG tasks can be selected to adapt classifiers
of VC-UFG tasks and the prompts for VC-UFG tasks are pos-
sible to help adapt the HC-UFG classifier. By doing so, we
integrate our effective designs for VC-UFG and HC-UFG into
a unified framework that is capable of learning continuously
on a sequence of hybrid VC-UFG and HC-UFG tasks. On an
arbitrary C-UFG task t, the overall training objective is given
by

Et = ‘Cf:e + ﬁﬁfnatch (7)
where £! . . shares the same fromula with Equation 1. £,
is similar to Equation 2 except that f; is replaced by fs if a
previous task s shares the same label space with task ¢ and
YVoNY; =0fori < s.

S Experiment

Similar to [Jiao er al., 2024], the overall performance of a
model is assessed by two metrics, i.e. Final Average Accu-
racy (FAA) and Cumulative Average Accuracy (CAA). The
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Method SoyGene-C SoyGlobal-C SoyAgeing-C UniUFG-C
FAA(T) CAA(T) | FAA(T) CAA(T) | FAA(T) CAA(T) | FAA(T) CAA(T)

Upper bound \ 58.58 - \ 36.65 - \ 69.15 - \ 64.61 -

L2P [Wang et al., 2022c] 24.04 37.37 20.01 30.05 26.04 41.06 19.87 31.25
L2P++ [Wang et al., 2022c] 33.00 38.57 22.24 33.07 28.14 36.70 36.96 42.11
DualPrompt [Wang et al., 2022b] | 31.97 38.57 20.83 29.38 31.00 41.70 24.42 34.94
S-Prompts [Wang et al., 2022a] 24.82 33.78 15.84 25.95 30.67 42.88 36.76 44.33
CODA-P [Smith et al., 2023] 25.60 38.97 14.63 26.03 29.80 43.51 24.25 35.60
LAE [Gao et al., 2023] 20.02 34.40 11.87 18.03 28.32 39.78 19.01 25.42
HiDE [Wang et al., 2023] 15.67 28.74 10.65 21.06 - v - -

VQ-Prompt [Jiao et al., 2024] 23.32 36.04 10.85 16.95 26.18 39.79 18.89 26.82
Unic-V / Unic-H / Unic \ 37.02 43.45 \ 25.53 35.77 \ 32.67 44.69 \ 39.16 46.35

Table 1: C-UFG performance comparison between the proposed methods and previous continual learning methods.

former refers to the final average accuracy after learning all
the tasks. The latter measures the average of historical FAA
values after learning each task. We present experimental on
the three C-UFG problems, i.e. VC-UFG, HC-UFG and uni-
fied C-UFG, to verify the effectiveness of the proposed meth-
ods. The model proposed for VC-UFG (Section 4.1) is de-
noted as Unic-V and that for HC-UFG (Section 4.2) is de-
noted as Unic-H.

5.1 Implementation Details

For the PTM, we use ViT-Base [Dosovitskiy et al., 2021] pre-
trained on ImageNet-21K [Deng er al., 2009] as in previous
works. The pre-trained position embedding is resized using
bicubic interpolation to match the input size. For the training
on any UFG task, we resize the image to 440 x 440 and ran-
domly crop a 384 x 384 patch followed by random horizontal
flip for training. The model is trained for 160 epochs with an
Adam optimizer. The learning rate is initialized as 0.03 and
gradually decayed to 0.0003 using a cosine scheduler. For
inference, we directly resize the images to 384 x 384. Fol-
lowing previous works, the total number of prompts at each
prompted layer is 20 and the prompted layers are the first 5
transformer layers. The prompt length N is set to 1 and the
number of prompts L is 20. The weights of ACA are set to
Ay = 0.5 and \p, = 0.3. The weight of the matching loss is
set to 0.5 for both 5, and 5. And the momentum g is set to
0.9999 for Unic-H.

5.2 Comparison with SOTA

VC-UFG. As in Table 1, we evaluate Unic-V and pre-
vious continual learning methods on both SoyGene-C and
SoyGlobal-C datasets to verify their performance for VC-
UFG. On SoyGene-C, it can be observed that both L2P++
and DualPrompt clearly surpass the other compared methods
as discussed in Section 3.2. Compared with L2P++ and Dual-
Prompt, the proposed Unic-V further boost the FAA and CAA
by a large margin. On SoyGlobal-C, while L2P++ consis-
tently outperforms the other compared methods, DualPrompt
does not obtain a comparable performance. We hypothesize
that the insufficient training samples limit the generalizabil-
ity of the shared prompts of DualPrompt. Meanwhile, the

proposed Unic-V consistently shows a superior performance.
We also conduct prompt tuning on SoyGene and SoyGlobal
to obtain the respective upper-bound models as in the first
row of Table 1. Compared with the upper-bound model, the
continual learning methods still fall behind by a large mar-
gin. This suggests there still exists a large room to enhance
the VC-UFG performance.

HC-UFG To verify the effectiveness of the proposed Unic-
H, we test Unic-H and previous methods on SoyAgeing-C
as in Table 1. Compared with the continual learning meth-
ods, S-Prompts shows a superior result as it suits more for
domain-incremental learning. CODA-P also obtains a com-
parable performance, in which we believe the attention-based
prompt fusing plays a major role. Compared with those meth-
ods, our proposed Unic-H consistently improves the results
by a clear margin, demonstrating the effectiveness of the mo-
mentum prompts. We also observe that the performance gap
between the upper bound and the continual learning methods
becomes larger on HC-UFG. While the upper bound naturally
learns an unbiased classifier, the continual learning methods
are significantly limited by the classifier bias.

Unified C-UFG To compare the effectiveness between the
proposed Unic and previous continual learning methods, we
slightly modify the compared methods to share the same
classifier between HC-UFG tasks and apply the methods to
UniUFG-C. As in Table 1, both L2P++ and S-Promtps ob-
tain better results than the other compared methods. Com-
pared with these two methods, the proposed Unic consistently
shows superior final average accuracy. The cumulative aver-
age accuracy is only slightly inferior to S-Prompts. Com-
pared with the upper-bound model, we also observe a large
margin of the C-UFG performance. While respectively im-
proving the VC-UFG and HC-UFG models can benefit the
unified C-UFG model, the unified framework is also an im-
portant factor to further improve the overall performance.

5.3 Analytical Study

The effect of deep keys. To understand the effect of using
deep keys, we test the proposed Unic-V on SoyGene-C as in
Table 2. It can be observed that introducing deep keys im-
proves both the final average accuracy and cumulative aver-
age accuracy. We also test to vary the configuration of deep
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| SoyGene-C
Model Deep keys FRA(T)  CAA(T)
Unic-V w/o ACA - 33.95 40.56
Unic-V w/o ACA v 35.90 42.24
Unic-V - 34.86 41.68
Unic-V v 37.02 43.45

Table 2: Comparison between Unic-V with and without the deep
keys. We also test to remove ACA to make a more comprehensive
understanding.

keys in Unic-V without ACA. The results of using deep keys
are consistently shown to be superior on SoyGene-C. These
overall experiments suggest that introducing deep keys effec-
tively improves the model performance for VC-UFG.

| SoyGene-C
Model Dense keys FRA(T)  CAA(T)
Unic-V w/o ACA - 33.80 40.47
Unic-V w/o ACA v 35.90 42.24
Unic-V - 35.50 42.53
Unic-V v 37.02 43.45

Table 3: Comparison between Unic-V with and without the dense
keys. We also test to remove ACA to make a more comprehensive
understanding.

The effect of dense keys. To understand the effect of dense
keys, we conduct the experiments as in Table 3. For models
without dense keys, we set the number of prompts L to 4
and the length of each prompt IV to 5 which results in the
same final length of prompts as in Unic-V with dense keys
for fair comparisons. The results in Table 3 suggest that using
dense keys clearly improves the performance of Unic-V for
HC-UFG. Moreover, we observe that the model with dense
keys consistently improves the results when removing ACA
in model training, demonstrating the effectiveness of dense
keys.

ACA | SoyGene-C SoyAgeing-C
| FAA(T) CAA(T) | FAA(T) CAA(T)

- 35.90 42.24 30.33 43.85
v 37.02 43.45 32.67 44.69

Table 4: Comparison between models with and without ACA. We
respectively test Unic-V and Unic-H on SoyGene-C and SoyAgeing-
C datasets.

The effect of ACA. ACA is proposed to adapt the classifier
to task-agnostic prompts for robust C-UFG. To understand the
effect of ACA, we first test Unic-V and Unic-H with and with-
out ACA on SoyGene-C and SoyAgeing, respectively. As in
Table 4, the proposed ACA consistently improves the con-
tinual learning performances for VC-UFG and HC-UFG. In
addition, we also test adaptive prompt adaptation (APA) and
adaptive joint adaptation (AJA). The former fixes the classi-

fier to optimize only the task-agnostic prompts, and the lat-
ter jointly optimizes the classifier and task-agnostic prompts.
As in Table 5, neither AJA nor APA improves the C-UFG
performance compared with the model without ACA (Table
4). Moreover, APA largely hinders overall performance as it
changes the learned prompts.

SoyGene-C SoyAging-C

Method ‘

C0C [TFAA(T) CAATT) | FAA(T) CAA(T)
AJA 31.85 42.67 30.46 43.77
APA 28.67 39.01 26.51 42.74
ACA 37.02 43.45 32.67 44.69

Table 5: Comparison between models with different adaptive adap-
tation methods.

The value of momentum. We also test to vary the momen-
tum factor in Unic-H and Unic to find the optimal value. As in
Table 6, we test three momentum values on both SoyAGeing-
C and UniUFG-C datasets. It can be observed that setting the
momentum factor to 0.9999 consistently gives superior per-
formance on the two challenges. We thus employ i = 0.9999
by default.

Momentum | SoyAgeing-C UniUFG-C

| FAA(T) CAA(T) | FAA(T) CAA(T)
0.999 30.08 43.74 36.65 45.07
0.9999 32.67 44.69 39.16 46.35
0.99999 31.49 43.94 37.83 44.73

Table 6: Model performance under different momentum factors. We
respectively test Unic-H and Unic on SoyAgeing-C and UniUFG-C
datasets.

6 Conclusion

To facilitate future development of Al techniques for agricul-
ture in ultra-fine-grained cultivates recognition, this work es-
tablishes the first comprehensive C-UFG benchmark, which
consists of three realistic C-UFG challenges, VC-UFG, HC-
UFG and unified C-UFG. By analyzing existing PTM-based
continual learning methods on the proposed C-UFG chal-
lenges, we discover their beneficial designs and the main is-
sues in improving the C-UFG performance. Based on the
preliminary analysis, we first propose two simple yet effec-
tive methods for tackling VC-UFG and HC-UFG problems,
respectively. On top of those, we propose a unified C-UFG
model Unic that integrates the two methods into a unified
framework to tackle C-UFG problems where VC-UFG and
HC-UFG co-exist in a single continual learning sequence.
By quantitatively evaluating the proposed methods and ex-
isting continual learning methods, we demonstrate our pro-
posed methods effectively boost the C-UFG performance on
the proposed challenges.
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