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Abstract
Generative Image Tampering (GIT), due to its high
diversity and realism, poses a significant chal-
lenge to traditional image tampering localization
techniques. Consequently, this paper introduces
a denoising diffusion probabilistic model-based
DcDsDiff, which comprises a Dual-View Con-
ditional Network (DVCN) and a Dual-Stream
Denoising Network (DSDN). DVCN provides
clues about the tampered areas. It extracts tam-
pering features in the high-frequency view and
integrates them with spatial domain features using
attention mechanisms. DSDN jointly generates
mask image and detail image, enhancing the
generalization capability of the model against
new tampering forms through iterative denoising.
A multi-stream interaction mechanism enables
the two generative tasks to promote each other,
prompting the model to generate localization
results that are rich in detail and complete.
Experiments show that DcDsDiff outperforms
mainstream methods in accurate localization,
generalization, extensibility, and robustness. Code
page: https://github.com/QixianHao/DcDsDiff-
and-GIT10K.

1 Introduction
Diffusion-based image generation technology is widely noted
for its superior quality in image creation. For example, Sta-
ble Diffusion’s [Rombach et al., 2022] inpainting function
allows users to re-create specific parts of an image, enabling
a rich variety of visual expressions and innovative effects.
However, this technological advancement also presents chal-
lenges in information security. As image generation becomes
more convincing, it’s easier than ever to create deceptive im-
age tampering. As shown in Figure 1, malicious actors could
use these technologies to produce fake images, spread misin-
formation, and destabilize public opinion and social stability.
Thus, detecting and localizing Generative Image Tampering
(GIT) is becoming increasingly critical.

∗Corresponding Author

Figure 1: Examples of Generative Image Tampering (GIT). Top row
shows real images, middle row shows ground truth (GT), and bottom
row shows fake images. Column 1: calm sea to volcanic eruption;
Column 2: intact building to ruins; Column 3: fresh fruit to rotten
fruit; Column 4: clothed person to bare-chested.

Current mainstream Image Tampering Localization (ITL)
methods, while effective in ITL tasks of Splicing, Copy-
Move, or Removal, struggle with handling GIT. GIT is not
limited to a single tampering form. Its diversity in purpose
(e.g., removal, filling, replacing [Ju et al., 2024]), generated
object types, and mechanisms (e.g., example-guided [Yang et
al., 2023], context-aware [Zhuang et al., 2025], text-guided
[Ju et al., 2024]) demands strong generalization capabilities
of forensic models. Most ITL methods are built on conven-
tional encoder-decoder architectures, following a linear in-
formation processing mechanism, lacking feedback loops or
intermediate adjustments to optimize predictions. This fixed
process lacks flexibility and cannot adapt to diverse tamper-
ing forms and complex scenes. Additionally, the generated
objects in GIT are highly integrated with the background,
making the edges of the tampered areas and nearby pixels
highly uncertain. Conventional ITL methods often misiden-
tify these edges due to over-confidence in linear processing,
which hinders the generation of accurate and complete local-
ization results.
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Figure 2: The structure of DcDsDiff, HFVG, and MSIE. DcDsDiff is composed of a DVCN and DSDN. The DVCN consists of two PVTv2
networks, one HFVG, and one MM-MSFF, while the DSDN consists of one Mask Image Branch (MIB), one Detail Image Branch (DIB), and
one MSIE.

In response to the aforementioned issues, we propose a
Dual-Conditional and Dual-Stream Diffusion Model (DcDs-
Diff), as shown in Figure 2. Specifically, we introduce a
diffusion model strategy for Generative Image Tampering
Localization (GITL) task, redefining GITL as a diffusion
model-based bi-generation task, achieving joint generation
of mask image (tampered area) and detail image (edge and
surrounding pixel). Firstly, the model includes a parallel
Dual-Stream Denoising Network (DSDN) that refines pre-
dictions through iterative denoising. This iterative process
enhances DcDsDiff’s understanding of data distributions, al-
lowing it to better generalize to diverse tampering forms. It
also enables the model to fine-tune predictions based on im-
age conditions, thereby helping the model to make more cau-
tious predictions in edge and detail areas, thus avoiding over-
confidence. To achieve mutual promotion between the two
streams, we introduced a Multi-Stream Interaction Enhance-
ment (MSIE) module. This module uses detail features to
guide the prediction of the mask image, improving the mask
image stream’s perception of detail areas. Simultaneously, it
utilizes mask features to provide overall positional informa-
tion for the detail image, thereby improving detail image’s
completeness. Secondly, DcDsDiff also includes a Dual-

View Conditional Network (DVCN) that provides clues to
the DSDN. The RGB conditional network processes spatial
information, while the high-frequency conditional network
captures tampering traces in the high-frequency view, which
are invisible in the RGB view. This high-frequency view is
generated by the High-Frequency View Generator (HFVG)
to reflect local anomalies caused by GIT. Additionally, we de-
signed a Multi-Modal and Multi-Scale Feature Fusion (MM-
MSFF) module. This module aligns features of both modali-
ties spatially, re-calibrates features at the channel level, inte-
grates features of the same level based on their importance,
combines features from different levels to provide the DSDN
with the necessary fused conditional feature.

To sum up, our main contributions are as follows:

• A diffusion-based DcDsDiff model was proposed, intro-
duced a DSDN to simultaneously generate mask image
and detail image, and designed a MSIE to enhance in-
formation complementarity between the two streams.

• Designed a DVCN to extract tampering features from
multiple views, introduced an HFVG to capture high-
frequency anomalies, and designed a MM-MSFF to in-
tegrate multi-modal and multi-scale features.
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• Extensive experiments demonstrate that DcDsDiff has
significant advantages in terms of localization perfor-
mance, generalization, extensibility, and robustness.

2 Related Work
2.1 ITL
We categorize mainstream ITL methods into four major
categories: traditional methods [Ren et al., 2023; Liu et
al., 2022], noise view-assisted methods [Niloy et al., 2023;
Dong et al., 2022; Lin et al., 2023; Wu et al., 2019; Ji et al.,
2023; Wu and Zhou, 2021; Frick and Steinebach, 2024], fre-
quency domain view-assisted methods [Frick and Steinebach,
2024; Wang et al., 2022a; Liu et al., 2023], and edge-
assisted multi-task methods[Shi et al., 2023; Ren et al., 2024;
Hao et al., 2024c; Hao et al., 2024a; Dong et al., 2022;
Wang et al., 2025]. Traditional methods primarily rely on
the attribute differences between tampered and untampered
regions in spatial domain features. Noise view/frequency
domain-assisted methods aim to detect tampering traces in
noise view/frequency domain that are invisible in the RGB
view. However, poorly designed noise view/frequency do-
main generators often introduce redundant information, lead-
ing to adverse interference in localization results. Edge-
assisted methods aim to capture edge inconsistencies caused
by tampering. However, GIT lacks distinct boundaries. An
overly confident edge prior can often mislead the model into
producing erroneous localization results.

2.2 Diffusion Models for Image Segmentation
Currently, the application of diffusion models in the field of
image segmentation is relatively limited. BerDiff [Chen et
al., 2023] is a conditional Bernoulli diffusion model for med-
ical image segmentation, generating accurate and diverse seg-
mentation masks through Bernoulli noise and multiple sam-
plings. CamoDiffusion [Chen et al., 2024] utilizes the de-
noising mechanism to gradually reduce the differences be-
tween initial noise and the true mask, effectively improving
the detection performance of camouflaged objects. Addition-
ally, BiDiCOS [Jiang et al., 2024] combines bilateral diffu-
sion models with depth estimation techniques, aiming to op-
timize the segmentation process by fusing depth information,
enhancing the accuracy and robustness of camouflaged object
detection.

3 Proposed DcDsDiff

3.1 Background
In this paper, we propose a dual-stream diffusion model based
on denoising diffusion probabilistic models, which generates
mask image and detail image simultaneously. As shown in
Figure 3, the diffusion model is mainly divided into two
stages: the forward process and the backward process. In
the forward process, we start with noise-free original mask
image M0 and original detail image E0, iteratively adding
Gaussian noise until the diffusion step T is large enough that
the original mask image and detail image completely degrade

Figure 3: The diffusion process. From left to right is the forward
process of adding noise, and from right to left is the backward de-
noising process.

into noise. This process can be described by the following
Markov process:

D(Mt|Mt−1) = N(Mt;
√
1− βt ·Mt−1, βt · I), (1)

D(Et|Et−1) = N(Et;
√
1− βt · Et−1, βt · I), (2)

where, t runs from 1 to T , and variance is controlled by noise
schedule βt ∈ (0, 1). I is an identity matrix. Mt and Et

represent the mask image and detail image at time step t, re-
spectively, and can be obtained by the following equations:

D(Mt|M0) = N(Mt;
√
αt ·M0, (1− αt) · I), (3)

D(Et|E0) = N(Et;
√
αt · E0, (1− αt) · I), (4)

where, αt =
∏T

i=1 αt, αt = 1 − βt. The backward process
is the reverse of the forward process. The model starts from
two noisy images, gradually denoises them, and eventually
restores the clean original images.

Dθ(Mt−1|Mt) = N(Mt−1;µθ(Mt, t),
∑

θ
(Mt, t), (5)

Dθ(Et−1|Et) = N(Et−1;µθ(Et, t),
∑

θ
(Et, t)), (6)

where, θ refers to the model parameters. µθ(Mt, t) and
µθ(Et, t) refer to the means predicted by the model at a
given time step t.

∑
θ (Mt, t) and

∑
θ (Et, t) refer to the

predicted covariances.
∑

θ (Mt, t) and
∑

θ (Et, t) are set to
σ2
t = 1−at−1

1−at
βt. µθ(Mt, t) and µθ(Et, t) can be represented

as:

µθ(Mt, t) =

√
αt(1− αt−1)

1− αt
Mt +

√
αt−1βt

1− αt
M̂0, (7)

µθ(Et, t) =

√
αt(1− αt−1)

1− αt
Et +

√
αt−1βt

1− αt
Ê0, (8)

where, M̂0 and Ê0 refer to the model’s predicted mask image
and detail image.

3.2 Overview
The architecture of DcDsDiff is shown in Figure 2. In train-
ing, the input are an RGB image I with the size of W×H×3,
the GT of the mask image M0, and the GT of the detail im-
age E0. The output are the predicted mask image M̂0 and
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Figure 4: Tampering trace in high-frequency view. The first line
shows fake image, the second line shows GT, and the third line
shows high-frequency view.

detail image Ê0. Specifically, firstly, we use the HFVG to
generate the high-frequency view of I , and then input I and
high-frequency view A into the DVCN. In DVCN, we employ
two pre-trained PVTv2 [Wang et al., 2022b] models as the
backbones. These two PVTv2 models can respectively gen-
erate spatial feature set r1, r2, r3, r4 and high-frequency fea-
ture set a1, a2, a3, a4 of different levels. We utilize the MM-
MSFF to fuse the multi-modal and multi-scale features r1−4

and a1−4 to obtain the conditional feature c. Secondly, the
mask image M0 and the detail image E0 undergo the noise
addition process to generate noisy images Mt and Et at time
step t. Subsequently, we use the DSDN to denoise the noisy
images Mt and Et under the guidance of c, and leverage the
MSIE to achieve information complementarity between the
two streams. Finally, the losses of the predicted mask image
M̂0 and detail image Ê0 are calculated. During the inference
stage, the input is the GIT image, and the output is the lo-
calization results of the tampered areas. Specifically, firstly,
we input the GIT image into the trained DcDsDiff model and
repeat the operations of the DVCN from the training phase.
Secondly, we initialize two Gaussian noise images MT and
ET as inputs to the DSDN. Through iterative denoising by
the DSDN, we gradually recover the detail image Ê0 and the
mask image M̂0 from the noise images. Finally, we average
the multiple predicted images generated during the iteration
process to obtain the final predicted mask image M̂f

0 and de-
tail image Êf

0 .

3.3 HFVG
As shown in Figure 4, GIT can cause local anomalies visi-
ble in the high-frequency view, which are difficult to capture
in the RGB view. Therefore, we designed the HFVG to pro-
vide supplementary clues for RGB conditional network. The
workflow of the HFVG is shown in Figure 2. Specifically,
first, we perform a 2D Fast Fourier Transform (2D FFT) on
the RGB image I along the channels. Then, we obtain the
high-frequency components of the three channels through a
high-pass filter. Next, we convert these high-frequency com-

ponents back to the RGB domain by performing an inverse
2D Fast Fourier Transform (2D IFFT) and merging them.
Finally, to further highlight the local anomalies in the high-
frequency view, we enhance the values of this high-frequency
view, resulting in the final high-frequency view A.

A = IFFT (HPF (FFT (I), ς))⊗ 10, (9)

where, ⊗ refers to the multiplication operation. FFT () and
IFFT () refer to the 2D FFT operation and the 2D IFFT op-
eration, respectively. HPF () denotes the high pass filter and
ς is the manually designed threshold which controls the low
frequency component to be filtered out.

3.4 MM-MSFF
The MM-MSFF consists of two parts: Multi-Modal Feature
Fusion (MMFF) and Multi-Scale Feature Fusion (MSFF).
MMFF aims to enhance and fuse spatial features and high-
frequency features at the same level. Specifically, firstly, the
positions of the tampered areas in the features of both modal-
ities should be the same. Therefore, we use Spatial Attention
(SA) to obtain their shared spatial attention map and align the
features of both modalities using this spatial attention map.{

attsa = SA(ri ⊗ ai)
rsai = ri ⊗ attsa

asai = ai ⊗ attsa
, i = 1, ..., 4. (10)

where, SA() refers to SA, which is an operation sequence
composed of a Global Max Pooling operation (GMP) along
the channel, a convolution operation with the kernel size of
3×3 (3×3 Conv), and a Sigmoid function [Liu et al., 2021].
Secondly, high-frequency features mainly contain rich tam-
pering features, while spatial features primarily contain rich
texture and appearance information, with different focuses.
Therefore, we use Channel Attention (CA) to further high-
light the important information in both modalities.{

rcai = ri ⊗ CA(rsai )
acai = ai ⊗ CA(asai )

, i = 1, ..., 4. (11)

where, CA() refers to CA, which is an operation sequence
composed of a GMP, a 1 × 1 Conv, a ReLU function, and
a Sigmoid function. Lastly, the importance of features from
the two modalities varies when processing different images.
Ignoring their different contributions and directly fusing them
can lead to a decrease in model performance. We consider
dynamically allocating the weights of the two features when
fusing them.

attfui = Sig(C3×3(r
ca
i ⊕ acai ))

rfui = C3×3(r
ca
i ⊗ attfui ⊕ rcai )

afui = C3×3(a
ca
i ⊗ attfui ⊕ acai )

fi = C3×3(r
fu
i ⊕ afui )

, i = 1, ..., 4. (12)

where, Sig() refers to Sigmoid function, C3×3 refers to 3× 3
Standard convolution (3 × 3 CBR), ⊕ refers to the addition
operation. High-level features contain richer semantic infor-
mation, which is beneficial for the model to determine the ap-
proximate location of the tampered area. Low-level features
contain more detailed information, which is beneficial for the
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model to generate more refined localization results. There-
fore, in MSFF, we use a concatenation operation to fuse fea-
tures from different levels to obtain c = Cat(f1, f2, f3, f4),
where, Cat refers to the concatenation operation. c will be
input into the DSDN.

3.5 DSDN
In ITL tasks, accurately locating the edges of tampered ar-
eas is crucial, as they often reveal the overall contour and
local details of the tampered area. However, GIT makes the
tampered area blend seamlessly with the background, leav-
ing minimal traces. Edge pixels are few and highly similar to
surrounding pixels, making direct edge prediction challeng-
ing. In contrast, identifying detail areas of the tampered re-
gion is easier. These areas include not only edge pixels but
also nearby pixels. The values of surrounding pixels, deter-
mined by distance transformation [Wei et al., 2020b], are in-
versely proportional to the distance from the nearest edge,
with higher values for pixels closer to the edge and lower
values for those farther away. Compared to methods rely-
ing solely on edge pixels, detail maps include more pixels,
facilitating a more balanced pixel distribution.

Traditionally, Denoising network aims to decode the de-
noised mask predictions M̂0 and M̂t−1 based on the diffusion
paradigm. However, the DSDN aims to achieve joint predic-
tion of the mask image and detail image through two parallel
UNets (MIB and DIB). As shown in Figure 2, specifically,
first, we use multiple convolution layers to encode the two
input noisy images into two feature maps of the same size
as the conditional feature c. Then, we fuse these two fea-
ture maps with c through a simple concatenation operation.
Finally, we use multiple convolutions and up-sampling oper-
ations to gradually restore the size of the two feature maps
and obtain the mask feature dM and detail feature dE . We
adopted adaptive group normalization [Chen et al., 2024] in
both UNets, incorporating the time step information t into the
convolutions, making our DSDN sensitive to changes in the
time step.

MIB and DIB are not independent of each other; their in-
teraction is of significant importance. The mask image stream
provides semantic information about the tampered area, while
the detail image stream provides contour and detail informa-
tion of the tampered area. Effective interaction between the
two can enable the model to generate localization results with
rich detail information and high integrity. Inspired by [Qian
et al., 2020], we designed the MSIE module to implement
a cross-attention mechanism, as shown in Figure 2. Specifi-
cally, we first extract the Query features and Key features of
the mask features and detail features.

Q = Cat(C1×1(d
M ), C1×1(d

E)), (13)

K = Cat(C1×1(d
M )∗, C1×1(d

E)∗), (14)

where, ∗ denotes the transpose operation. Then, we use the
Query features and Key features to compute the weights.

attcs = SoftMax(Q⊗K), (15)

where, SoftMax() refers to SoftMax function. Finally, we
use the cross-attention weights to enhance the features of both

streams.

pM = dM ⊕ C1×1(d
E ⊗ attcs ⊗ γ), (16)

pE = dE ⊕ C1×1(d
M ⊗ attcs ⊗ υ), (17)

where, γ and υ are learnable parameters used to adjust the
intensity of attention. pM and pE will be used respectively to
predict the mask image M̂0 and the detail image Ê0.

3.6 Loss Function
In terms of loss functions, we utilize a combination of
Weighted Binary Cross-Entropy (WBCE) and Weighted In-
tersection over Union (WIoU) loss [Wei et al., 2020a] for the
predicted mask image M̂0. For the detail image Ê0, the aver-
age of L1 loss and L2 loss is applied.

Losstotal = LWBCE+WIOU (M̂0,M0)

+0.5(LL1(Ê0, E0) + LL2(Ê0, E0))
, (18)

where, LWBCE+WIOU refers to the combination of WIoU
loss and WBCE loss, LL1 refers to the L1 loss, and LL2 refers
to the L2 loss.

4 Experiments
4.1 Experiment Settings
In this paper, we implemented DcDsDiff using the PyTorch
framework. All experiments were conducted on a single
NVIDIA GeForce RTX 4090 GPU. Input images were re-
sized to 352 × 352 and augmented via random horizontal
flipping. During the training phase, we used the AdamW
optimizer with the learning rate of 0.001 and the batch size
of 6. ς was set to 0.5. We employed a Signal-to-Noise Ra-
tio (SNR)-based variance schedule [Hoogeboom et al., 2023]
to adjust the SNR of the diffusion process. The model was
trained for 100 epochs. During the inference phase, the model
undergoes ten iterative steps. For each step of sampling, we
used a nonlinear method to select the value of t [Jiang et
al., 2024]. In terms of datasets, firstly, we constructed a
GIT10K dataset containing 10,000 images using four com-
mon diffusion-based local inpainting methods: Brush Net
(BN) [Ju et al., 2024], Paint by Example (PE) [Yang et al.,
2023], Inpaint Anything (IA) [Yu et al., 2023], and Power
Paint (PP) [Zhuang et al., 2025], with each method contribut-
ing 2,500 images. Secondly, to comprehensively evaluate
DcDsDiff, we tested its performance on datasets containing
other tampering types, including RLS [Hao et al., 2024c],
IMD [Novozamsky et al., 2020], Nist16 [Guan et al., 2016],
DEFACTO Splicing (DEF) [Mahfoudi et al., 2019], and Au-
toSplice (AUTO) [Jia et al., 2023]. Finally, we divided the
train and test sets of the aforementioned datasets in a 9:1 ra-
tio. For evaluation metrics, we chose the F1-Score (F1) and
Intersection over Union (IoU) to assess the performance of
DcDsDiff.

4.2 Ablation Study
In this experiment, we conducted a detailed ablation study
on DcDsDiff using the GIT10K dataset, which includes four
sub-test sets: BN, PE, IA, and PP, each containing 250
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Test sets

Methods Components BN PE IA PP

F1 IoU F1 IoU F1 IoU F1 IoU

Scheme1 Base 0.825 0.735 0.756 0.689 0.721 0.625 0.876 0.822
Scheme2 Base+DSDN 0.833 0.749 0.782 0.723 0.730 0.641 0.892 0.849
Scheme3 Base+DSDN+HFVG 0.843 0.761 0.819 0.775 0.773 0.679 0.914 0.877
Scheme4 Base+DSDN+HFVG+MM-MSFF 0.866 0.782 0.854 0.803 0.818 0.738 0.919 0.882

Table 1: The results of the ablation study. The train data is the mixed train set formed by the BN, PE, IA, and PP sub-train sets of GIT10K,
totaling 9,000 tampered images. ”Base” refers to a minimal setup: a single U-Net for mask prediction using RGB-view PVTv2 features. The
best result per sub-test set is highlighted in bold font.

Test sets

Models BN PE IA PP

F1 IoU F1 IoU F1 IoU F1 IoU

MVSS-Net 0.66 0.56 0.38 0.34 0.36 0.27 0.67 0.61
MFI-Net 0.81 0.72 0.70 0.64 0.57 0.49 0.83 0.79
TA-Net 0.79 0.72 0.70 0.65 0.31 0.24 0.82 0.78

CFL-Net 0.70 0.60 0.42 0.37 0.41 0.33 0.67 0.61
EMF-Net 0.85 0.77 0.78 0.73 0.73 0.65 0.89 0.85
EC-Net 0.85 0.76 0.78 0.73 0.68 0.61 0.89 0.84

UGEE-Net 0.83 0.75 0.73 0.68 0.63 0.57 0.87 0.81
DcDsDiff 0.87 0.78 0.85 0.80 0.82 0.74 0.92 0.88

Table 2: The results of eight SOTA methods on GIT10K. The train
data is the mixed train set of GIT10K. The best result per sub-test
set is highlighted in bold font.

Figure 5: The localization results of eight methods. The fake images
in the first to fourth rows are from the BN, PE, IA, and PP sub-test
sets, respectively.

tampered images. We designed four experimental schemes,
with their configurations and results detailed in Table 1.
Firstly, the introduction of the DIB and MSIE significantly
enhanced DcDsDiff’s performance, particularly for the PE
sub-test set. Secondly, incorporating HFVG further improved
performance based on Scheme 2, especially for the PE, IA,
and PP sub-test sets, highlighting the importance of captur-
ing tampering traces in the high-frequency view. Lastly, the
introduction of MM-MSFF effectively fused the features of
high-frequency view and RGB view. Compared to Scheme 3,
Scheme 4 demonstrated notable improvements in F1 and IoU
on BN, PE, and IA sub-test sets.

Figure 6: Edge images predicted by three edge-assisted methods and
detail images predicted by DcDsDiff.

4.3 Comparison with State-of-the-Art Methods
In this experiment, we compared DcDsDiff with five ITL
methods (MVSS-Net [Dong et al., 2022], MFI-Net [Ren et
al., 2023], TA-Net [Shi et al., 2023], CFL-Net [Niloy et al.,
2023], EMF-Net [Ren et al., 2024]), UGEE-Net [Hao et al.,
2024b] and EC-Net [Hao et al., 2024c] using the GIT10K
dataset, with results shown in Table 2. The results indicate
that DcDsDiff outperformed these ITL methods across all test
sets. Notably, on the PE and IA test sets, DcDsDiff signifi-
cantly exceeded the performance of the second-ranked EMF-
Net, underscoring its superior localization capabilities. Fig-
ure 5 illustrates the localization results of these eight meth-
ods. Compared to the other seven methods, DcDsDiff pro-
vides more complete and detailed localization results. This
advantage is primarily due to our detail image generation
stream. Figure 6 illustrates the detail images generated by
DcDsDiff and the edge images produced by five edge-assisted
methods. As shown in Figure 6, when processing tampered
areas that blend into the background, MVSS-Net and TA-Net
struggle to generate complete edge images, while EMF-Net,
EC-Net and UGEE-Net incorrectly identify non-edge pixels
as edge pixels due to overconfidence. In contrast, DcDsDiff
successfully avoids these issues, further validating the effec-
tiveness of the detail image generation stream. More visual-
izations can be found in the supplementary material.

4.4 Cross-Generator Generalization Capability
In this experiment, we adopted a cross-dataset testing strat-
egy to evaluate the generalization capabilities of DcDsDiff
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Train sets BN PE IA PP

Test sets PE IA PP BN IA PP BN PE PP BN PE IA

MVSS-Net 0.016 0.052 0.077 0.063 0.016 0.181 0.268 0.028 0.089 0.058 0.025 0.073
MFI-Net 0.261 0.256 0.340 0.162 0.120 0.524 0.285 0.032 0.088 0.113 0.122 0.110
TA-Net 0.248 0.239 0.327 0.094 0.158 0.435 0.172 0.028 0.071 0.087 0.151 0.140

CFL-Net 0.013 0.045 0.062 0.091 0.066 0.181 0.287 0.031 0.087 0.057 0.019 0.065
EMF-Net 0.379 0.264 0.471 0.132 0.092 0.552 0.334 0.022 0.098 0.043 0.098 0.096
DcDsDiff 0.646 0.575 0.745 0.439 0.341 0.798 0.566 0.389 0.476 0.156 0.385 0.053

Table 3: The cross-dataset testing results of the six methods. The best result per sub-test set is highlighted in bold font. F1 is used as the
evaluation metric.

Baseline Test sets

models RLS IMD Nist16 DEF AUTO

MVSS-Net 0.434 0.363 0.879 0.715 0.913
MFI-Net 0.561 0.457 0.866 0.844 0.922
TA-Net 0.513 0.433 0.883 0.831 0.934

CFL-Net 0.33 0.433 0.884 0.907 0.917
EMF-Net 0.519 0.453 0.900 0.842 0.929
DcDsDiff 0.583 0.495 0.936 0.869 0.949

Table 4: The results of the six methods on the RLS, IMD, NIST16,
DEF, and AUTO datasets. The best result per sub-test set is high-
lighted in bold font. F1 is used as the evaluation metric.

Figure 7: The results of robustness evaluation. The train data is the
mixed train set of GIT10K. F1 is used as the evaluation metric.

and five other methods. The models were trained on the sub-
train sets generated by specific GIT methods and tested on
the sub-test sets generated by other GIT methods. The results
are shown in Table 3. As seen in Table 3, DcDsDiff’s per-
formance is generally much better than the other five meth-
ods. The iterative denoising strategy of DcDsDiff enhances
the model’s understanding of data distributions, reduces over-
reliance on labeled data, and improves the model’s general-
ization capability.

4.5 Extensibility Evaluation
In this experiment, we evaluated the extensibility of DcDsD-
iff using the RLS, IMD, Nist16, DEF, and AUTO datasets.

IMD consists of real-life manipulated images. RLS and
Nist16 include three types of tampering: Splicing, Copy-
Move, and Removal. DEF contains synthetic splicing images.
And AUTO is an AIGC dataset generated by the DALL-E2
model. The results are presented in Table 4. All models are
separately trained and tested on each dataset without cross-
datasetmixing. Although DcDsDiff performs slightly worse
than CFL-Net on the DEF test images, it significantly outper-
forms the other five methods on the RLS, IMD, Nist16, and
AUTO test sets. This experiment demonstrated that DcDsDiff
is a versatile ITL model.

4.6 Robustness Evaluation
In this experiment, we individually applied Gaussian noise
and gamma correction attacks to the mixed test set of BN,
PE, IA, and PP sub-test sets to assess the stability of DcDs-
Diff. We then compared its performance with five main-
stream methods. These models were trained on the mixed
train set of GIT10K. As illustrated in Figure 7, Gaussian
noise does indeed interfere with GITL. As the intensity of
the standard deviation increases, the performance of all mod-
els shows a significant decline. Compared to the other five
models, DcDsDiff consistently demonstrates the best perfor-
mance. This proves that DcDsDiff has a certain degree of ro-
bustness against Gaussian noise. Gamma correction also af-
fects the model’s localization performance. When the gamma
value is below or above 1.0, all models show varying de-
grees of performance degradation. However, DcDsDiff still
exhibits the best performance.

5 Conclusion
DcDsDiff demonstrates superiority in several aspects: Firstly,
it introduces the strategy of DSDN to synchronously generate
mask images and detail images, enhancing the model’s gen-
eralization capability. Secondly, through MSIE, it achieves
information complementarity, generating localization results
with rich details. Thirdly, DVCN and HFVG effectively
capture tampering features, while the MM-MSFF module
strengthens feature fusion. Extensive experiments have
proven the superiority of DcDsDiff compared to traditional
ITL methods.
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