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Abstract
Estimating player utilities from observed equilib-
ria is crucial for many applications. Existing ap-
proaches to tackle this problem are either limited
to specific games or do not scale well with the
number of players. Our work addresses these is-
sues by proposing a novel utility estimation method
for general multi-player non-cooperative games.
Our main idea consists in reformulating the in-
verse game problem as an inverse variational in-
equality problem and in selecting among all utility
parameters consistent with the data, the so-called
incenter. We show that the choice of the incen-
ter can produce parameters that are most robust to
the observed equilibrium behaviors. However, its
computation is challenging, as the number of con-
straints in the corresponding optimization problem
increases with the number of players and the be-
havior space size. To tackle this challenge, we pro-
pose a loss function-based algorithm, making our
method scalable to games with many players or a
continuous action space. Furthermore, we show
that our method can be extended to incorporate
prior knowledge of player utilities, and that it can
handle inconsistent data, i.e., data where players do
not play exact equilibria. Numerical experiments
on three game applications demonstrate that our
methods outperform the state of the art. The code,
datasets, and supplementary material are available
at https://github.com/cuilvye/Incenter-Project.

1 Introduction
Game theory analyzes the strategic behaviors of players us-
ing equilibrium concepts, while inverse game theory fo-
cuses on the inverse problem: given the observed equi-
librium behaviors of players, what are the possible player
utilities leading to these behaviors? Inverse game the-
ory has garnered increasing attention [Waugh et al., 2011;
Kuleshov and Schrijvers, 2015; Ling et al., 2019; Noti, 2021;
Wu et al., 2022], because understanding player utilities can
lead to better-designed mechanisms and economic policies.

˚Corresponding author.

Observed Equilibria

𝑈!: Utility function of player 𝑖

Inverse Variational Inequality Incenter-Based Solution

𝜽!: Unknown parameters of utlity 𝑈! 𝝑: Vector of parameters 𝜽𝟏,	𝜽𝟐,	𝜽𝟑

𝝑 = (𝜽𝟏; 𝜽𝟐; 𝜽𝟑)

Incenter (the most robust  
to observed equilibria)

Variational Inequality 

,,(																				)𝒙"𝒔𝟏 𝒙""
𝒔𝟏 𝒙"#

𝒔𝟏 𝒙"$
𝒔𝟏=

,,𝒙"𝒔𝟐 𝒙""
𝒔𝟐 𝒙"#

𝒔𝟐 𝒙"$
𝒔𝟐=…

ℱ 𝒙*𝒔𝒋 , 𝝑, 𝒔𝒋
& 𝒙 − 𝒙*𝒔𝒋 ≤ 0

																																∀𝒙, ∀𝑗 ∈ [𝑁].

ℱ 𝒙, 𝝑, 𝒔 =
𝜕𝑈!(𝒙, 𝜽𝟏, 𝒔)/𝜕𝒙!
𝜕𝑈#(𝒙, 𝜽𝟐, 𝒔)/𝜕𝒙#
𝜕𝑈%(𝒙, 𝜽𝟑, 𝒔)/𝜕𝒙%

𝒔: Context features regarding the game 

𝒙(𝒔!: Observed equilibria under context 𝒔&

,,𝒙"𝒔𝑵 𝒙""
𝒔𝑵 𝒙"#

𝒔𝑵 𝒙"$
𝒔𝑵=

𝝑

𝝑
𝝑

𝝑 𝝑

𝝑

𝝑
𝝑

𝒔&: 𝒔’s value in the 𝑗th observation   

(																				)
(																				)

Figure 1: Our Approach to Utility Estimation from Equilibria.

When estimating player utilities, the existing approaches
have two main limitations: (i) most methods are tailored
to specific games, such as matrix games [Noti, 2021; Yu et
al., 2022] and attacker-defender security games [Blum et al.,
2014]; (ii) many existing methods do not scale well with
the number of players, often focusing on two-player games
[Bertsimas et al., 2015; Tsai et al., 2016; Ling et al., 2018;
Ling et al., 2019; Wu et al., 2022].

In this work, we study general multi-player non-
cooperative games, and propose utility estimation methods
applicable to a broad range of games and practical applica-
tions. Figure 1 illustrates our main ideas. The player util-
ity functions are parameterized, and we aim to estimate the
vector ϑ of these utility parameters under which the observed
player behaviors constitute a Nash equilibrium. Our idea is to
reformulate this as an inverse variational inequality problem:
given the observed player behaviors, what vector ϑ ensures
that these behaviors satisfy the variational inequalities?

The crucial challenge is that even with many observations
of player behaviors, there may be multiple parameter vectors
ϑ solving the inverse variational inequality problem. This
raises a fundamental question: how should we select a single
ϑ from the set of ϑ consistent with the observed equilibria?
Existing approaches, such as [Bertsimas et al., 2015], do not
address this question but simply single out a ϑ without fol-
lowing a guiding principle. To the contrary, we attempt to
solve this problem using a more principled approach.

Our key idea is to select the incenter among all consistent
ϑ. This concept introduced in inverse optimization [Besbes
et al., 2023; Zattoni Scroccaro et al., 2024] describes a point
that lies within a given set and is located furthest away from
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its boundary. Due to its geometric properties, selecting the
incenter as the estimated ϑ reduces the error in estimating the
true parameter vector ϑtrue.

We can efficiently compute the incenter of the set of all
consistent ϑ using convex optimization. When the action
space is continuous, the optimization problem of finding the
exact incenter is challenging to solve, since it may involve in-
finitely many constraints. We convert it to an unconstrained
loss minimization problem by defining a novel loss function.
Then, we propose a first-order algorithm to minimize the loss,
and thus estimate the parameter vector ϑ.

Our loss function-based approach of approximating the in-
center has the advantage of handling settings where players
do not play exact equilibria. When players are bounded-
rational, it is possible that no ϑ satisfies all variational in-
equalities. In this case, our loss function still guides the
search for ϑ toward minimizing the degree of violating the
constraints defined based on variational inequalities.

We further explore a class of games where the player utility
functions exhibit a specific structural property (e.g., mono-
tonicity of gradients). We extend our parameter estimation
method to incorporate this property by leveraging techniques
from semidefinite programming.

We summarize our contributions as follows.
• We propose a novel framework for solving inverse equi-

librium problems, through integrating techniques from
variational inequalities and inverse optimization. We
further extend our framework to account for specific
structural property of player utility functions.
• Our framework can be broadly applied to many multi-

player non-cooperative games and traffic routing games
in the transportation field. It imposes no restrictions on
the number of players in these game scenarios.
• We conduct extensive numerical experiments on three

game applications: Bertrand-Nash price competition
[Narahari et al., 2009], aggregative games [Jensen,
2018], and network traffic games [Patriksson, 2015].
Evaluation using different metrics demonstrates that our
methods outperform the state of the art.

2 Related Work
Inverse Game Theory [Kuleshov and Schrijvers, 2015]
is one of the pioneering studies in this field, and investi-
gated the tractability of estimating player utilities in succinct
games. Most subsequent studies addressed the inverse game
problem within specific games, such as normal-form games
[Ling et al., 2018; Noti, 2021; Yu et al., 2022], two-player
zero-sum games [Ling et al., 2019], and attacker-defender
security games [Blum et al., 2014; Haghtalab et al., 2016;
Wu et al., 2022]. [Ling et al., 2018] proposed an end-to-end
parameter estimation framework that applies to two-player
normal and extensive form games. Different from these stud-
ies, our methods are applicable to a broad range of non-
cooperative games and applications, and do not impose re-
strictions on the number of players.

Our work is related to [Bertsimas et al., 2015], which uti-
lized inverse optimization to estimate utility parameters in
Bertrand competition. That approach can handle only a small

number of players and behavior observations (e.g., it requires
dealing with over 120, 000 constraints when there are 4 play-
ers and 500 observations). As will be shown in experiments,
our incenter-based method is more accurate and scalable.
Inverse Optimization The goal of inverse optimization
[Heuberger, 2004; Chan et al., 2023] is to identify the pa-
rameters of an optimization model that render observed de-
cisions approximately or exactly optimal. To estimate the
parameters, the literature in this field has proposed various
loss functions, such as Predictability Loss [Aswani et al.,
2018], Suboptimality Loss [Mohajerin Esfahani et al., 2018;
Besbes et al., 2023], Augmented Suboptimality Loss [Zat-
toni Scroccaro et al., 2024], and Variational Inequality Loss
[Bertsimas et al., 2015]. Our work is inspired by [Zat-
toni Scroccaro et al., 2024]. The main difference is that
we focus on game scenarios with multiple decision makers,
rather than optimization problems involving a single decision
maker. We seek parameters that make the observed data equi-
libria, rather than the optimal solutions to an optimization
problem.

3 Problem Formulation
We represent a multi-player non-cooperative game using a tu-
ple G :“ tI, tXiuiPI , tUiuiPIu. Here, I :“ t1, . . . , pu de-
notes the set of players. Each player i P I chooses an action
xi from its feasible action set Xi Ď Rmi , where mi P Z` de-
notes the dimension of the action. Let x :“ px1, . . . ,xpq P
X be the action profile, where X “

ś

iPI Xi is the global ac-
tion set. We consider the setting where the game is played
in different contexts, representing exogenous (but observ-
able) conditions, e.g., variations in GDP and seasonality in
Bertrand-Nash games. Given a contextual feature s P S , we
assume each player i seeks to maximize its own utility func-
tion Ui pxi,x´i, sq : X ˆ S Ñ R. The utility depends on its
own action xi P Xi, other players’ actions x´i P X´i, and
the contextual feature s. Here, X´i :“

ś

jPIztiu Xj .
A Nash equilibrium x˚ :“

`

x˚1 , . . . ,x
˚
p

˘

P X of the
game is defined as a point at which no player can unilater-
ally increase its utility [Nash, 1950], i.e., Ui

`

x˚i ,x
˚
´i, s

˘

ě

Ui
`

xi,x
˚
´i, s

˘

,@xi P Xi, i P I under the given s P S .
We make the following standard assumptions: (i) The fea-

sible set Xi is a nonempty, closed, and convex subset of Rmi

for all i P I; (ii) Utility function Ui is continuously differ-
entiable and pseudo-concave with respect to xi for all i P I;
(iii) The contextual feature s is publicly known to all players.
Under these assumptions, a Nash equilibrium x˚ P X exists
in the game G [Nash, 1950].

Given a contextual feature ŝj of game G, there exists a
Nash equilibrium x̂j . Let pD “ tpx̂j , ŝjquNj“1 denote the ob-
servable dataset of all equilibrium-context pairs. Our target is
to estimate the utility functions of all players from pD.1

We consider the case where Ui pxi,x´i, s;θiq can be pa-
rameterized by θi P Θi for each i. In practice, the form of

1For example, in a price competition, each firm’s utility is known
only to itself, and depends on the prices of all firms and the economic
condition. By observing the equilibrium prices under different eco-
nomic conditions, we estimate the utility functions of all firms.
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Ui pxi,x´i, s;θiq is often known, but θi P Θi needs to be
estimated from data. Let ϑ “ pθ1; ¨ ¨ ¨ ;θpq denote the pa-
rameter vector, i.e., the vertical concatenation of all θi. Our
data-driven inverse game problem is as follows.

Problem 1. Given dataset pD “ tpx̂j , ŝjquNj“1, estimate pa-
rameters ϑ that reproduce equilibrium x̂j in context ŝj , @j.

4 Incenter-Based Solution
4.1 Problem Reformulation
We begin by exploiting the fact that, under the assumption
considered, x˚ P X is a Nash equilibrium if and only if it
solves the variational inequality [Harker and Pang, 1990]:

p
ÿ

i“1

p´∇xiUi px
˚, sqq

J
pxi ´ x

˚
i q ě 0,@x P X . (1)

Hence, Problem 1 can be equivalently reformulated as
seeking a ϑ that satisfies the following inequalities for all
j P rN s (j indexes the context-equilibrium pairs):
p
ÿ

i“1

`

∇xi
Ui

`

x̂j , ŝj ;θi
˘˘J

´

xji ´ x̂
j
i

¯

ď 0,@xj P X j . (2)

In the following, we consider a general setting where the
player action set X j can also change with the contextual fea-
ture ŝj . Following the existing literature, e.g., [Bertsimas et
al., 2015; Peters et al., 2023; Maddux et al., 2023], our work
focuses on games where Ui px, s;θiq can be expressed as a
linear combination of parameters θi and functions ϕi px, sq,
i.e., Ui px, s;θiq “ xθi,ϕi px, sqy. As will be shown in
Section 5.1, many classic games fall into this category, in-
cluding Bertrand-Nash price competition, aggregative games,
and traffic games. For ease of presentation, let xi P R and
∇xi

ϕi px, sq “ φi px, sq. Then, we can rewrite (2) as
p
ÿ

i“1

´

θi
Jφi

`

x̂j , ŝj
˘

¯´

xji ´ x̂
j
i

¯

ď 0,@xj P X j . (3)

While there may exist (infinitely) many ϑ satisfying (3),
motivated by [Zattoni Scroccaro et al., 2024], we propose to
seek the incenter of all ϑ satisfying (3). As will be explained
in Section 4.2, this solution is most robust to perturbations of
the observable dataset pD.

We first formally define the incenter in Section 4.2. We
then introduce a novel loss function approach to estimate it
and thus learn ϑ in Sections 4.3 and 4.4. In Section 4.5, we
extend our solution to incorporate prior knowledge about ϑ.

4.2 Incenter Parameter Vector
We define the set of parameter vectors consistent with the
observed dataset pD as follows.
Definition 1 (Consistent Parameter Vectors). Given feasible
action sets tX juNj“1, the dataset pD “ tpx̂j , ŝjquNj“1, and
functions tφi px, squiPI , the set of consistent parameter vec-
tors is defined as

C :“
!

ϑ : xΦj
ϑ,x

j ´ x̂jy ď 0,@xj P X j ,@j P rN s
)

. (4)

Here, Φj
ϑ“

´

θ1
Jφ1

`

x̂j , ŝj
˘

, ¨ ¨ ¨ ,θp
Jφp

`

x̂j , ŝj
˘

¯J

P Rp.

In other words, C is the set of ϑ satisfying (3). Geometri-
cally, it forms a convex cone. We focus on searching for the
incenter of C, which is defined as follows.

Definition 2 (Incenter of C). Given a nonempty set C, its
incenter ϑin is defined as

ϑin P arg max
ϑPC

min
ϑ̃PintpCq

a
´

ϑ, ϑ̃
¯

. (5)

Here, int pCq is the region excluding the interior of C, and

a
´

ϑ, ϑ̃
¯

is the angle between ϑ and ϑ̃, i.e.,

a
´

ϑ, ϑ̃
¯

“ arccos

˜

xϑ, ϑ̃y

}ϑ}2}ϑ̃}2

¸

.

Geometrically, an incenter ϑin of C can be viewed as a vec-
tor furthest away from the boundary of C, as measured by the
angle. Since each facet of C is determined by a

`

x̂j , ŝj
˘

pair
in dataset pD, incenter ϑin can be informally interpreted as
the parameter vector that is most robust to perturbations of
data pD (i.e., perturbations of the facets of C). For a formal
description of this property, see the supplementary material.

For simplicity, we define a column vector φj :“
`

φ1

`

x̂j , ŝj
˘

; ¨ ¨ ¨ ;φp
`

x̂j , ŝj
˘˘

. In the following theorem,
we formulate the problem of finding an incenter ϑin.

Theorem 1 (Incenter Computation). When C is defined as
(4) and its interior is nonempty, finding ϑin that satisfies (5)
is equivalent to solving the following problem:

min
ϑ
}ϑ}2

s.t. xΦj
ϑ,x

j ´ x̂jy `
›

›

›
φj d vec

`

1n b
`

xj ´ x̂j
˘˘

›

›

›

2
ď 0,

@xj P X j ,@j P rN s . (6)

In (6), d is the Hadamard product, vec p¨q means stacking
all elements into a column vector, and b denotes the Kro-
necker product. 1n is an n-dimensional all-one vector, where
n is the dimension of φi

`

x̂j , ŝj
˘

. All the proofs are provided
in the supplementary material.

Remark: The formulation in (6) converts the problem of
findingϑin that satisfies (5) to a convex optimization problem.
Each xj P X j introduces a constraint to (6). In many games,
the cardinality of Xj is very large or infinite. In this case, it is
intractable to enumerate all elements of X j for all j P rN s to
check if ϑ meets the inequality constraints.

4.3 Loss Function Design
We propose a loss function-based method to tackle the case
where |Xj | is large or infinite. Interestingly, we notice that
this approach also applies when there may be no ϑ consis-
tent with pD, i.e., C{ t0u “ H. This scenario is common, and
arises if players are bounded-rational and may only choose
actions close to the optimum, leading to an ε-Nash equilib-
rium. Towards obtaining a loss function, we first relax the
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constraints of (6) by introducing slack variables β1, . . . , βN :

min
ϑ,β

1

N

N
ÿ

j“1

βj ` }ϑ}2

s.t. xΦj
ϑ,x

j´x̂jy `
›

›

›
φj d vec

`

1n b
`

xj ´ x̂j
˘˘

›

›

›

2
ď βj ,

@xj P X j ,@j P rN s . (7)

Then, we define the following loss function.
Definition 3 (Loss Function). Given a context-action pair
`

x̂j , ŝj
˘

, the loss `ϑ
`

x̂j , ŝj
˘

of a parameter vector ϑ is de-
fined as

max
xjPX j

!

xΦj
ϑ,x

j ´ x̂jy `
›

›

›
φj d vec

`

1n b
`

xj ´ x̂j
˘˘

›

›

›

2

)

.

Using the loss function, we reformulate the convex prob-
lem (7) as the following regularized empirical loss minimiza-
tion problem (which remains convex):

min
ϑ

1

N

N
ÿ

j“1

`ϑ
`

x̂j , ŝj
˘

` αR pϑq . (8)

Here, we replace }ϑ}2 in the objective with a general regular-
ization function R p¨q and use α ě 0 as a hyperparameter. In
our supplemental material, we use a toy example to illustrate
the effectiveness of the reformulation.

Remark 1: In (8), we use the loss function to capture
the hard inequality constraints in (7). Since (8) is an un-
constrained optimization, we can solve it using a first-order
algorithm in Section 4.4 even when |Xj | is infinite.

Remark 2: If no ϑ is consistent with pD, problem (6) has
no feasible solution satisfying all the hard constraints. In this
case, our loss function can still guide the search towards a
vector that minimizes the degree of constraint violation.

4.4 Estimation Algorithm
In this section, we introduce a first-order algorithm for solv-
ing (8). We apply the mirror descent method [Beck and
Teboulle, 2003], which enables the learning of ϑ in both Eu-
clidean and non-Euclidean geometries. Specifically, at each
iteration t, the mirror descent update is give by

ϑt`1 “ arg min
ϑ

tηtxgt pϑtq ,ϑy ` Bω pϑ,ϑtqu . (9)

Here, ηt ą 0 is the step-size, gt pϑtq is the subgradient of the
complete loss function in (8), and function Bω is the Bregman
divergence w.r.t. ω : Θ Ñ R [Bubeck and others, 2015], i.e.,

Bω pϑ,ϑtq “ ω pϑq ´ ω pϑtq ´ x∇ω pϑtq ,ϑ´ ϑty.
In particular, when ω pϑq “ 1

2}ϑ}
2
2, (9) reduces to ϑt`1 “

ϑt ´ ηtgt pϑtq, i.e., the subgradient descent update.
To implement the mirror descent method, we first de-

rive subgradient gt pϑtq for the loss function in (8). Let
h
`

xj , x̂j , ŝj
˘

:“
›

›φj d vec
`

1n b
`

xj ´ x̂j
˘˘

›

›

2
. Us-

ing Danskin’s Theorem [Bertsekas, 2016], we compute
B`ϑ

`

x̂j , ŝj
˘

(the subdifferential of `ϑ
`

x̂j , ŝj
˘

w.r.t. ϑ) as

conv
!

φj d vec
`

1n b
`

xj ´ x̂j
˘˘

ˇ

ˇ

ˇ
xj P X j pϑq

)

. (10)

Algorithm 1 Mirror Descent for Problem (8)

1: function MIRROR DESCENT( pD, ω,R, tφiu , α, tηtu ,ϑ0)
2: for t P t0, . . . T ´ 1u do Ź Iteration of Estimation
3: for j P t1, . . . Nu do Ź Loop over pD
4: Compute x̃j

t according to (11);
5: Compute B`ϑt

`

x̂j , ŝj
˘

according to (10);
6: end for
7: Compute subgradient gt pϑtq according to (12);
8: Apply mirror descent updates according to (9);
9: end for

10: return tϑtu
T
t“1.

11: end function

Here, conv t¨u represents the convex hull of the given set, and
set X j pϑq “

 

x̃j
(

, where

x̃j “ arg max
xPX j

!

xΦj
ϑ,x´ x̂

jy ` h
`

x, x̂j , ŝj
˘

)

. (11)

Based on (10), the subgradient gt pϑtq is derived as

gtpϑtq“
1

N

N
ÿ

j“1

φjdvec
´

1nb
´

x̃jt´x̂
j
¯̄

`α∇Rpϑtq . (12)

Algorithm 1 presents the pseudocode of the mirror descent
algorithm for solving (8). In line 4 of Algorithm 1, we com-
pute x̃jt for each data point

`

x̂j , ŝj
˘

by solving a maximiza-
tion problem. In line 5, we use the obtained x̃jt to compute
the subdifferential of `ϑt

`

x̂j , ŝj
˘

based on (10). In lines 7
to 8, we utilize the entire dataset to compute the subgradient
gt pϑtq of the objective function in (8), and then update cur-
rent parameters to obtain ϑt`1 by solving (9). Under certain
conditions, the mirror descent method guarantees that the ex-
pected objective value at the average of tϑtu

T
t“1 converges

to the global minimum [Zattoni Scroccaro et al., 2024]. We
leave the complexity analysis of Algorithm 1 to the supple-
mental material.

4.5 Incorporation of Priors
In this subsection, we extend our estimation method to in-
corporate a specific type of prior knowledge about ϑ. We
define Fi px;θiq :“ ´BUi px, s;θiq{Bxi and let F px;θq :“
pF1 px;θiq ; . . . ;Fp px;θiqq. In many games [LeBlanc et al.,
1975; Jensen, 2018], F px;θq is known to be monotone, i.e.,
to satisfy
`

x´ x1
˘J `

F px;θq ´ F
`

x1;θ
˘˘

ě 0,@x,x1 P X . (13)

Such monotonicity property is closely related to the equilib-
rium solution in (1). For instance, ifF px;θq is strictly mono-
tone, there exists at most one Nash equilibrium [Harker and
Pang, 1990]. Moreover, the projection gradient methods for
solving (1) exhibit global convergence under this condition
[Fukushima, 1992; Korpelevich, 1976; Xiu and Zhang, 2003;
Bnouhachem et al., 2015].

We then aim at estimating ϑ while ensuring that F px;θq
remains monotone. Towards this goal, we build upon the
fact that F px;θq is monotone if and only if its Jacobian ma-
trix is positive-semidefinite [Facchinei and Pang, 2003], i.e.,
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dJ∇F pxqd ě 0,@x P X ,d P Rp. Based on this observa-
tion, we incorporate this condition in (8) by using semidefinite
program [Vandenberghe and Boyd, 1996].

The specific form of F px;θq can vary across differ-
ent game applications, making a unified formulation of
the semidefinite program challenging. Hence, we take the
Bertrand-Nash competition as an example to introduce our
solution. It is a classic game widely studied in literature
[Berry, 1994; Berry et al., 1995; Bertsimas et al., 2015]. We
include the formulations of Cournot and traffic games in the
supplementary material.

For ease of presentation, we consider a two-firm Bertrand
competition (i.e., p “ 2). The analysis of more than two
firms is provided in the supplementary material. Each firm
i P t1, 2u chooses price xi to maximize revenue [Bertsimas
et al., 2015; Maddux et al., 2023]:

Ui px, s;θiq “ xipθi,1x1 ` θi,2x2 ` θi,3s` θi,4q, (14)

where the terms in the parentheses correspond to the demand
of firm i. In this case, ϑ “ pθ1;θ2q P R8.

In addition to the monotonicity property, there are some
other common assumptions on ϑ in this competition, e.g.,
Ui is concave w.r.t. xi, and θ21, θ12 can be normalized to
1 without loss of generality [Maddux et al., 2023]. Next, we
reformulate (8) to consider all these priors and assumptions.

Lemma 1. Let i :“ ´

„

θ11 θ21{2
θ12{2 θ22



, ĩ :“

„

θ13 θ23

θ14 θ24



.

For a two-firm Bertrand competition, formulation (8) can be
extended to the following problem:

min
i,ĩ

1

N

N
ÿ

j“1

`i,ĩ
`

x̂j , ŝj
˘

` αR
´

i, ĩ
¯

s.t. Tr
``

eie
J
i

˘

i
˘

ě 0,@i “ 1, 2,

Tr pAiq “ ´1,i ľ 0, ĩ ľ 0.

(15)

Here, A equals
„

0 1
1 0



, and the vector ei has a one in the

i-th position and zeros elsewhere. Tr p¨q is the trace operator.
Constraint Tr

``

eie
J
i

˘

i
˘

ě 0,@i “ 1, 2 implies θ11, θ22 ď

0, ensuring the concavity of each Ui. Tr pAiq “ ´1 indi-
cates θ21 “ θ12 “ 1. i, ĩ ľ 0 means that both i and ĩ are
positive semidefinite. Loss function `i,ĩ

`

x̂j , ŝj
˘

is

max
xjPX j

!

´Tr
`

Ψj
si

˘

` Tr
´

Ψ̃j
sĩ

¯

` h
`

xj , x̂j , ŝj
˘

)

, (16)

where Ψj
s :“

„

vj1 vj2 ` v
j
5

vj2 ` v
j
5 vj6



, Ψ̃j
s :“

«

vj3
vj4`v

j
7

2
vj4`v

j
7

2 vj8

ff

,

and vj :“ φj d vec
`

1n b
`

xj ´ x̂j
˘˘

P R8.
To solve the convex problem (15), we apply the primal-

dual interior-point method [Boyd and Vandenberghe, 2004].
The primal barrier method augments the primal objective
with a barrier function to handle inequality constraints, pe-
nalizing solutions near the boundary of the feasible set. The
primal-dual interior-point method extends this concept to
both the primal and dual problems, solving them simultane-
ously. It is often more efficient than the barrier method.

Algorithm 2 Primal-Dual Interior-Point for Problem (15)

1: function PD-IP( pD, α, ε,i0, ĩ0,Ξ0, Ξ̃0,λ0, ν0).

2: 1
µ0 Ð

Trpi0Ξ0q`Trpĩ0Ξ̃0q
4p `

řp
i“1 λ

0
i TrppeieJi qi

0q
4 ;

3: k Ð 0.
4: while 1

µkąε do
5: Compute Ψj

s

`

x̄j
k

˘

, Ψ̃j
s

`

x̄j
k

˘

by pD, ik and ĩk;
6: Compute

´

∆ik,∆ĩk,∆Ξk,∆Ξ̃k,∆λk,∆νk
¯

;

7: Backtracking line search for step-sizes ηkp , ηkd ;

8: Compute
´

ik`1, ĩk`1,Ξk`1, Ξ̃k`1,λk`1, νk`1
¯

;

9: Compute 1
µk`1 ;

10: k Ð k ` 1;
11: end while
12: return

´

ik, ĩk,Ξk, Ξ̃k,λk, νk
¯

.
13: end function

To use the primal-dual interior-point method, we derive the
perturbed KKT conditions based on the logarithmic barrier
[Nesterov and Nemirovskii, 1994] as follows.
Proposition 1. Let pi˚, ĩ˚q and pΞ˚, Ξ̃˚,λ˚, ν˚q be the op-
timal primal and dual solutions, respectively, and µ be the
barrier parameter. Then, the optimality conditions for the
logarithmic barrier centering problem are

i˚, ĩ˚ľ0; Ξ˚, Ξ̃˚ľ0; λ˚i ě0, Tr
``

eie
J
i

˘

i˚
˘

ě0,@i;

Ξ˚i˚“
1

µ
I; Ξ̃˚ĩ˚“

1

µ
I;λ˚i Tr

``

eie
J
i

˘

i˚
˘

´
1

µ
“0,@i;

Tr pAi˚q ` 1 “ 0; αĩ˚ ´ Ξ̃˚ `
1

N

N
ÿ

j“1

Ψ̃j
s

`

x̄j
˘

“ 0;

αi˚´
2
ÿ

i“1

λ˚i
`

eie
J
i

˘

´ Ξ˚ ` ν˚A´
1

N

N
ÿ

j“1

Ψj
s

`

x̄j
˘

“ 0,

where I is the identity matrix, and x̄j is defined as
arg maxxjPX j

!

´Tr
`

Ψj
si˚

˘

`Tr
´

Ψ̃j
sĩ˚

¯

`h
`

xj , x̂j , ŝj
˘

)

.

We use Newton’s method [Alizadeh et al., 1998] to solve
the equations in Proposition 1. We leave the details to our
supplementary material.

Algorithm 2 shows the primal-dual interior-point method
for solving (15). In line 5, we use current parameters ik and
ĩk to compute x̄jk for each data point

`

x̂j , ŝj
˘

, and then ob-
tain Ψj

spx̄
j
kq and Ψ̃j

spx̄
j
kq. In line 6, we compute the Newton

updates p∆i,∆ĩ,∆Ξ,∆Ξ̃,∆λ,∆νq. In lines 7, we utilize
the backtracking line search to compute current step sizes ηkp
and ηkd for the primal and dual variables, respectively. In lines
8 to 9, we update the current primal and dual variables, and
compute barrier parameter µk`1 in the next iteration.

5 Numerical Experiments
5.1 Games Applications
Demand Estimation in Bertrand Competition The two-
firm Bertrand competition was described in Section 4.5.
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The demand function estimation problem is: Given data
tpx̂j1, x̂

j
2, ŝ

jquNj“1, we seek to estimate ϑ “ pθ1;θ2q P R8

such that each px̂j1, x̂
j
2q is a Nash equilibrium for context ŝj .

Profit Estimation in Aggregative Games In aggregative
games [Jensen, 2018], each player i’s utility Ui depends on
its own action xi and the aggregation of all players’ actions,
i.e., Ui pxq “ Ũi pxi,

řp
k“1 xkq. We take the Cournot com-

petition as an example. Each firm i decides the quantity xi of
a homogeneous product to supply, aiming to maximize:

Ui px, s; a, b, d, ciq“xi

˜

b` ds´ a
p
ÿ

k“1

xk

¸

´ cixi. (17)

The terms in the parentheses represent the inverse demand
function, and ci is the unit cost of production. Following
[Risanger et al., 2020], we include s as a demand shock that
adjusts the demand intercept b. The problem is as follows:
Given tpx̂j , ŝjquNj“1, we seek ϑ “ pa, b, d, c1, . . . , cpq P

Rp`3 such that each x̂j constitutes a Nash equilibrium.
Cost Estimation in Traffic Game We represent a road net-
work by a tuple pV,A,W, t p¨qq, where V and A denote the
sets of nodes and links, respectively. W is the set of all
Origin-Destination (OD) pairs. t p¨q denotes the cost func-
tions, and its a-th element ta p¨q is the travel latency cost func-
tion for link a P A. A common choice for ta p¨q is the U.S.
Bureau of Public Roads (BPR) [Sheffi, 1985] function:

ta pxaq “ θ0
a ` θ

1
a

ˆ

xa
Ca

˙γ

. (18)

Here, xa is the overall traffic on link a, Ca is the capacity of
link a, γ is the congestion sensitivity parameter, and θ0

a, θ
1
a

are cost parameters. In these settings it is standard to assume
Ca and γ are common knowledge, while only θ0

a, θ1
a need

to be estimated. The cost estimation problem is: Given link
flow data tx̂j “ px̂ja; a P AquNj“1, we seek to estimate cost
parameters tθa “ pθ0

a, θ
1
aq, a P Au, such that each x̂j is a

Wardrop equilibrium [Sheffi, 1985; Patriksson, 2015].

5.2 Experimental Settings
Experimental Data We describe the dataset as follows.
• Bertrand Competition: Following [Maddux et al., 2023],

we generate ϑ by randomly sampling its elements from
Gaussian distributions: θ11 „ N p´1.2, 0.52q, θ12 „

N p0.5, 0.12q, θ21 „ N p0.3, 0.12q, θ22 „ N p´1, 0.52q,
and θi3, θi4 „ N p1, 0.52q for i “ 1, 2. We take s to be
i.i.d. samples from N p5, 1.52q. Given each ŝj , we solve
for the equilibrium prices px̂j1, x̂

j
2q using first-order meth-

ods. To evaluate different estimation methods, we generate
50 random ϑ. For each ϑ, we create a training dataset
pDtrain and a test dataset pDtest, both with a size of 500.

• Cournot Competition: We consider p “ 3 players, and
generate ϑ by randomly sampling its elements as follows:
a, d „ Up5, 10q, b „ N p50, 52q, ci „ Up10, 20q. Given
each context ŝj „ N p6, 22q, we solve for the Nash equilib-
rium x̂j using first-order methods. We randomly generate
50 different ϑ for evaluation. Each ϑ has a corresponding
pDtrain and pDtest, both with 500 samples.
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Figure 2: Convergence of I-MD on the Bertrand Dataset.
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Figure 3: Convergence of I-SDP on the Bertrand Dataset.

• Traffic Game: We consider the Sioux Falls network
[LeBlanc et al., 1975], which contains 24 nodes and 76
links. Every two nodes in the network constitute OD pairs.
We set ϑ according to this real network. To generate multi-
ple equilibrium data, following [Bertsimas et al., 2015], we
randomly perturb the OD demands 1000 times, with each
perturbation drawn from Up0, 0.1q. Using Frank-Wolfe al-
gorithm and trueϑ, we then compute x̂a for each perturbed
OD demand. pDtrain and pDtest both contain 500 samples.

Comparison Methods We compare the performance of the
following five estimation methods:
• I-MD (Incenter with Mirror Descent): We estimate ϑ us-

ing Algorithm 1.
• I-SDP (Incenter with SemiDefinite Programming): We use

Algorithm 2, which incorporates the monotonicity of F
(the versions tailored for the Cournot competition and traf-
fic game are in the supplementary material).

• Bertsimas (Data-Driven Estimation in Equilibrium Using
Inverse Optimization [Bertsimas et al., 2015]): It estimates
ϑ from observed equilibria based on inverse optimization
without using the concept of incenter.

• Feasibility: It chooses a parameter vector from the set C
of consistent parameter vectors. To check the feasibility of
the parameter vectors w.r.t. (3), it discretizes each X j .

• Random: It randomly chooses a parameter vector.

5.3 Experimental Results
We evaluate the estimation errors of the methods using two
metrics: (i) The `2-distance between the estimated param-
eter vector ϑesti and the true parameter vector ϑtrue, i.e.,
}ϑtrue ´ ϑesti}2. To ensure consistent comparisons, all pa-
rameter vectors are normalized before evaluation; (ii) The `2-
distance between the equilibrium xesti computed using ϑesti

and the equilibrium xtrue computed using the true parameter
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Figure 4: Comparison Results on Bertrand Testing Data.
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Figure 5: Convergence Results on the Cournot Dataset.

vector ϑtrue, i.e., }xtrue ´ xesti}2. The scalability analysis
of our methods is provided in the supplementary material.

Bertrand Competition In Figure 2, we depict the conver-
gence of our I-MD method on the Bertrand data. Figure 2a
illustrates the average error between ϑesti and ϑtrue over 50
experiments (each with a different ϑtrue). The shaded area
represents the standard deviation of these errors. Figure 2b
shows the average error between the true equilibrium xtrue

and the equilibrium xesti computed using ϑesti on the testing
data. The convergence of our I-SDP method is depicted in
Figure 3. Our I-SDP converges to lower errors in both met-
rics compared to I-MD. This is attributed to the incorporation
of the monotonicity property of F . It can also be observed
that I-SDP converges much faster, thanks to the efficiency of
the primal-dual interior-point method.

Figure 4 presents the comparative results of different esti-
mation methods on the testing data, evaluated using two met-
rics. We use boxplots to illustrate the distribution of two error
metrics across 50 trials for each method. Each box includes
all error points, with the central line representing the median
and the “`” sign denoting the mean error. Our I-SDP method
achieves the lowest median and mean errors with minimal
variability across both metrics. Specifically, for the met-
ric }ϑesti ´ ϑtrue}2, I-SDP achieves the lowest mean error
(around 0.663), whereas the comparison methods exhibit rel-
atively large errors (with the best among them being 0.979).
Similarly, for }xesti ´ xtrue}2, I-SDP again performs best,
with a mean error around 2.690. Notably, our I-MD method
outperforms all comparison methods across two metrics.

Cournot Competition In Figure 5, we present the conver-
gence performance of our methods, measured by the gap be-
tween ϑesti and ϑtrue. We include the convergence about
}xtrue ´ xesti}2 in the supplementary material. Comparing
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Figure 6: Comparison Results on Cournot Testing Data.
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Figure 7: Comparison Results on Traffic Testing Data.

Figure 5a and Figure 5b, we can see that our I-SDP converges
to a lower error at a much faster rate compared to I-MD.

Figure 6 presents the boxplots concerning two error met-
rics across different estimation methods on the testing data.
It can be observed that our I-SDP and I-MD methods out-
perform all the other methods across both metrics. Specifi-
cally, our I-SDP achieves the lowest errors, with a mean er-
ror of 0.562 for }ϑesti ´ ϑtrue}2 and a mean error of 1.245
for }xesti ´ xtrue}2. In contrast, the lowest errors among the
comparison methods are 1.089 and 3.203 for the two metrics.
Traffic Game We leave the convergence performance of
our methods with respect to }ϑesti ´ ϑtrue}2 to our supple-
mentary material. Figure 7 presents a boxplot comparison of
our two methods against Random on the testing data. Bert-
simas and Feasibility are excluded, because (i) Bertsimas
becomes intractable, as in the traffic game it requires solving
an optimization problem with infinite constraints; (ii) Feasi-
bility is impractical due to the vast size of the global action
space (e.g., discretizing each flow region with only 2 values
leads to a size of 276). It is evident that both our I-SDP and
I-MD significantly outperform the Random method.

6 Conclusion
In this paper, we introduced a novel framework for estimat-
ing player utilities from their equilibrium behaviors. Our es-
timation framework is applicable to a broad range of multi-
player non-cooperative games and practical applications. We
also extended it to account for a specific structural property in
player utility functions. Experimental results on three game
applications demonstrate the superiority of our methods over
baselines. The main focus of our work is on efficiently com-
puting the incenter and evaluating its effectiveness. Future
directions will include analyzing the sample complexity of
our utility estimation method and integrating utility estima-
tion with the prediction of equilibrium behaviors.
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