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Abstract

Pre-trained vision-language models have shown re-
markable potential for downstream tasks. However,
their fine-tuning under noisy labels remains an open
problem due to challenges like self-confirmation
bias and the limitations of conventional small-loss
criteria. In this paper, we propose a unified frame-
work to address these issues, consisting of three key
steps: Screening, Rectifying, and Re-Screening.
First, a dual-level semantic matching mechanism is
introduced to categorize samples into clean, am-
biguous, and noisy samples by leveraging both
macro-level and micro-level textual prompts. Sec-
ond, we design tailored pseudo-labeling strategies
to rectify noisy and ambiguous labels, enabling
their effective incorporation into the training pro-
cess. Finally, a re-screening step, utilizing cross-
validation with an auxiliary vision-language model,
mitigates self-confirmation bias and enhances the
robustness of the framework. Extensive experi-
ments across ten datasets demonstrate that the pro-
posed method significantly outperforms existing
approaches for tuning vision-language pre-trained
models with noisy labels.

1 Introduction

In the field of image classification, label quality often depends
on various factors, such as the complexity of distinguishing
target objects and the expertise of annotators. In annotation
systems like crowdsourcing, noisy labels are inevitable. Con-
sidering deep neural networks (DNNs) are highly suscepti-
ble to memorizing mislabeled training samples, addressing
learning with noisy labels is essential for ensuring the robust-
ness of learned DNNs. Recently, pre-trained vision-language
models [Radford et al., 2021] have achieved remarkable
progress and are increasingly adopted for downstream im-
age classification tasks. This paper specifically tackles the
challenge of fine-tuning pre-trained vision-language models
under the presence of noisy labels.

Learning DNNs with noisy labels presents two main chal-
lenges. First, it requires effectively identifying mislabeled
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samples to prevent DNNs from memorizing incorrect data.
Research [Arpit et al., 2017] reveals that DNNs tend to
first memorize clean samples with dominant patterns before
noisy samples with less representative patterns. Hence, the
small loss criterion is widely used for separating clean sam-
ples from noisy samples. Methods such as co-training with
two models [Li et al., 2020; Lu et al., 2021; Kim et al.,
2024] leverage this criterion to mutually identify noisy sam-
ples. The second challenge is extracting value from noisy
samples. Existing methods typically assign pseudo-labels to
noisy samples [Li et al., 2020; Yao et al., 2021] or design
self-supervised constraints [Liu ef al., 2020].

Recently, several studies [Wu et al., 2023; Guo and Gu,
2024; Feng e al., 2024] have explored the challenge of tun-
ing the vision-language models under noisy labels. For ex-
ample, [Wu er al., 2023] analyzes the impact of noisy labels
on CLIP [Radford er al., 2021], revealing that performance
significantly deteriorates as noise increases. To address this,
existing methods often rely on self-generated predictions to
clean samples or assign pseudo labels, as seen in [Guo and
Gu, 2024] and [Feng et al., 2024]. However, these approaches
suffer from self-confirmation bias, where prediction errors
propagate and amplify during training. Besides, conventional
small-loss criterion fails to reliably distinguish clean samples
from noisy ones, especially in ambiguous cases.

To address these limitations, we propose a novel algorithm
that consists of three main steps: screening observed labels,
rectifying potential noisy labels, and re-screening rectified
labels. First, we introduce a dual-level semantic matching
criterion that combines macro-level and micro-level textual
prompts to better differentiate clean samples from noisy ones
in the training loss space. This criterion is applied for iden-
tifying whether a training sample is a clean, ambiguous, or
noisy sample. Second, we design separate label rectification
strategies for refining labels of noisy and ambiguous samples
with pseudo labels, aiming to effectively incorporate them
into training. Lastly, we mitigate self-confirmation bias by
re-screening rectified labels using cross-validation with an-
other vision-language model, BLIP [Li et al., 2022]. Exten-
sive experiments conducted on ten datasets, demonstrate that
the proposed method achieves state-of-the-art performances
in tuning vision-language models with noisy labels.

Key contributions of this paper are summarized as below:
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1) We propose a novel unified framework, comprising three
steps: Screening to identify noisy and ambiguous sam-
ples, Rectifying to assign corrected labels, and Re-
Screening to validate the rectified labels for improving
model robustness.

2) A novel dual-level semantic matching method is intro-
duced, using macro- and micro-level textual prompts to
effectively distinguish noisy samples from clean ones.

3) Extensive experiments on ten datasets demonstrate that
our method establishes a new state-of-the-art for tuning
vision-language models with noisy labels.

2 Related Work

Learning with Noisy Labels. Noisy labels degrade ro-
bustness of DNNs due to their susceptibility to overfitting.
To mitigate this, researchers have developed methods for
noise detection and label cleaning. Leveraging the observa-
tion that DNNs learn clean samples faster than noisy ones
[Arpit et al., 2017], several methods (e.g., [Park et al., 2023;
Patel and Sastry, 2023; Kim er al., 2024]) utilize the small-
loss criterion to identify clean samples. While effective to
some extent, these methods can misclassify noisy samples re-
sembling clean ones. Approaches like [Guo and Gu, 2024;
Feng et al., 2024] employ label correction techniques after
sample partitioning, but they are prone to self-confirmation
bias due to their reliance on model predictions, potentially
hindering performance.

The other type of methods uses training objectives based on
label transfer matrices [Lin et al., 2024; Nguyen et al., 2024;
Bae et al., 2024], reweighted losses [Yao et al., 2024], and
self-supervised learning [Liu et al., 2020; Zhu et al., 2024].
However, these methods often exhibit limited effectiveness
due to their reliance on specific noise patterns.

Training strategies like curriculum learning (e.g., [Yu et al.,
2024]) and progressive label adjustment (e.g., [Zhang et al.,
20211, [Chen et al., 2024]) mitigate noisy labels by gradually
refining the learning process. While effective, these methods
often entail increased computational overhead and necessi-
tate careful hyperparameter tuning (e.g., epochs, curriculum
structure). Improper optimization can lead to longer training
times, higher resource consumption, and suboptimal perfor-
mance.

Unlike existing methods, our method presents a three-
step framework—screening, rectifying, and re-screening la-
bels. We use a dual-level semantic matching criterion for im-
proved label screening and distinct label rectification strate-
gies for noisy and ambiguous samples. To mitigate self-
confirmation bias, we employ a pre-trained vision-language
model to cross-validate rectified labels, enhancing label cor-
rection accuracy and robustness compared to methods relying
on a single model for both detection and rectification.
Prompt Tuning for Vision-Language Models. Vision-
language pre-trained models have advanced significantly in
recent years. CLIP [Radford er al., 2021] employs prompt
engineering to incorporate category-specific information into
text inputs, allowing its pre-trained model to adapt to vari-
ous tasks without further training. However, manual prompt
design is time-consuming and requires expertise. To address

this, CoOp [Zhou er al., 2022b] introduces learnable prompts
optimized for specific datasets, reducing manual effort and
improving task adaptability. CoCoOp [Zhou et al., 2022a]
further enhances this by integrating image information into
prompts using a lightweight network, enabling better con-
text learning and generalization to unseen categories. BLIP
[Li et al., 2022] leverages weak supervision to generate high-
quality visual information for task-specific purposes, improv-
ing performance. More recent works like ArGue [Tian er
al., 2024] align prompts with visual attributes from large lan-
guage models and apply negative prompting for better out-
of-distribution generalization, while AdvPT [Zhang et al.,
2024] uses learnable text prompts aligned with adversarial
image embeddings to enhance robustness. While these meth-
ods advance prompt tuning, they primarily focus on static or
model-based prompt designs. In contrast, our approach aims
to adapt the pre-trained model to noisy label tasks. We com-
bine macro- and micro-level textual prompts for label screen-
ing and rectification, and use BLIP to cross-validate rectified
labels. This approach improves model robustness and adapt-
ability, complementing traditional prompt tuning techniques.

3 Preliminary

Problem Definition. This paper aims to address the adap-
tation of the vision-language pre-trained model using train-
ing data with noisy labels. Formally, we denote the training
dataset as {(x;,y;)},, where x; denotes the i-th training
sample, y; denotes the observed label of x;, and N represents
the total number of training images. Supposing the number
of classes be C, we have y; € {1,---,C} which may be in-
correct. The target is to adapt a pre-trained vision-language
model which can tackle the image recognition task through
matching images with class descriptions to the above dataset.
Prompt Tuning for Vision-Language Model. Follow-
ing [Zhou et al., 2022b], we use the vision-language pre-
trained model CLIP consisting of an image encoder and a text
encoder, as the image classification backbone model. We ap-
ply the prompt tuning algorithm to adapt the pre-trained text
encoder to the target dataset. Given an input image x;, the im-
age encoder transforms it into a feature vector f;. For purpose
of tuning the text encoder, a set of learnable prompts are used
to provide extra context of each class’s textual prompt. We
denote the learnable prompts of the j-th class as t;. Feeding
the j-th class’s text descriptions and the learnable prompts t
into the text encoder, we can obtain the j-th class’s embed-
ding vector o;. Based on the image feature vector f; and all
classes’ embedding vectors, we can infer the probability of
x; belonging to the j-th class as follows:

o expl(eos(oy,§) /7)
ply=Jlxi)= =z ;

Zj’:l exp (cos (05, 1;) /7)

where 7 is a hyperparameter set to 2. Through optimizing
the learnable prompts only while freezing the image and text
encoder, we can achieve the efficient adaptation of the pre-
trained model into the target dataset. This can take advantage
of the prior knowledge of the pre-trained model in extracting
generalized vision and textual features. Due to few parame-
ters required for optimization, only a small number of training
data is required during the model adaptation process.

)
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Figure 1: Overview of our framework, consisting of three steps: 1) label screening using dual-level semantic matching; 2) label rectification
for noisy and ambiguous samples; and 3) label re-screening with BLIP. First, we screen labels based on the loss from predictions generated
by macro- and micro-level textual prompts, partitioning samples into clean, ambiguous, and noisy subsets. Then, pseudo labels are applied
to rectify labels in the ambiguous and noisy subsets. Finally, rectified labels are re-screened using BLIP.

4 Method

4.1 Overview of Proposed Framework

As shown in Fig. 1, we propose a framework leveraging pre-
trained vision-language models to tackle noisy label learn-
ing. It consists of three steps: 1) screening observed labels
to identify potential mislabels, 2) rectifying these labels for
effective optimization, and 3) re-screening to mitigate self-
confirmation bias.

In the screening step, we use a dual-level semantic match-
ing mechanism with macro-level and micro-level prompts
to classify samples as clean, ambiguous, or noisy ones.
For rectification, noisy samples are assigned pseudo-labels,
while ambiguous ones receive a combination of observed and
pseudo labels. Finally, we use BLIP to re-screen and vali-
date rectified labels. High-quality samples are directly used
for prompt learning, while the rest are augmented via data
mixing to minimize the influence of error labels.

4.2 Label Screening Based on Dual-level Semantic
Matching

Dual-level Semantic Matching. During training, DNN-
based models tend to memorize clean samples first, followed
by noisy samples, which is why the small-loss criterion is
commonly used to differentiate between the two. However,
for CLIP prompt learning, using a single textual prompt
struggles to effectively separate clean and noisy samples in
the loss space. Macro-level prompts, based on class names,
ensure inter-class separability but are prone to overfitting
noisy samples due to the simplicity of the image-language
matching. On the other hand, micro-level prompts, which de-
scribe fine-grained attributes, provide more reliable matching,
reducing overfitting to noisy samples but may cause underfit-
ting on clean samples. As a result, relying on just one type of
prompt for image-class matching leads to significant overlap
between clean and noisy samples. To address this, we pro-
pose a dual-level semantic matching mechanism, combining
both macro-level and micro-level prompts as a label screen-
ing criterion. This approach facilitates the identification of
clean, ambiguous, and noisy samples.

1) Macro-level Textual Prompt. We follow CLIP’s original
design, using a class name template to generate macro-level
textual prompts. For class j, the macro-level textual prompt
T35 is defined as:

T7* = *aphoto of a {class j}’

By feeding 77 and learnable prompts t7* into the text en-
coder, we obtain the embedding vector 0;“ for class j. Ac-

cording to Eq. 1, these class embeddings {03mlc jC:l are then
used to compute the probabilities p™* € [0, 1], represent-
ing the likelihood of sample x; belonging to each class.

2) Micro-level Textual Prompt. Unlike macro-level prompts,
micro-level prompts introduce class-specific features to en-
hance the alignment between image and text embeddings.
Following [Feng et al., 20241, we generate these prompts by
incorporating detailed features such as shapes, textures, col-
ors, and other unique attributes of each class. For class j, the
micro-level textual prompt 77" is expressed as:

T3¢ =‘a photo of a {class j},

which is/has {features of class j}.

The text encoder processes T;nic and t?ﬁc to produce the
micro-level embedding og‘ic. Using these embeddings
{o}5_ |, we can predict the class probabilities pj"° €
[0,1]¢, which represent the likelihood of x; belonging to
each class.
3) Label Screening Criterion. Based on the class probabil-
ities estimated from the macro-level and micro-level textual
prompts, we define a label screening criterion with a sample-
wise loss function composed of three key terms: (1) a con-
ventional cross-entropy loss, (2) a consistency constraint be-
tween the two types of prompt-induced predictions, and (3)
an entropy penalty term. These terms are designed to enhance
model robustness, especially in the presence of noisy labels.
The cross-entropy loss evaluates the discrepancy between
the predicted class probabilities and the observed label.
Specifically, for sample x; with observed label y; (one-hot
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Figure 2: The loss distributions of clean and noisy samples using
macro-level (left), micro-level (middle), and dual-level (right) tex-
tual prompts on DTD dataset under 75% Pairflip label noise.

encoded vector of yi), the loss is computed as:

gce Xza YZ - Z yh] IOg pz J ) + yl \J IOg(pIznzc)] ’ (2)
Jj=1

where y; ; represents the j-th element of y;, and p}"5 and pm‘c

are the j-th elements of pj**® and pj"°, respectively.

To address the issue of noisy labels, we impose a consis-
tency constraint between the predictions generated by macro-
level and micro-level prompts. This is achieved by calculat-
ing the Jensen-Shannon divergence between the two proba-
bility distributions p;™®° and pj". The consistency loss for
sample x; is given by:

C pmac pmlc
ENx) =) [p??c log ( pmlc> + i log ( pr;{;ﬂ NE©)

j=1 ,J 4]

mic

This term helps mitigate the impact of noisy labels by pro-
moting agreement between the predictions from both lev-
els, effectively reducing the overfitting to noisy samples.
By aligning the macro-level and micro-level predictions, the
model is less likely to overfit to mislabeled data, resulting in
improved generalization.

The entropy penalty term encourages more tight predic-
tions by penalizing overly smooth outputs. It is designed to
reduce the overlap between clean and noisy samples. The en-
tropy penalty for sample x; is calculated as:

Zent Z

j=1

i log(pl) + Py log(p)] . @)

The overall loss function is a weighted sum of the three
loss terms:

(x4, y5) = 0€(x4, y3) + MO (x;) + B (x5),  (5)

where A and /3 are hyperparameters.

Fig. 2 illustrates the loss distributions of clean and noisy
samples using macro-level, micro-level, and dual-level tex-
tual prompts on the DTD dataset with 75% Pairflip label
noise. The loss distributions of clean and noisy samples over-
lap significantly when using either macro-level or micro-level
prompts alone. In contrast, the dual-level textual prompts ef-
fectively reduce the overlap between clean and noisy sam-
ples, highlighting the advantage of combining macro-level
and micro-level prompts for more accurate label screening.
Tri-Segment Sample Screening. Previous approaches [Guo
and Gu, 2024; Arazo et al., 2019] typically use small-loss

clean noisy

My gy up Loss

Figure 3: The semantic representation quantifying the overlap be-
tween the clean and noisy data distributions.

mechanisms to separate clean and noisy samples. However,
noise complexity often leads to misclassification of clean
samples with losses resembling noisy ones, or vice versa. To
address this, we propose a tri-segment screening strategy that
categorizes samples into clean, ambiguous, noisy classes, ac-
counting for overlap between clean and noisy data.

We model sample-wise losses with a two-component
Gaussian Mixture Model (GMM), fitting the model every two
epochs. The first and second Gaussian components represent
the clean and noisy data loss distributions, respectively:

1 _=pp?

() =———=e 1 | 6

Folly = 7=e ©®
; 1 7(##5)2

n = BEI 7

fall) = @

where f.(1) and f, (1) are the probability density functions of
clean and noisy data, respectively. ux and o, denote the mean
and variance of the k-th Gaussian component, respectively.
Given the overlap between these distributions as illustrated
in Fig. 3, we define the ambiguous region for samples with
loss values in this range. For a confidence level 0, we deter-
mine the ambiguous region boundaries a;; and ag as follows:

felar) =0, a1 >m
{ Ee e w ®
Solving these equations gives thresholds «; and as:
ap = py + 202 In(fov/2m
1= \/ i In(0o,v2m) ©

Qg = g — \/—205 In(fo \/271')

The lower and upper boundaries of the ambiguous region are
7, = min(aq, ) and 7, = max(aq, az), respectively. A
sample x; is classified as follows:

o If l(x;,y:) < mi, X; is clean;
o If < U(x4,y:) < Nu, X; is ambiguous;
o If 4(x;4,¥i) > Nu, X; 1S NOISY.

This label screening strategy partitions the dataset into clean,
ambiguous, and noisy subsets, guiding further data utilization
and label rectification for training.
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4.3 Label Rectification and Re-screening

Label Rectification. To ensure sufficient training data, we
introduce label rectification strategies that update each train-
ing sample’s label using pseudo labels generated from model
predictions. The pseudo label of sample x;, denoted as y;, is
the average of predicted probabilities from macro-level and
micro-level prompts, i.e., y; = (pI™* + p'©)/2.

The updated label y; is determined by the following rules:

e If x; isclean, y; = y;.

e If x; is ambiguous, we combine the observed label y;
and pseudo label y; with confidence weight w;:

yi =wiyi + (1 —w;)y;. (10)
w; is determined by the posterior probability that x; be-
longs to the clean set.
* If x; is noisy, the observed label is likely incorrect, so
the pseudo label y; is used: y; = ¥;.
Label Re-screening. Using pseudo labels for rectification
can introduce self-confirmation bias due to the lack of re-
liable quality evaluation. To mitigate this, we use the pre-
trained BLIP model for cross-validation. For each sample x;,
we generate a text prompt 7; by incorporating the class with
the highest value in y; into the micro-level prompt template.
We then use BLIP to compute the similarity between x; and
T;, denoted as s;. The scores of all samples are fitted with a
two-component GMM, and the posterior probability of s; be-
longing to the component with the larger mean is calculated,
resulting in a quality score g;. This score is used to separate
the training samples into high-quality and low-quality sets:

{517, ={(xi,¥:) | @ > K},
Dy ={(xi,¥i) | @i < &}
where « is a threshold, typically set to 0.5.

4.4 Training Objective
Considering the unreliability of samples in Dy, we apply the
mixup operation [Berthelot et al., 2019] to augment them,

yielding an updated dataset 75; This reduces the model’s re-
liance on individual noisy labels and enhances data diversity,
preventing overfitting. The final training objective is com-

puted by accumulating losses over the union of Dj, and 51’ :

>

(xi,y:)€DUD;

é(xzw}’i)-

This objective is used to optimize the learnable prompts, mit-
igating the influence of noisy samples while making full use
of all training samples.

5 Experiments

5.1 Datasets

We evaluate our method on ten datasets, including Flow-
ers102 [Nilsback and Zisserman, 2008], EuroSAT [Helber
et al., 2019], StanfordCars [Krause et al., 2013], OxfordPets
[Parkhi et al., 2012], DTD [Cimpoi et al., 2014], Caltech101

[Fei-Fei et al., 20041, UCF101 [Soomro, 2012], Food101
[Bossard et al., 2014], ImageNet [Deng et al., 2009] and
SUN397 [Xiao et al., 2010]. Following JoAPR [Guo and Gu,
2024], we adopt the same noise-labeled ways to generate our
noisy dataset. One is Symflip noise, which is generated by
randomly drawing labels from other categories in the dataset
to replace the true labels. The other is more challenging Pair-
flip noise, which is generated by exclusively selecting labels
that are adjacent to the true label to replace it. Following
CoOp [Zhou et al., 2022b], we sample a 16-shot training set
from each dataset and employ the original test set for evalu-
ation. To assess robustness, we test the method under noise
rates ranging from 12.5% to 75%.

5.2 Implementation Details

Following the previous works [Zhou et al., 2022b; Guo and
Gu, 2024], we adopt the CLIP model with ResNet-50 [He
et al., 2016] as visual encoder and Transformer [Vaswani et
al., 2017] as text encoder. The number of tokens in learnable
prompts is set to 16. We adopt SGD optimizer to train our
model with an initialization learning rate of 0.002 and apply
cosine annealing strategy. The maximum number of training
epochs is set to 200, except for ImageNet where it is set to 50.
To mitigate gradient explosion in the early stages of training,
we adopt a warm-up strategy and fix the learning rate to 1 x
1075 in first training epoch. The hyper-parameters A, 3 and
0, are set to 0.5, 0.001, and 0.01, respectively.

5.3 Comparison with State-of-the-art Methods

Table 1 presents a comprehensive comparison between our
method and state-of-the-art (SoTA) approaches including
CoOp [Zhou et al., 2022b], Robust UPL [Wu er al., 2023],
and JoAPR/JoAPR* [Guo and Gu, 2024], across ten datasets
under various noise levels. Our method achieves the highest
accuracy in most scenarios and the highest average accuracy
across all noise levels. It can be seen that CoOp demonstrates
robustness at lower noise levels, but its performance deteri-
orates significantly as the noise ratio increases. Robust UPL
[Wu er al., 2023] rely on pseudo-labels to alleviate the im-
pact of noisy data on model performance. As the noise rate
increases, the confidence in pseudo-labels decreases, which
negatively impacts model performance. JoAPR improves
upon CoOp by using data partitioning and label refurbish-
ment but still struggles in high-noise scenarios. For instance,
under 62.5% Symflip noise on the DTD dataset, our method
outperforms JOAPR by 8.73%. On the StanfordCars dataset
with 75% Pairflip noise, our method surpasses JOAPR* by
10.86%. Additionally, our method demonstrates strong ro-
bustness to high noise levels across all datasets.

5.4 Ablation Study

Effectiveness of Key Components. To better determine the
contributions of key components in our method, we con-
ducted a series of ablation experiments on the DTD and
OxfordPets datasets, as shown in Table 2. The pre-trained
vision-language model CoOp is used as the baseline (referred
to as No.1). No.2, No.3, and No.4 represent the application of
macro-level semantic prompt (MaLS), micro-level semantic
prompt (MiLS), and dual-level semantic prompts (DLSM) to



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

| Symflip | Pairflip
Dataset Method
| 12.5% 25% 37.5% 50% 62.5% 75% | 12.5% 25% 37.5% 50% 62.5% 75%
CoOp 86.13 81.07 74.93 68.47 55.50 39.37 86.47 76.43 63.07 45.20 27.10 12.40
Robust UPL 86.61 83.33 77.31 70.45 61.74 50.23 85.83 81.50 75.97 67.71 60.03 49.65
Flowers102 CoOp+JoAPR 90.13 88.13 84.47 82.13 75.60 75.13 89.80 88.83 84.73 73.27 71.03 62.87
CoOp+JoAPR* 88.50 88.33 85.93 82.70 77.33 75.50 89.67 89.17 84.63 76.47 73.80 58.87
Ours 90.22 90.01 86.11 84.98 82.14 75.52 89.85 89.20 85.02 77.95 74.38 67.40
CoOp 71.77 71.27 62.13 54.90 45.53 26.73 78.77 67.37 55.73 42.83 28.33 18.70
Robust UPL 77.46 71.87 64.05 57.13 46.11 32.36 76.78 70.71 63.51 52.14 41.70 27.11
EuroSAT CoOp+JoAPR 78.33 79.37 78.33 72.23 66.20 49.37 80.00 78.57 73.03 63.03 5847 39.47
CoOp+JoAPR* 79.30 80.53 78.07 67.33 59.20 34.45 78.23 78.50 69.43 58.23 40.85 25.90
Ours 83.02 83.10 79.56 74.89 71.68 60.02 83.22 79.83 73.33 63.93 58.94 41.23
CoOp 66.37 59.00 54.23 47.70 36.93 24.70 65.67 57.03 46.47 33.10 20.70 11.30
Robust UPL 65.23 60.66 55.43 49.30 43.42 30.53 64.35 59.75 53.70 47.16 42.75 28.84
StanfordCars CoOp+JoAPR 68.60 67.63 65.77 63.53 58.97 51.53 67.00 64.47 61.20 54.87 47.20 36.57
CoOp+JoAPR* 68.33 67.57 66.23 63.00 58.57 51.80 67.67 65.53 63.43 58.50 5233 43.83
Ours 70.13 68.60 66.57 64.18 60.30 57.05 68.92 67.04 64.21 58.56 55.55 54.69
CoOp 77.67 69.23 58.73 48.37 3537 22.37 76.40 65.70 51.87 37.00 25.90 14.17
Robust UPL 83.79 82.37 79.25 79.69 67.90 46.29 83.13 81.77 79.18 77.95 65.17 44.43
OxfordPets CoOp+JoAPR 85.20 85.40 85.27 85.67 85.30 83.77 85.97 86.93 86.07 85.87 82.77 76.93
CoOp+JoAPR* 85.93 86.13 85.17 86.27 84.53 83.10 87.13 87.50 87.37 86.53 85.33 81.17
Ours 90.32 89.89 89.48 89.56 88.66 88.23 90.95 89.34 88.99 88.72 88.44 87.93
CoOp 55.50 49.27 43.83 36.00 27.23 19.77 55.43 46.77 37.40 27.53 18.87 10.17
Robust UPL 58.69 55.61 49.00 43.14 35.76 28.13 58.63 54.96 48.47 42.26 3247 26.18
DTD CoOp+JoAPR 58.83 57.67 55.70 53.07 50.67 46.30 57.33 55.13 55.03 48.53 45.00 32.53
CoOp+JoAPR* 56.63 56.63 56.77 53.07 49.40 46.83 55.60 57.03 55.30 53.27 41.17 31.70
Ours 65.19 64.30 62.41 60.28 59.40 57.98 65.48 64.48 62.29 59.22 56.09 51.24
CoOp 79.03 70.60 65.70 57.57 47.20 36.67 82.97 73.20 59.27 43.47 30.30 16.23
Robust UPL 83.08 81.77 81.29 76.52 71.08 65.00 81.64 81.22 80.77 75.17 65.19 60.12
Caltech101 CoOp+JoAPR 88.50 89.07 88.47 89.03 87.67 84.87 88.80 89.17 88.80 88.27 86.17 84.43
CoOp+JoAPR* 89.20 89.30 89.60 88.83 87.10 85.20 89.47 89.47 89.57 89.13 86.07 84.27
Ours 91.16 91.60 91.44 91.39 90.83 89.70 91.72 91.08 91.32 90.99 89.78 88.88
CoOp 68.73 64.43 58.37 51.83 43.67 30.30 68.83 61.27 49.37 38.80 24.63 13.73
Robust UPL 69.91 67.35 64.24 59.98 54.69 45.52 68.56 65.37 63.67 57.19 52.85 43.46
UCF101 CoOp+JoAPR 73.90 73.17 72.77 70.00 67.10 65.40 72.93 72.43 7043 66.27 61.80 52.77
CoOp+JoAPR* 73.37 73.83 71.40 70.30 66.83 63.80 73.03 72.40 69.77 69.10 63.40 56.23
Ours 76.24 76.13 75.63 73.73 71.05 69.57 77.16 73.88 70.84 69.57 65.53 63.42
CoOp 72.83 69.43 66.57 63.33 57.37 46.67 72.00 65.30 56.00 43.30 26.90 12.87
Robust UPL 74.09 71.33 70.04 64.99 61.03 46.43 73.26 70.71 69.06 62.96 60.52 44.90
Food101 CoOp+JoAPR 75.27 75.30 75.03 74.90 75.33 75.00 75.13 75.33 75.03 75.30 75.23 75.20
CoOp+JoAPR* 75.50 75.10 74.90 75.07 75.07 75.00 74.77 75.10 75.03 75.45 75.03 74.75
Ours 79.40 79.46 79.07 79.08 78.57 78.70 79.38 79.18 78.86 78.89 78.32 76.79
CoOp 62.47 61.23 60.17 58.53 55.03 50.47 62.17 59.13 53.97 45.47 3433 20.33
Robust UPL 61.97 60.91 60.10 57.48 55.58 51.16 61.37 58.76 54.25 49.03 41.27 37.58
ImageNet CoOp+JoAPR 60.87 61.07 60.70 60.30 58.77 55.60 60.00 59.97 59.23 57.90 56.43 53.67
CoOp+JoAPR* 61.23 61.30 60.70 60.33 59.00 55.13 60.73 60.67 60.07 58.53 56.67 53.53
Ours 61.27 61.36 60.83 60.64 60.42 60.23 61.43 61.16 60.99 60.96 60.63 60.43
CoOp 66.30 63.37 60.07 56.63 50.73 40.27 64.73 57.17 47.53 34.90 21.30 10.37
Robust UPL 66.81 67.05 64.16 61.05 57.92 48.74 66.08 66.78 63.88 59.95 54.36 48.68
SUN397 CoOp+JoAPR 67.23 68.13 67.33 67.03 64.77 60.90 66.97 66.30 64.90 61.50 55.90 48.83
CoOp+JoAPR* 67.47 67.47 67.07 66.70 63.87 58.03 66.80 66.77 65.23 63.10 57.87 51.10
Ours 67.78 68.40 67.62 67.53 64.92 63.13 67.39 66.92 65.68 63.92 63.13 62.39
CoOp 71.28 65.89 60.47 54.33 45.46 33.73 71.34 62.94 52.07 39.16 25.84 14.03
Robust UPL 72.76 70.23 66.49 61.97 55.52 44.44 71.96 69.15 65.25 59.15 51.63 41.10
Average CoOp+JoAPR 74.69 74.49 73.38 71.79 69.04 64.79 74.39 73.71 71.85 67.48 64.00 56.33
CoOp+JoAPR* 74.55 74.62 73.58 71.36 68.09 62.88 74.31 74.21 71.98 68.83 63.25 56.14
Ours 77.47 77.29 75.87 74.63 72.80 70.01 717.55 76.21 74.15 71.27 69.08 65.44

Table 1: Comparisons with existing SOTA methods across ten datasets. The highest accuracy achieved for each setting is highlighted in bold.

the baseline, respectively. Here, all training samples and their
observed labels are directly used without processing. Com-
paring No.2, No.3, and No.4 highlights the effectiveness of
using dual-level semantic matching for label screening. No.5
and No.6 demonstrate the importance of rectifying ambigu-
ous and noisy labels selected out by our method, while No.7
and No.8 show that label re-screening further improves ro-
bustness. These contributions enhance our model’s ability to
handle various noise more effectively.

Comparison with Existing Two-Segment Label Screen-
ing and Rectification Methods. To evaluate the effective-
ness of our proposed method, we compare it with two com-
monly used two-segment methods that categorize samples
into clean and noisy categories: 1) keeping clean labels and
refurbishing noisy labels as in Eq. (10) [Sohn et al., 2020;
Feng et al., 2024], referred to as KCL-RNL; 2) refurbishing
clean labels as in Eq. (10) and replacing noisy labels with

pseudo labels [Li er al., 2020; Guo and Gu, 2024], referred to
as RCL-RNL. As shown in Fig. 4, our method achieves su-
perior performance across noise ratios on two datasets. This
validates the advantages of tri-segment partitioning for pre-
cise label rectification and enhanced robustness through dif-
ferentiated sample handling.

Confidence Weight Analysis. We compared our adaptive
setting scheme of the confidence weight (w;) with fixed val-
ues (0.3, 0.5, 0.7). As shown in Table 3, the adaptive scheme
consistently outperforms fixed weights by better handling un-
certainty in ambiguous samples.

Robust Loss. Following [Wu ef al., 2023], we evaluate CoOp
with generalized cross-entropy (GCE) [Zhang and Sabuncu,
2018] on two noisy datasets. As shown in Fig. 4, while
GCE improves CoOp’s performance over cross-entropy, our
method achieves better results in most cases.
Hyper-parameters Analysis. We analyze the impact of con-
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| | | | ‘ ‘ DTD | OxfordPets
No. , MalLS | MiLS = DLSM  TSS-LR

‘ ‘ ‘ ‘ ‘ ‘ Symflip ‘ Pairflip ‘ Symflip ‘ Pairflip

\ \ \ \ \ | 125%  50% 5% | 125 50% 5% | 125%  50% 5% | 125 50% 75%
1 | | | | | 55.50 36.00 1977 | 5543 2753 1017 | 77.67 48.37 2237 | 76.40 37.00 14.17
2 | v \ \ | | 60.17 47.77 3394 | 59.01 40.20 2784 | 87.54 80.10 60.83 | 86.14 75.42 60.89
30 | v \ \ | 60.13 47.54 3216 | 60.12 39.96 25.11 | 87.36 80.03 5827 | 86.89 74.22 60.53
4 | \ | v \ | 6052 48.46 3582 | 60.76 41.31 3073 | 87.68 80.57 6498 | 87.03 71.35 61.98
51 v \ | v | 6241 55.38 5148 | 61.52 51.48 4634 | 89.64 88.42 87.24 | 89.78 87.60 86.59
6 | \ [ | 6277 57.57 5189 | 64.54 52.07 4929 | 89.75 89.07 88.06 | 90.08 88.09 86.92
70 v | | v | v | 612 58.04 5225 | 63.00 54.43 4657 | 90.13 88.74 87.68 | 90.02 87.98 86.73
8 | | | v | v | v | 619 60.28 5798 | 6548 59.22 5124 | 90.32 89.56 8823 | 90.95 88.72 87.93

Table 2: Ablation study for key components on DTD and OxfordPets datasets.
w; ‘ Symflip ‘ Pairflip 60 _ 60
| 125% 50% 75% | 125% 50% 75% § \\‘\4 §50 \ ~
0.3 64.83 59.1 49.71 65.31 53.78 35.64 350 \\ >
0.5 65.15 57.74 50.24 65.04 52.72 37.88 © 4o/ — Coop ® 401 o coop
0.7 64.95 57.68 50.41 65.08 52.48 38.83 5 —— GCE S 30] —+— GCE
Ours | 65.19 60.28 57.98 65.48 59.22 51.24 S 30 KCL-RNL b1 KCL-RNL
< RCL-RNL << 20 RCL-RNL
20 —— Ours 10 —— Ours

Table 3: Accuracy on DTD using fixed and adaptive confidence
weight (w;) schemes.

Symflip Pairflip
Dataset Method ‘ 100% ‘ 100%
CoOp 13 0.6
CoOp+JoAPR 81.50 84.90
Caltechl01 o4 JoAPR* 84.80 84.10
Ours 87.71 87.63
CoOp 47 14
CoOp+JoAPR 72.60 76.90
OxfordPets 0 5p+JoAPR* 82.40 70.40
Ours 85.45 85.04

Table 4: Accuracy on datasets with 100% label noise.

fidence threshold # on model performance (Fig. 5). The
model performs best at § = 0.01, with performance degrad-
ing as 6 increases due to misclassification of clean samples.

5.5 Extreme Noisy Analysis

To assess the robustness of our method, we conducted a chal-
lenging experiment where we introduced 100% noise into
the Caltech101 and OxfordPets datasets, meaning all training
data were deliberately mislabeled. As shown in Table 4, our
method demonstrates exceptional performance in both Sym-
flip and Pairflip noise scenarios, significantly outperforming
JoAPR. These results highlight the effectiveness and robust-
ness of our approach under extreme noise conditions.

6 Conclusion

We propose a framework for tuning vision-language mod-
els with noisy labels through screening, rectifying, and re-
screening strategies. Our dual-level semantic matching mech-
anism partitions samples into clean, ambiguous, and noisy
samples, while the label rectification steps assign pseudo la-
bels to ambiguous and noisy samples, and the re-screening
step reduces self-confirmation bias through cross-validation.

10 20 30 40 50 60 70
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(a) DTD-Symflip

10 20 30 40 50 60 70
Noise Ratio(%)

(b) DTD-Pairflip
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Figure 4: Performance of CoOp variants on two datasets. By default,
cross-entropy is used for training losses. ‘GCE’ uses GCE for loss
calculation. ‘KCL-RNL’ and ‘RCL-RNL’ use two-segmented based
strategies to screening and rectifying observed labels.
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(CLE, B e) B e) B o))
D 0 O N »

w
S

52

10 20 30 40 50 60 70
Noise Ratio(%)

(a) DTD-Symflip(6)

10 20 30 40 50 60 70
Noise Ratio(%)

(b) DTD-Pairflip(6)

Figure 5: Hyper-parameters analysis on DTD dataset.

Extensive experiments show superior performance over prior
methods. However, challenges remain under high noise rates
and fine-grained settings, which we aim to address through
noise-robust loss functions and curriculum learning.
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