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Abstract

Deep generative models, such as generative ad-
versarial networks (GANs), have been employed
for de novo molecular generation in drug discov-
ery. Most prior studies have utilized reinforcement
learning (RL) algorithms, particularly Monte Carlo
tree search (MCTYS), to handle the discrete nature
of molecular representations in GANs. However,
due to the inherent instability in training GANs
and RL models, along with the high computational
cost associated with MCTS sampling, MCTS RL-
based GANSs struggle to scale to large chemical
databases. To tackle these challenges, this study
introduces a novel GAN based on actor-critic RL
with instant and global rewards, called InstGAN, to
generate molecules at the token-level with multi-
property optimization. Furthermore, maximized
information entropy is leveraged to alleviate the
mode collapse. The experimental results demon-
strate that InstGAN outperforms other baselines,
achieves comparable performance to state-of-the-art
models, and efficiently generates molecules with
multi-property optimization. The code is available
at: https://github.com/tang777777/InstGAN.

1 Introduction

Modern human healthcare and well-being are intricately in-
tertwined with the field of drug discovery, which seeks to
uncover new chemical compounds with therapeutic effects.
However, traditional drug discovery is a time-consuming and
expensive endeavor, taking an average of 12 years and costing
2.6 billion USD [Chan et al., 2019]. To expedite the process
and mitigate costs, artificial intelligence (AI) has garnered the
attention of the pharmaceutical industry [Paul et al., 2021].
Among the recent applications of Al, deep generative models
have demonstrated remarkable progress, as exemplified by
DALL-E2 in the realm of computer vision and ChatGPT in
natural language processing (NLP) [OpenAl, 2023]. The adop-
tion of such models has also become increasingly prominent
in the field of drug discovery [Chen et al., 2018].

Molecular graphs [Shi et al., 2020] and simplified molec-
ular input line entry systems (SMILES) strings [Weininger,
1988] constitute the two primary representations of molecules
in deep generative models. However, generating molecules
with desired chemical properties using such discrete repre-
sentations is a non-trivial task. Most prior studies related
to generative adversarial networks (GANs) [Yu et al., 2017,
Guimaraes et al., 2017; De Cao and Kipf, 2018] typically
update the generator by integrating the output probability of
the discriminator with the chemical properties of generated
molecules as a reward for reinforcement learning (RL), fol-
lowing the REINFORCE algorithm [Williams, 1992]. Due
to the inability of GANSs to calculate rewards for partially
generated molecules, Monte Carlo tree search (MCTY) is fre-
quently utilized for sampling and completing molecules [Li
et al., 2022]. Unfortunately, the integration of RL algorithms
with GANSs further exacerbates the instability of the training
process. Achieving training stability with MCTS demands a
substantial number of samples, rendering the process highly
time-consuming [Li and Yamanishi, 2023].

Furthermore, most aforementioned studies on de novo
molecular generation have focused on optimizing a single
chemical property. However, in practical applications, it is
often desirable to generate molecules that satisfy multiple
chemical property constraints. In contrast to the former, multi-
property optimization is highly complicated and challenging to
achieve in nature. This is because the multi-property optimiza-
tion task entails not only learning the semantic and syntactic
rules of molecules to generate valid molecules from scratch
but also finding pathways to optimize the distribution of chem-
ical properties during the process [Barshatski er al., 2021].
For example, molecules exhibiting both drug-likeness and
dopamine receptor (DRD2) activity represent only 1.6% of
the generated molecules [Jin et al., 2019]. Therefore, employ-
ing deep generative models for de novo molecular generation
with multi-property optimization holds significance to the drug
discovery industry [Barshatski and Radinsky, 2021].

Inspired by the previous studies in [De Cao and Kipf, 2018;
Tang et al., 2023], this study introduces a novel GAN based on
actor-critic RL with instant rewards (IR) and global rewards
(GR), called InstGAN, to generate molecules at the token-level
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with multi-property optimization. Specifically, the generator
is constructed using a long short-term memory (LSTM) that
generates SMILES strings in an autoregressive manner. The
discriminator quantifies each token based on SMILES sub-
strings produced by the generator. To enhance the ability of
the discriminator to quantize tokens, a bidirectional LSTM
(Bi-LSTM) is chosen as the discriminator. Additionally, multi-
property prediction networks with the same structure as the
discriminator predict the corresponding property scores for
each token as well. Subsequently, the scores of discriminator
and property prediction networks, along with their global-
level scores, serve as rewards for RL. To expedite the training
process and facilitate its application to extensive chemical
databases, an IR calculation based on actor-critic RL is pro-
posed to update the generator. Furthermore, the maximized
information entropy (MIE) is included in the generator loss
function to mitigate mode collapse and enhance molecular
diversity. The main contributions are

* Novel reward calculation: This study proposes an actor-
critic RL-based approach to calculate IR and GR for
molecular generation with multi-property optimization.

* Scalability for chemical property optimization: Inst-
GAN exhibits versatile scalability, enabling flexible ex-
pansion from single-property to arbitrary multi-property
optimized molecular GAN.

* Superior performance: Experimental results validate
that InstGAN outperforms other baselines, achieves com-
parable performance to state-of-the-art (SOTA) models,
and demonstrates the ability to generate molecules with
multi-property optimization in a fast and efficient manner.

2 Related Work

2.1 Variational Autoencoder (VAE)-based Models

Two VAE variants, Character-VAE and Grammar-VAE [Kus-
ner et al., 2017], integrate parse trees with VAEs to facilitate
the generation of syntactically valid molecules. However, due
to ignoring the semantic information of the molecular rep-
resentations, the correlation between the training set and the
generated molecules cannot be guaranteed. In contrast, Syntax-
VAE [Dai et al., 2018] ensures that the generated molecules are
both syntactically valid and semantically meaningful. JT-VAE
[Jin et al., 2018] adopts a two-step VAE approach, first gener-
ating tree-structured scaffolds based on chemical substructures
and then combining these outputs into complete molecules
using a graph message-passing network [Dai er al., 2016;
Gilmer et al., 2017]. Nonetheless, a major limitation of VAEs
is the typically limited size of the latent space, which may
restrict the capacity to produce highly realistic molecules.

2.2 Flow-based Models

GraphAF [Shi ez al., 2020] utilizes a flow-based autoregres-
sive model to generate molecular graphs. GraphDF [Luo et al.,
2021] incorporates invertible modulo shift transforms to con-
nect discrete latent variables with graph nodes and edges, re-
sulting in the generation of molecular graphs. MoFlow [Zang
and Wang, 2020] adopts a Glow-based model [Kingma and
Dhariwal, 2018] to generate chemical bonds as graph edges

and employs a graph conditional flow to subsequently generate
atoms as graph nodes, followed by posthoc validity correction.
GraphCNF [Lippe and Gavves, 2021] falls under the category
of flow-based models, commonly applied in various data do-
mains. In molecular graph generation, GraphCNF leverages
flow-based techniques to address the unique challenges associ-
ated with generating molecular graphs. However, flow-based
models exhibit several notable limitations: the computation
of the Jacobian matrix is time-consuming, often requiring
approximations, and the necessity for network invertibility
imposes constraints on their representational capacity, limit-
ing their flexibility in modeling complex, high-dimensional
data distributions [Zhang et al., 2021]. Additionally, ensuring
invertibility across all layers can lead to challenges in model
training and optimization.

2.3 Diffusion-based Models

Recently, diffusion models have found application in the do-
main of molecular generation, where they are being utilized
to tackle the intricate challenges associated with generating
molecular structures that adhere to specific chemical and prop-
erty constraints. DiGress [Vignac et al., 2023] iteratively re-
fines noisy graphs by adding or removing edges and adjusting
categories, which results in the generation of molecular graphs
with node and edge attributes suitable for classification. GDSS
[Jo et al., 2022] and D2L-OMP [Guo et al., 2023] are the two
SOTA models in the realm of molecular generation. GDSS
skillfully captures the joint distribution of molecular nodes
and edges, generating molecular replicas closely aligned with
the training distribution. D2L-OMP generates molecules with
property optimization based on a hybrid Gaussian distribution
by employing diffusion on two structural levels: molecules
and molecular fragments. This hybrid Gaussian distribution is
then utilized in the reverse denoising process.

2.4 GAN-based Models

SeqGAN [Yu et al., 2017] pioneered the incorporation of
MCTS-based RL into GAN architecture, specifically designed
to handle discrete text. This innovation has inspired vari-
ous studies on molecular generation using GANs. MolGAN
[De Cao and Kipf, 2018] introduces an implicit, likelihood-
free discrete GAN for generating small molecular graphs.
However, MolGAN faces an overfitting problem, leading to
less than 5% uniqueness in the generated molecules. ORGAN
[Guimaraes et al., 2017] integrates domain-specific knowl-
edge as rewards for generating SMILES strings through the
MCTS-based RL algorithm. TransORGAN [Li er al., 2022]
leverages a transformer architecture to capture semantic in-
formation and employs variant SMILES technique for syntax
rule learning. SpotGAN [Li and Yamanishi, 2023] adopts a
first-decoder-then-encoder transformer model for generating
SMILES strings from a given scaffold. However, the use of
MCTS-based RL in GANs often demands a substantial num-
ber of samples for training stability, making it impractical for
extensive chemical databases. EarlGAN [Tang et al., 2023],
while capable of generating valid molecules on large chemical
databases, lacks the ability to optimize chemical properties,
particularly multiple properties simultaneously.
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This study introduces an actor-critic RL-driven GAN that
employs IR and GR to enhance the efficiency of learning se-
mantic and syntactic rules in SMILES strings. Furthermore,
our other goal is to optimize molecule generation across di-
verse chemical properties.

3 Model

Figure 1 illustrates the overall architecture of InstGAN and
highlights the three key substructures (i.e., the generator, dis-
criminator, and multiple chemical property prediction net-
works) that are crucial for generating molecules with multi-
property optimization from scratch. Formally, let Gg and D
represent the generator and discriminator of InstGAN with
parameters 6 and ¢, respectively. S1.7 = [s1,-- ,s7| de-
notes a SMILES string with a sequence length of T". Then, the
min-max optimization procedure [Goodfellow et al., 2014] is
implemented as follows:

. D) —
min mjx V(Geg,Dg)

Es~p, (5)[l0g Dp(S)] + Espe(s)log(l — Dg(S))], (1)

where p,.(-) and pg(-) represent the distributions of train-
ing SMILES strings and generated sequences, respectively.
Following a similar approach to NLP methods [de Mas-
son d’Autume et al., 2019; Fedus et al., 2018], InstGAN
utilizes an autoregressive generator and discriminator. No-
tably, this design allows for the allocation of dense rewards
at the token-level. For detailed explanation of InstGAN’s de-
sign motivations and a full description of its generator and
discriminator architectures, see Appendix A'.

3.1 Token-level Critics

Unlike graph-based approaches, molecular generative models
relying on SMILES strings often face challenges in ensuring
high validity due to the intricacies of checking valence dur-
ing the autoregressive generation process. Typically, invalid
SMILES strings may arise from mismatched tokens, requiring
the removal or replacement of other suitable tokens to restore
validity. A crucial aspect of addressing this issue lies in the
meticulous assessment of SMILES strings at the token level.
We therefore integrate the validity assessment directly into
the generation process, by treating each token generation as
an action in a token-level actor-critic RL loop: at every step,
the generator (actor) proposes a candidate token, while the
discriminator (critic) assess its syntactic validity and return a
dense reward. This feedback system ensures the generator of
high-validity token generation.

Token-level discriminator. In InstGAN, the generator em-
ploys an autoregressive process to produce SMILES strings,
serving as inputs for the discriminator. Diverging from tra-
ditional discriminators, InstGAN performs token-level dis-
crimination for each generated token. Specifically, with a

Bi-LSTM, let ?u and ;.7 represent the forward and back-
ward SMILES substrings, respectively. The discriminator

'The Appendix is available at:
https://github.com/tang777777/InstGAN/blob/main/Appendix.pdf

calculates the probability 7 that it deems the ¢-th token 3; of
the SMILES string as true. The calculation is as follows:

~ <~
TtD = D¢(3t\§1:t7 S ). 2)

To assess the validity of the entire SMILES string, we calculate
the global discriminator score as

T
=1 >orp 3)
1T — T t -
t=1

Token-level property prediction networks. The chemical
property prediction networks are replicated from the discrimi-
nator and share the same structure. In the pre-training phase,
the entire SMILES string serves as input, and the networks
utilize the corresponding property values of the complete
SMILES string as labels for the chemical properties of its
tokens at each step. In the training phase of InstGAN, these
networks calculate both instant and global chemical proper-
ties of the generated SMILES string. Collaborating with the
discriminator, they contribute to updating the generator using
actor-critic RL-based rewards.

3.2 Instant and Global Reward Calculation

Following the actor-critic RL algorithm, the generator func-
tions as the actor network responsible for action selection,
while the discriminator, along with the property prediction
networks, serves as the critic for reward calculation. However,
in contrast to the traditional actor-critic RL algorithm [Konda
and Tsitsiklis, 19991, which calculates the reward at the last
time step 7', we compute the reward for each token as

RP =2r =1+ WPrllp, 4)

where WP represents the weight assigned to the discrim-
inator’s GR. Similarly, the reward of the property predic-
tion networks can be calculated and denoted as th i E
[1,2,---,N], and N indicates the number of chemical prop-
erties to be optimized. Subsequently, the overall reward for
chemical properties is represented as RS = Zf\il We, R,
where W, denotes the weight assigned to the ¢-th chemical
property prediction network. Finally, the total reward R; can
be calculated as follows:

Ry = (1 - MR + AR, )

where A represents a hyperparameter that balances the trade-
off between the GAN and RL.

3.3 Objective Function

In the iterative adversarial process, the generator is updated
by the MCTS-based RL algorithm through the sampling of
numerous samples, leading to a computational training process.
In contrast, InstGAN utilizes rewards derived from the actor-
critic RL algorithm and MIE for the calculation. Please see
the description of the MCTS-based RL and actor-critic RL
for algorithms comparison in Appendix B. The overall loss
function for the generator is calculated as

Lo = Lrr + BLMIE, 6)
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Figure 1: The architectural overview of InstGAN comprises three main substructures. (a) The generator, featuring an LSTM, produces tokens
in an autoregressive manner at each time step. MIE is employed to enhance the likelihood of sampling different tokens, smoothing the output
probability distribution for the generator. (b) The discriminator, a Bi-LSTM, scores generated tokens based on both forward and backward at
each time step, enabling semantic and syntactic discrimination at the token-level. Higher probabilities are assigned to likely generated tokens,
while those with errors receive lower probabilities. The average of all-token probabilities assesses overall generation quality from a global
perspective. (c) Multiple pretrained chemical property prediction networks, labeled Critic 1 to Critic /N, have the same structure as the
discriminator. They predict various chemical properties for each token of a generated SMILES string. Similarly, the sum of stepwise scores is
averaged to provide a global property score for the entire SMILES string. Finally, scores from the discriminator and critics serve as rewards in
the actor-critic RL algorithm, co-updating the generator via the policy gradients.

where Lry, and L ;g represent the loss functions of RL and
MIE, respectively, with 8 serving as the trade-off parameter
between them. In accordance with the policy gradient, Lry, is
calculated by minimizing the expected reward score:

1
Lrp =7 SZ(Rt = bi)logpo(si|Sra-1), ()

where b; denotes the baseline using the global moving-average
rewards [Sutton and Barto, 2018], which is calculated using
both the mean reward R across the current batch and the
previous baseline b;_1, calculated as

by = (1 — )R+ ab_1. (8)

Here, o denotes a smoothing factor. To encourage the genera-
tor to sample tokens with probabilities other than the highest,
MIE L7 is incorporated into the generator’s loss function.
This addition serves to smooth the probability distribution,
mitigating the mode collapse problem and promoting diversity
in generating molecules.

.
1
Lurs =7 > polst)logpe(sy), )

S1.r v=1

where V represents the size of chemical vocabulary. Algo-
rithm 1 outlines the training procedure for InstGAN. The
generator, discriminator, and multiple chemical property pre-
diction networks are first pre-trained. Then, the generator is
trained to generate a dataset. Afterward, the discriminator
and critics are updated using both real and generated SMILES
strings. Finally, the IR and GR values are calculated to update
the generator’s parameters.

Dataset MaxL MinL Avgl. QEDlogP SA DRD2
ZINC 109 9 44 0.730.560.56 0.24
ChEMBL 116 10 47 0.57 0.670.62 0.25

* MaxL, MinL, and AvgL indicate the maximum, min-
imum, and average length of the SMILES strings.

Table 1: Statistical descriptions of the datasets.

4 Experiments

4.1 Experimental Setup

Datasets. The performance of InstGAN was validated
through experiments on two widely used chemical datasets:
ZINC [Irwin et al., 2012] and ChEMBL [Gaulton et al., 2017].
The ZINC dataset contains 250,000 drug-like molecules.
The ChEMBL dataset includes approximately 1.6 million
molecules, with each having a median of 27 and a maximum
of 88 heavy atoms.

Chemical properties. Drug-likeness (QED) quantifies the
probability that a molecule belongs to a drug [Bickerton et
al., 2012]. Solubility (logP) measures how well a molecule
dissolves in lipid versus aqueous environments, quantified as
the Log of the partition coefficient [Comer and Tam, 2001].
Synthesizability (SA) is defined by the synthetic accessibility
score, evaluating the ease with which a molecule can be syn-
thesized [Ertl and Schuffenhauer, 2009]. Dopamine receptor
D2 (DRD2) is a central nervous system G protein-coupled
receptor that is essential for dopamine-mediated signaling
[Olivecrona et al., 2017]. Table 1 provides detailed statistical
descriptions of the datasets.

Metrics. Validity is assessed by the proportion of chemi-
cally valid molecules among all generated ones, validated prac-
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Algorithm 1 Training Procedure of InstGAN.

1: Data: a SMILES dataset D, ..,

2: Initialization: Gg, Dy, CL_,i € [1,--- , N]
3: Generate a dataset D4 from scratch

4: //Pre-train the discriminator
5: for kK =1 — d-steps do
6.
7
8

. Update Dy on D,.cq; and Dygpe
: end for
: //Pre-train the generator
9: for k =1 — g-steps do
10:  Update Gg on D,
11: end for
12: //Pre—train property networks
13: fori =1— N do
14:  for k =1 — p-steps do

15: Update C7,. on Dy
16:  end for
17: end for

18: //Multi-property optimization

19: for £ = 1 — m-steps do

20: G updates the generated dataset D ¢, e

21:  Update Dy and C,

22: Dy discriminates between D,.cq; and Dyqpe and out-
puts the IR and GR

23: Cfoi calculates the IR and GR for chemical properties

24:  Update Gg based on the rewards

25: end for

tically using the RDKit tool [Landrum, 2013]. Uniqueness
is determined by the proportion of non-duplicated molecules
among all valid ones. Novelty is defined as the proportion
of unique molecules not present in the training set. Total is
the ratio of novel molecules to all generated ones. Diversity
is calculated as the average Tanimoto distance [Rogers and
Tanimoto, 1960] between the Morgan fingerprints [Cereto-
Massagué et al., 2015] of novel molecules. All these prop-
erties and metrics are normalized to a range of [0, 1], with
a higher score indicating better performance. For a detailed
description of the chemical properties, evaluation metrics and
hyperparameters, please refer to Appendix C.

4.2 Evaluation Results

Comparison results with baselines. Table 2 compared the
results of InstGAN with various baseline models (including
VAE-, flow-, diffusion-, and GAN-based models) for chemical
property optimization on the ZINC dataset. To ensure a fair
comparison, InstGAN was pre-trained several times, and the
average results are presented. Additional details on these multi-
ple pre-training sessions are provided in Appendix D. For VAE-
based models, although RNN-Attention and TransVAE gener-
ated molecules that were highly unique and novel, their valid-
ity (i.e., < 71.6%) was significantly lower compared to Inst-
GAN. InstGAN outperformed Character-VAE and Grammar-
VAE in all metrics. Although JT-VAE exhibited high validity
and novelty, the uniqueness was only 19.75%, significantly
lower than that of InstGAN. For flow-based models, despite ex-
hibiting high uniqueness and novelty, their validity was lower,
specifically less than 89.03%, which significantly trails behind

InstGAN. InstGAN demonstrated comparable performance
to SOTA diffusion models GDSS and D2L-OMP. All models,
including pre-training and tasks involving single properties
(QED, logP, SA), as well as multi-property tasks (QED, logP,
SA), achieved an overall score surpassing 93.87%. Among
GAN-based models, while MolGAN and TransORGAN ex-
hibited a novelty of 100.0%, their validity and uniqueness
fell significantly lower than InstGAN. Specifically, MolGAN
demonstrated a mere 4.3% uniqueness, and TransORGAN
exhibited a validity of only 74.31%. ORGAN’s validity stood
at 67.96%, markedly lower than InstGAN’s impressively high
validity exceeding 95.45%. Furthermore, InstGAN outper-
formed SpotGAN in terms of validity, uniqueness, novelty,
and total score, with the highest overall performance. InstGAN
was trained for single- and multi-property optimization. In
single-property optimization, InstGAN was trained individu-
ally using QED, logP, and SA. In multi-property optimization,
these three properties were used to jointly train InstGAN. The
validity, uniqueness, novelty, and total score all reached up to
93.87%. Overall, while InstGAN generated molecules from
less informative SMILES strings compared to graph-based
models, it surpassed VAE-, flow-, and GAN-based baselines
and demonstrated comparable performance to SOTA diffu-
sion models. This highlights InstGAN’s robust capability in
molecular generation, demonstrating excellence in both single-
property and multi-property optimization.

Property optimization. Owing to the diverse sequence rep-
resentations in SMILES strings, they inherently introduce
more noise compared to molecular graphs. Furthermore, as
molecular graphs typically contain more detailed information,
including atoms, chemical bonds, and valences, the task of
molecular generation based on SMILES strings is more chal-
lenging. As illustrated in Table 2, InstGAN performed well
in molecular generation in all evaluation metrics. InstGAN
obtained almost 100% novelty in multi-property optimization,
with validity and uniqueness exceeding 97.7%. InstGAN’s
ability to excel in learning both semantic and syntactic features
within SMILES strings is the key contributing factor to this
achievement. This achievement surpassed the capabilities of
all other models that rely on SMILES strings for chemical
property optimization.

Table 3 and Table E.1 show the top-k property scores for
the multi- and single-property optimization of the generated
molecules, respectively. In multi-property optimization, In-
stGAN enhanced all targeted chemical properties. The QED
scores showed a 30.1% improvement (from 0.73 to 0.95) for
Top-1 and 27.4% improvement (from 0.73 to 0.93) for Top-
1000, compared with the training dataset. Furthermore, the
generated molecules of InstGAN with logP and SA as the
desired properties exhibited a notable improvement, with logP
scores increasing by 78.6% for Top-1 and 58.9%, as well as
76.8% for SA scores for Top-1000, respectively. In both prop-
erty optimization, InstGAN generated molecules with higher
QED scores, compared with other baselines. Especially, In-
stGAN improved the QED score of the Top-1000 by 9.4%
and 10.6%, comparing to the SOTA D2L-OMP baseline. In
single-property optimization, the generated molecules of Inst-
GAN demonstrated substantial improvements, with the scores
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Model Validity (%) T Uniqueness (%) T Novelty (%) T Total (%) 1
RNN-Attention [Dollar et al., 2021] 71.57 99.94 100.0 71.53
TransVAE [Dollar et al., 2021] 25.39 99.96 100.0 25.38
VAE-based Character-VAE [Kusner et al., 2017] 86.65 81.21 26.36 18.55
Grammar-VAE [Kusner et al., 2017] 91.91 77.24 11.90 8.45
JT-VAE [Jin ef al., 2018] 100.0 19.75 99.75 19.70
GraphAF [Shi et al., 2020] 68.00 99.10 100.0 67.39
Fl GraphDF [Luo et al., 2021] 89.03 99.16 100.0 88.28
ow-based
MoFlow [Zang and Wang, 2020] 81.76 99.99 100.0 81.75
GraphCNF [Lippe and Gavves, 2021] 63.56 100.0 100.0 63.56
Diffusi GDSS [Jo et al., 2022] 97.01 99.64 100.0 96.66
iffusion-based
D2L-OMP [Guo et al., 2023] 97.51 99.88 100.0 97.39
ORGAN [Guimaraes et al., 2017] 67.96 98.20 98.39 65.66
GAN-based MOolGAN [De Cao and Kipf, 2018] 95.30 4.30 100.0 4.10
TransORGAN [Li et al., 2022] 74.31 91.79 100.0 68.21
SpotGAN [Li and Yamanishi, 2023] 93.26 92.78 92.75 80.25
Pre-train (Average) 95.45 98.63 99.71 93.87
Property (QED) 97.89 98.31 99.69 95.94
InstGAN Property (logP) 96.65 98.42 99.93 95.05
Property (SA) 97.46 98.59 99.75 95.85
Multi-property 97.71 98.71 99.64 96.10

* The values in the gray cells indicate the maximum scores in the respective columns.

Table 2: Comparison results of InstGAN with various baseline models for chemical property optimization on the ZINC dataset.

Model (Property) Top-1Top-5Top-10Top-100Top-1000

GraphAF 094 093 0.92 0.86 0.57
GDSS 094 094 093 0091 0.85
MoFlow 093 092 092 0.87 0.78
D2L-OMP 095 094 0.94 0091 0.85
InstGAN 095 095 095 0.95 0.94
InstGAN (Multi) 0.95 0.95 095 094 0.93

Table 3: QED assessment of the top-k generated molecules.

increasing by 30.1%, 78.6%, and 78.6% for Top-1, and 28.8%,
78.6%, and 78.6% for Top-1000, compared with the training
dataset. Overall, InstGAN showcased substantial enhance-
ments in property optimization, underscoring its effectiveness
in improving targeted chemical properties.

Figures E.1 and E.2 in the appendix show the top-ranked
(Top-1) molecular structures generated by InstGAN in the
single- and multi-property optimization tasks, respectively.
The generated molecule adhered to Hiickel’s rules [Klein and
Trinajstic, 19841, essential for obtaining the targeted chemical
properties of new drugs. These findings suggest that InstGAN
successfully produced new drug-like molecules with relatively
high QED, logP, and SA scores.

Figures E.3 and E.4 in the appendix depict the curves of
average chemical property values versus training steps for
molecules generated in single- and multi-property optimiza-
tion tasks. Chemical properties for both single- and multi-
property optimization exhibited gradual increases over 5000
training steps. In single-property optimization, the indepen-
dence of the three chemical properties resulted in distinct
and noticeable score increases. Moreover, during the multi-
property optimization process, the mutual constraints between
properties led to similar changing trends in the values of the
three properties.

Fig. 2 and Figure E.5 in the Appendix show the property
distributions of molecules generated with multi- and single-
property optimization, respectively. Intuitively, in compari-
son to the molecule distributions in the training set (in blue),
the chemical property distributions of the newly generated
molecules (in green) shifted to the right overall. This suggests
that InstGAN produced a greater number of new molecules
with desirable properties. Furthermore, the property scores
of molecules generated through multi-property optimization
were marginally lower than those from single-property opti-
mization.

This difference arises primarily because InstGAN had to
concurrently consider the enhancement of three properties
and several of which are inherently conflicting during multi-
property optimization. Detailed results and trade-off analyses
are provided in Appendix F. In essence, multi-property opti-
mization for molecular generation proves to be more challeng-
ing and intricate.The results demonstrated the effectiveness of
InstGAN in chemical property optimization.

4.3 Ablation Studies

Table 4 demonstrates the impact of various InstGAN variants
on molecular generation performance. During the training pro-
cess of InstGAN, we excluded GR, and MIE individually to
create three distinct variants, namely, “w/o IR,” “w/o GR,” and
“w/o MIE.” These variants were then compared with InstGAN.
In the “w/o IR” scenario, the calculation of instant reward
was substituted with the MCTS-based RL algorithm. While
MCTS enhanced GAN training stability with its extensive
sampling, resulting in relatively high validity (97.80%), its
computational complexity, stemming from the large number
of samples, constrains its applicability in lengthy sequences.
In the case of “w/o GR”, the validity was the lowest (95.96%,
compared to 97.56% of InstGAN). Given that the GR involves
the global information of a SMILES string, it provides addi-
tional sequence-related information for generating subsequent
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Figure 2: Property distributions of generated molecules with multi-property optimization.

Validity Uniqueness Novelty  Total
w/o IR 97.80 70.71 98.02 67.79
w/o GR 95.96 98.72 99.66 94.41
w/o MIE 98.39 96.50 99.54 94.51
InstGAN  97.56 98.47 99.73 95.81

Table 4: Effect of different variants of InstGAN.

tokens in the molecular auto-regression process, thereby con-
tributing to the validity improvement. MIE, by smoothing the
probabilities of generating tokens, enhances diversity in sam-
pling tokens with non-maximum probabilities. Consequently,
in the “w/o MIE” scenario, the generated molecular distribu-
tion exhibited the lowest uniqueness (96.50%, compared to
98.47% of InstGAN). InstGAN, incorporating IR, GR, and
MIE, achieved the highest total score of 95.81%.

Additionally, Tables G.1, G.2, G.3, and G.4 display the
effects of A\ on the performance. InstGAN can be applied to
extensive chemical databases, optimizing chemical properties
while retaining a low computational cost.

Integrating an actor-critic RL with instant and global re-
wards is crucial to the success of InstGAN. When compared
to MCTS sampling, our strategy is more computationally eiffi-
cient, and its fine-grained feedback over SMILES sub-strings
provides informative gradients at the early training stage mit-
gating the gradient vanishing problem that often hinders dis-
crete GANs. The same mechanism also stabilizes the learning
process: in the integration setup of GAN and RL, the genera-
tor simultaneously minimizes KL divergence and maximizes
JS divergence, producing conflicting gradients [Saxena and
Cao, 2021]. Injecting entropy through token-level rewards
and MIE can balance the two objectives and aligns with RL
findings that entropy regularization facilitates exploration and
robust learning [Ahmed et al., 2019]. As a result, InstGAN
achieves more stable convergence, improved sample quality,
and performance on par with SOTA models.

4.4 Case Studies

In the case studies, our goal is to generate molecules with high
QED and a significant affinity for DRD2 within the ChEMBL
database. This pursuit is critical for identifying potential drug
candidates distinguished by enhanced drug-like properties and
targeted therapeutic effects. This significance is underscored
by the wealth of available experimental bioactive data, provid-
ing a robust foundation for advancing promising compounds

ChEMBL dataset InstGAN
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Figure 3: Comparison of the generated molecules with high DRD2
scores and similar approved drugs.

in drug discovery.

Table H.1 in Appendix H assesses the performance of QED
and DRD?2 properties, demonstrating that the QED and DRD2
scores change with the corresponding weights. Furthermore,
InstGAN enhanced the bioactivity of the generated molecules
t0 97.21%. Additionally, we selected a QED and DRD2 weight
ratio of (0.3, 0.7) and generated bioactive molecules. Figure
3 compares the generated molecules with high DRD2 scores
to similar approved drugs. These Top-3 molecules generated
by InstGAN have high QED and DRD2 scores and are highly
similar to approved drugs in the ChEMBL database, proving
the effectiveness of InstGAN.

5 Conclusion

This study introduced InstGAN for generating molecules with
multi-property optimization from scratch. Unlike MCTS-
based RL algorithms, we employed an actor-critic RL algo-
rithm for the efficient computation of IR and GR, resulting
in reduced computation time and stabilized molecular genera-
tion quality. Additionally, the inclusion of MIE was used to
alleviate the mode collapse problem and promote diversity in
molecular generation. The experimental results demonstrated
that InstGAN achieves comparable performance to SOTA base-
line models and efficiently generates molecules with single-
and multi-property optimization.

InstGAN has two main limitations. First, the number of
critics increases with the number of chemical properties that
need to be optimized, which leads to an increase in the training
cost. Second, the inclusion of additional hyperparameters,
such as A and W, , requires manual tuning, posing a challenge
for fine-tuning. In future work, we will explore solutions to
address these challenges.
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